lecturel?

CS 420 / CS 620
uring Machine Variants

Monday, November 3, 2025
UMass Boston Computer Science

THUS, FOR ANY NONDETERMINISTIC TURING
MACHINE M THAT RUNS IN SOME POLYNOMIAL
TIME p(n), WE CAN DEVISE AN ALGORITHM

THAT TAKES AN INPUT w OF LENGTH n AND
PRODUCES Ea,... THE RUNNING TIME IS Odpim)

ON A MULTITAPE DETERMINISTIC TURING
MACHINE AND ..,

WTF, MAN, I JUsST
WANTED TO LEARN
HOW TO PROGRAM

VIDEC GAMES,

lecturel?

%/{/{0«/{06/%@/{56’

« HW 8
+ Bue-Men-1H3-Rpm-{noen)

* HW 9

 Out: Mon 11/3 12pm (noon)
 Due: Mon 11/10 12pm (noon)

THUS, FOR ANY NONDETERMINISTIC TURING
MACHINE M THAT RUNS IN SOME POLYNOMIAL
TIME pin), WE CAN DEVISE AN ALGORITHM

THAT TAKES AN INPUT w OF LENGTH n AND
PRODUCES Ep,.. THE RUNNING TIME IS OP*n)

ON A MULTITAPE DETERMINISTIC TURING
MACHINE AND ..

WTF, MAN, I JUST
WANTED TO LEARN
HOW TO PROGRAM

VIDEC GAMES,

Last [ine

TMs: High-level vs Low-level?

M; = “On input string w:

1. Zig-zag across the tape
side of the # symbol to
the same symbol. If tt
Cross off symbols as tk
symbols correspond.

2. When all symbols to t
check for any remainir
symbols remain, reject;

Turing Machine: High-Level Description

« M; accepts if inputis in language B = {w#w| w & {071}*}

M; = “On input string w:

We will (mostly)

1. Zig-zag across ing positions on either

define TMs using

side of the # s\ g
' high-level

the same sym

¢ (But it must always correspond to some
{ formal low-level tuple description)

descriptions,

Cross off symb . .
‘ like this one

symbols correspon

o keep track of which

2. When all symbols to the|Analogy:

check for any remaining : High-level (e.g, Pythc\>/2) function definitions

symbols remain, reject; ot Low-level assembly language

TM High-level Description Tips

Analogy:
 High-level TM description ~ function definition in “high level” language, e.g. Python
« Low-level TM tuple ~ function definition in bytecode or assembly

TM high-level descriptions are not a “do whatever” card, some rules:
1. TMs and input strings must be named (like function definitions) M; = “On input string w:
2. Steps must be numbered

3. TMs can “call” or “simulate” other TMs (if they pass appropriate arguments!)
« eg, step foraTM M can say: “call TM M, with argument string w, if M, accepts w then ..., else ...”

« Can split input into substrings and pass to different TMs M = “On input w
. . u S 1. Simulate B on input w.
4. FO“'OW typlcal pr,ogram mi ng S,Copl ng _ rlﬂ leS . . , 2. If simulation ends in accept state,
« can assume functions already defined are in “global” scope, “CONVERT" ..
5. Other variables must also be defined before use 0 L a2 e 2 o T N N L e
« e.g,can define a TM inside another TM 1. Convert NFA B to an equivalent DFA C, using the procedur
’ . this conversion given in Theorem 1.39.
6. must be equivalent to a low-level formal tuple 2. Run TM M from Theorem 4.1 on input (C, s).

* high-level “step” represents a finite # of low-level & transitions § — “On input 1

5 = = w
* Soone ?tep CennOt run fo reve"r “ " 1. Construct the following TM M.
« E.g,can’t say “try all numbers” as a “step M,y —

= “On input x:

Non-halting Turing Machines (TMs) <®

So: TM computation has
3 possible results:

* A Turing Machine can run forever : ﬁ‘éj?gftt
« £.g, head can move back and forth in a loop - Loop forever

« We will work with two classes of Turing Machines:

A recognizer is a Turing Machine that may run forever (all possible TMs)
« A decider is a Turing Machine that always halts.

Call a language Turing-recognizable if some Turing machine (Call a language Turing-decidable or simply decidable if some

recognizes it. : : Turing machine decides it. . .
(3 possible computation results) (2 possible computation results)

Formal Definition of an “Algorithm”

 An algorithm is equivalent to a Turing-decidable Language
(always halts)

Turing-recognizable

(3 possible
computation
results)

decidable

(2 possible
computation
context-free results)

All functions we have defined this
semester are algorithms!

e.g., all our conversion functions
are decider TMs!!

