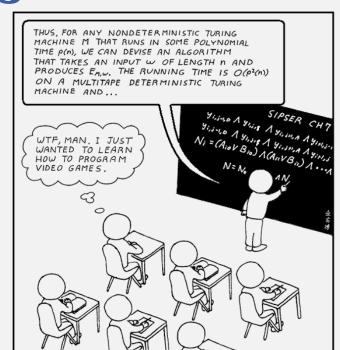
CS 420 / CS 620 Turing Machine Variants

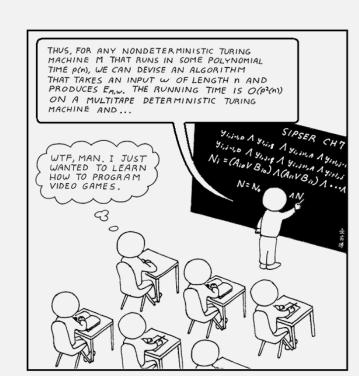
Monday, November 3, 2025

UMass Boston Computer Science



Announcements

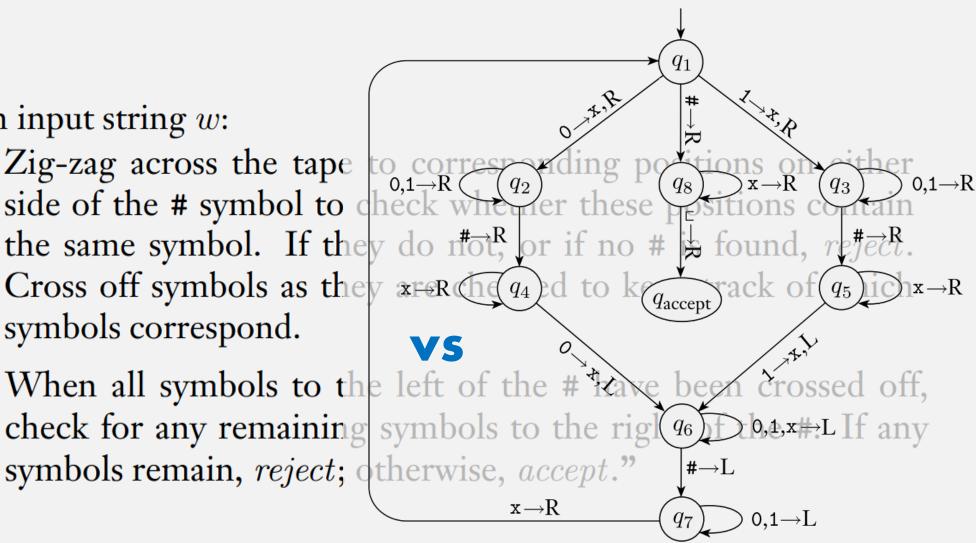
- HW 8
 - Due: Mon 11/3 12pm (noon)
- HW 9
 - Out: Mon 11/3 12pm (noon)
 - Due: Mon 11/10 12pm (noon)



TMs: High-level vs Low-level?

M_1 = "On input string w:

- 1. Zig-zag across the tape side of the # symbol to dhec symbols correspond.
- 2. When all symbols to the left of the # taxe symbols remain, reject; otherwise, accept."



Turing Machine: High-Level Description

• M_1 accepts if input is in language $B = \{w \# w | w \in \{0,1\}^*\}$

 M_1 = "On input string w:

1. Zig-zag across the side of the # side of the same symbols. Cross off symbols symbols correspond

We will (mostly)
define TMs using
high-level
descriptions,
like this one

ding positions on either

(But it must always correspond to some formal low-level tuple description)

to keep track of which

2. When all symbols to the check for any remaining s symbols remain, reject; ot

Analogy:

High-level (e.g., Python) <u>function definitions</u>
VS

Low-level assembly language

TM High-level Description Tips

Analogy:

- High-level TM description ~ function definition in "high level" language, e.g. Python
- Low-level TM tuple ~ function definition in bytecode or assembly

TM high-level descriptions are not a "do whatever" card, some rules:

1. TMs and input strings must be <u>named</u> (like function definitions)

 $M_1 =$ "On input string w:

- 2. Steps must be numbered
- 3. TMs can "call" or "simulate" other TMs (if they pass appropriate arguments!)
 - e.g., step for a TM M can say: "call TM M_2 with argument string w, if M_2 accepts w then ..., else ..."
 - Can split input into substrings and pass to different TMs
- 4. Follow typical programming "scoping" rules
 - can assume functions already defined are in "global" scope, "CONVERT" ...

5. Other variables must also be defined before use

- e.g., can define a TM inside another TM
- 6. must be **equivalent** to a low-level formal tuple
 - high-level "step" represents a finite # of low-level δ transitions
 - So one step cannot run forever
 - E.g., can't say "try all numbers" as a "step"

M = "On input w

- 1. Simulate B on input w.
- 2. If simulation ends in accept state,

N = "On input $\langle B, w \rangle$, where B is an NFA and w is a string:

- 1. Convert NFA B to an equivalent DFA C, using the procedur this conversion given in Theorem 1.39.
- **2.** Run TM M from Theorem 4.1 on input $\langle C, w \rangle$.

S = "On input w

1. Construct the following TM M_2 : M_2 = "On input x:

- A Turing Machine can run forever
 - E.g., head can move back and forth in a loop

So: **TM computation** has **3 possible results**:

- Accept
- Reject
- Loop forever
- We will work with two classes of Turing Machines:
 - A recognizer is a Turing Machine that may run forever (all possible TMs)
 - A decider is a Turing Machine that always halts.