- CONVERT ¢ p_yra

- STARyp4

- PDA-CFG

Turing Machine Variations

Y
O(1]0 0| u
1. Multi-tape TMs | \/ ,
da|adla
Y
b|la|u
Deterministic Nondeterministic
computation computation
o . Q: start (.}f—\
2. Non-deterministic TMs (Y
;)
L reject -(1

« accept or reject

!

* accept

Want to prove:
these TM variations
are equivalent to
deterministic,
single-tape
machines

Reminder: Equivalence of Machines

« Two machines are equivalent when ...

. ... they recognize the same language

Theorem: Single-tape TM & Multi-tape TM

= If a single-tape TM recognizes a language,
then a multi-tape TM recognizes the language
* Single-tape TM is equivalent to ...
e ... multi-tape TM that only uses one of its tapes
e (could you write out the formal conversion?)

& If a multi-tape TM recognizes a language,
then a single-tape TM recognizes the language
« Convert: multi-tape TM - single-tape TM

Key insight: single-tape is infinite in length!

Multi-tape TM =» Single-tape TM

Idea: Use delimiter (#) on single-tape to simulate multiple tapes
« Add “dotted” version of every char to simulate multiple heads

.. the machines recognize the same

- don’t accept the same strings

110

M \ Single-tape machine will take more
ala steps to accept/reject, but the only

requirement for “equivalence” is ...
=
il language! i.e, they
- accept the same strings
S ! i
® ®

#10 # al#|blal|l#]|u

Theorem: Single-tape TM <& Multi-tape TM

= If a single-tape TM recognizes a language,
then a multi-tape TM recognizes the language
 Single-tape TM Is equivalent to ...
* ... multi-tape TM that only uses one of its tapes

< If a multi-tape TM recognizes a language,
then a single-tape TM recognizes the language
« Convert: multi-tape TM - single-tape TM

Y
O(1]0 0| u
1. Multi-tape TMs | \/ .
da|adla
Y
b|la|u
Deterministic Nondeterministic
computation computation
o . Q: start (.}f—\
==) 2. Non-deterministic TMs | (Y
;)
Q reject -(1

« accept or reject

!

* accept

Want to prove:
these TM variations
are equivalent to
deterministic,
single-tape
machines

Previnusty: TUTING Machines

 Turing Machines can read and write to arbitrary “tape” cells
« Tape initially contains input string

States .
l input | | Empty tape locations

* The tape Is infinite
« (to the right) head b b _é .

(0 I I

« On a transition, “head” can move left or right 1 step

Call a language Turing-recognizable it some Turing machine
recognizes 1t.

Turing Machine: High-Level Description

« M; accepts if inputis in language B = {w#w| w & {071}*}

M; = “On input string w:

We will (mostly)

1. Zig-zag across ing positions on either

define TMs using

side of the # s\ g
' high-level

the same sym

¢ (But it must always correspond to some
{ formal low-level tuple description)

descriptions,

Cross off symb . .
‘ like this one

symbols correspon

o keep track of which

2. When all symbols to the|Analogy:

check for any remaining : High-level (e.g, Pythc\>/2) function definitions

symbols remain, reject; ot Low-level assembly language

Turing Machines: Formal Tuple Definition

A Turing machine is a 7-tuple, (Q, %, I, 9, qo, Gaccept, Greject), Where
Q, 2, I are all finite sets and

1. @ is the set of states,

. 2 is the input alphabet not containing the blank symbol o
. I is the tape alphabet, where u = T'and ¥ C T,

6: Q x I'—Q x I' x {LL.R} is the transition function,

. go € €29 s¢lWrite | move

. Qaccept € @ 15 the accept state, and

. Greject € @ 1s the reject state, where greject 7 Gaccept-

Flashback: DEFAS VS NFAS

A finite automaton is a S-tuple (Q, X, 6, qo, F'), where

1. @ is a finite set called the szates,

2. Y is a finite set called the alphabet, T
Nondeterministic

3. 5: Q X Z—>Q iS the Wﬂnsz.tionﬁln(:tion, transition produces set of
4. qo € Q is the start state, and possible next states
5. F C Q is the set of accept states. A nondeterministic finite automaton
is a S-tuple (Q, %, 9, qo, F'), where
vs 1. Q is a finite set of states,

2. Y is a finite alphabet,

3.0: Q x X.—P(Q) is the transition function,
4. qo € @ is the start state, and

5. F C @ is the set of accept states.

Femember: TUNINE Machine Formal Definition

A Turing machine is a 7-tuple, (Q,X,I', 0, qo, Gaccept, Greject), Where
Q, X, I are all finite sets and

1. Q is the set of states,

. 2 1s the input alphabet not containing the blank symbol L,
. I is the tape alphabet, where u € 'and ¥ C T,

.0:Q xI'—Q xT' x {L, R} is the transition function,

. o € @ 1s the start state,

« Qaccept € @ 15 the accept state, and

N O\ B WIN

. Qreject € () 1s the reject state, where greject 7 Gaccept-

Non

term : : Co.
A mer: TUTiNG Machine Formal Definition

inistic

Nondeterministic

A Turing Machine is a 7"[‘1131@: (Q: E: Il 5: d0s Qaccepts Qreject), where

(2, X, I are all finite sets and

1. Q is the set of states,

2. ¥ is the input alphabet not containing the blank symbol L,
3. T is the tape alphabet, where u € "'and ¥ C T,

4. 5 QO xT=—Q< >R}
5. qo € @ 1s the start state,
6. Qaccepr € @ 1s the accept state, and

0: Q@ xI'—P(Q x T x {L,R})

7. Qreject € @ 1s the reject state, where greject 7 Gaccept-

Thm: Deterministic TM <& Non-det. TM

= [f a deterministic TM recognizes a language,
then a non-deterministic TM recognizes the language
« Convert: Deterministic TM = Non-deterministic TM ...
e .. change Deterministic TM 6 output to: one-element set

* Oxtm(g a) ={0prm(g a)}
* (just like conversion of DFA to NFA --- from previous hws)

* DONE!

< If a non-deterministic TM recognizes a language,
then a deterministic TM recognizes the language

e Convert: Non-deterministic TM = Deterministic TM ...
° P?P7?

Lwew: NONdeterminism

Deterministic Nondeterministic
computation computation
e Start

b k£ Ak Ak— £k

* accept or reject

' { @

1 Each ¢ = a state (for NFA)

every step can branch

7 to set of states

What is a “state”

'\' fora TM?

0: Q xI'—P(Q xTI' x {L,R})

tastick- PDA Configurations (IDs)

e A configuration (or ID) is a “snapshot” of a PDA’s computation

3 components (g, w,Y):
g = the current state
w = the remaining input string
y = the stack contents

A sequence of configurations represents a PDA computation

TM Configuration (ID) = 2?7

3) read/write head

1) states

control

—

b

a

b

L

2) Tape contents

A Turing machine is a 7-tuple, (Q, 2,1, 9, qo, Gaccepts Greject), Where
Q, X, T are all finite sets and

1.

S R o

Q is the set of states,

¥ is the input alphabet not containing the blank symbol .,
I" is the tape alphabet, where u € I'and ¥ C T,

0: Q@ x '—Q x I" x {L, R} is the transition function,

go € @ is the start state,

Gaccept € @ 1s the accept state, and

Greject € @ 1s the reject state, where greject 7 accept-

TM Configuration = State + Head + Tape

States

O =
—
—
O
o
-
++
o
—
—
o
o
o
C

- —
S x11000#011000u ...<] Configafter1step
configuration

x11000#x11000uw ... CQnﬁgafterzstepS
x11000#x11000uw ...

xx1000#x1 1000w ...
oy

X X X X XXH#EXXXXX XU ...
accept

TM Configuration = State + Head + Tape

qr7
101151111uuu§...
1011¢g701111
Textual
representation 1st char after state is
of “configuration” current head position

(use this in HW)

TM Computation, Formally

Next config

(head moved past
written char)

head

Single-step
(Right) aqiaB F axqgsf

) write
if g1,q2 € Q

d(q,a) = (g2,X,R)

axel apel”
read

abgial - agebx s

head

(Left)

if 0(q1,a) = (g2, %, L)

Edge cases: gqiafB F.gox8

Head stays at leftmost cell

aqr - aogo

Add blank symbol to config

M = (Q, E; F; 57 q05 Qaccept QTejGCt)

(wrote x and)
head moved left

Multi-step
 Base Case

e Recursive Case

IF IforanyID I

X

I = Jif there exists some ID K

such that I F K and K F J

if 5((]1: a) - (QQ: X, L)

if (S(QI: “) - (q?a =g R\

(L move, when already at leftmost cell)

(R move, when at rightmost filled cell)

Nondeterminism in TMs

Deterministic Nondeterministic
computation computation

e Start
¢ 1011q7o111),\
1011¢701111

. : { l

‘ For TMs, each ?“Win
nodeis a reject o
configuration

: R

* accept or reject * accept

b k£ Ak Ak— £k

Nondeterministic TM = Deterministic |1stway

Nondeterministic

» Simulate NTM with Det. TM: S
* Det. TM keeps multiple configs on single tape (1

* Like how single-tape TM simulates multi-tape
R

* Then run all computations, concurrently
 |.e, 1step on one config, 1 step on the next, ...

1011¢,01111 #1011 48 1111

« Accept If any accepting config is found .
p y accepting config ceiect | \
| , , keeps all configs *
« Why must we step configs concurrently: at each step on 1

Because any one path can go on forever! N EDE * accept

mtertude: RUNNING TMS INSIde other TMs

Remember analogy: TMs are like function definitions, they can be “called” like functions ...

Exercise:

* Given: TMs M, and M,
 Create: TM M that accepts if either M, or M, accept

Possible solution #1:

M = on input x,
1.
2.

Call M; ccept x if M, accepts
Call M, with arg x; accept x if M, accepts

Note: This solution would be ok if we
knew M; and M, were deciders
(which halt on all inputs)

“in the lang” that
we want M to

Possible Results for M recognize

M M Expected?
accept
accept
accept
accept

“loop” means input
string not accepted
(but it should be)

mtertude: RUNNING TMS INSIde other TMs

: . : : 7 aqiraf - axqa
Just an analogy: “calling” a TM actually requires “computing” how it computes ...

Exercise:

* Given: TMs M, and M,

« Create: TM M that accepts if either M, or M, accept

.. With concurrency!

Possible solution #1: reject accept accept
M = on input X, accept reject accept
1. Call M, with arg x; accept x If M, accepts accept loops accept
2. Call M, with arg x; accept x if M, accepts loops accept loops
Possible solution #2: D T M| m Expected?
M = on Input x, reject accept accept accept
1. Call M, and M,, each with x, concurrently, i.e, accept reject accept Z[accept
a) Run M, with x for 1 step; accept x if M, accepts accept loops accept accept
b) Run M, with x for 1 step; accept x if M, accepts loops accept accept Z accept

c) Repeat

Nondeterministic TM = Deterministic

Nondeterministic
 Simulate NTM with Det. TM: computation
 Number the nodes at each step 1,
* Check all tree paths (in breadth-first order) [l
. 1 J ;E 2 \’\
* 1-1 112]3] |

2"d way
(Sipser)

* accept

Nondeterministic TM = Deterministic

Nondeterministic
« Simulate NTM with Det. TM: computation
 Number the nodes at each step 1
* Check all tree paths (in breadth-first order) [\

g [V WA

* 1-1 12 3 4

. 1-2 : V/ }r
reject '/ \'

2"d way
(Sipser)

* accept

Nondeterministic TM = Deterministic |2 way

(Sipser)
Nondeterministic
« Simulate NTM with Det. TM: computation
 Number the nodes at each step 15
* Check all tree paths (in breadth-first order) (\ l
e 1 x 2 —\
v Vv O\
* 1-1 11£]3 4

e R
reject '/ \'

accept

Nondeterministic TM = Deterministic |2 way

(Sipser)
Always has input, Use 3 tapes
never changes
Y
0|/0[1]|0|u| ... Inputtape
“Work tape” when checking each
D v path (re-copy input here each time)

x [x|#|0|1|x|u| ... simulation tape
Tracks which node we
v are on, e.g., 1-1-2, etc.

1(2|13(3|2|3|1[2|1]|1|3|u|... addresstape

Nondeterministic TM <& Deterministic TM

= If a deterministic TM recognizes a language,
then a nondeterministic TM recognizes the language
« Convert Deterministic TM = Non-deterministic TM

&< If a nondeterministic TM recognizes a language,
then a deterministic TM recognizes the language
« Convert Nondeterministic TM = Deterministic TM

Y
O(1]0 0| u
1. Multi-tape TMs | \/ ,
da|adla
Y
b|la|u
Deterministic Nondeterministic
computation computation
o . Q: start (.}f—\
2. Non-deterministic TMs (Y
;)
L reject -(1

« accept or reject

!

* accept

We have proven:
these TM variations
are equivalent to
deterministic,
single-tape
machines

Conclusion: These are All Equivalent TMs!

 Single-tape Turing Machine
« Multi-tape Turing Machine

* Non-deterministic Turing Machine