Call a language *Turing-recognizable* if some Turing machine recognizes it.

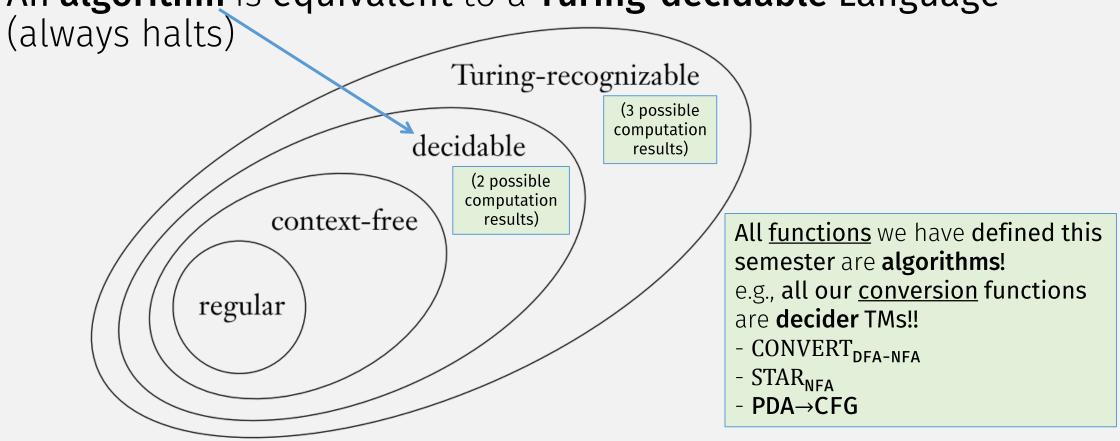
(3 possible computation results)

Call a language *Turing-decidable* or simply *decidable* if some Turing machine decides it.

(2 possible computation results)

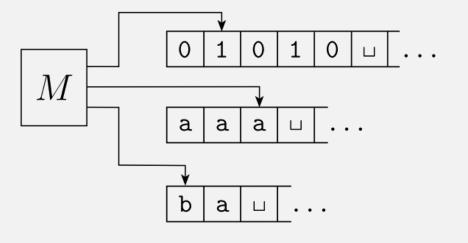
Formal Definition of an "Algorithm"

• An algorithm is equivalent to a Turing-decidable Language

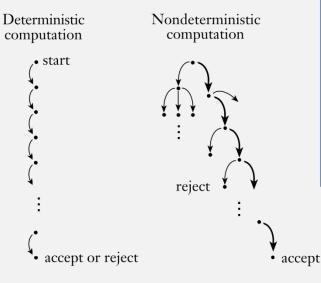


Turing Machine Variations

1. Multi-tape TMs



2. Non-deterministic TMs



Want to prove:
these TM variations
are equivalent to
deterministic,
single-tape
machines

Reminder: Equivalence of Machines

• Two machines are equivalent when ...

• ... they recognize the same language

Theorem: Single-tape TM ⇔ Multi-tape TM

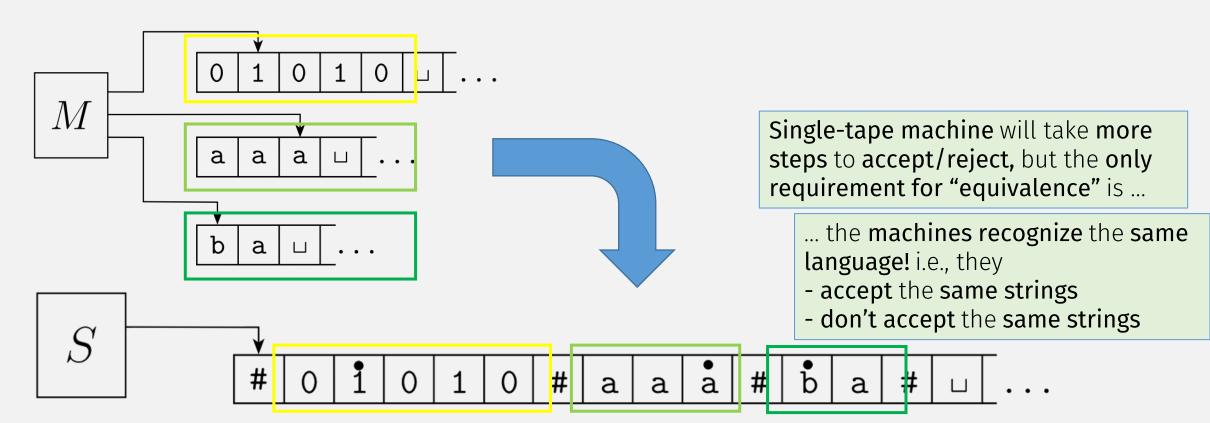
- ⇒ If a <u>single</u>-tape TM recognizes a language, then a <u>multi</u>-tape TM recognizes the language
 - Single-tape TM is equivalent to ...
 - ... multi-tape TM that only uses one of its tapes
 - (could you write out the formal conversion?)
- ← If a <u>multi</u>-tape TM recognizes a language,
 then a <u>single</u>-tape TM recognizes the language
 - <u>Convert</u>: multi-tape TM → single-tape TM

Key insight: single-tape is infinite in length!

Multi-tape TM → Single-tape TM

Idea: Use delimiter (#) on single-tape to simulate multiple tapes

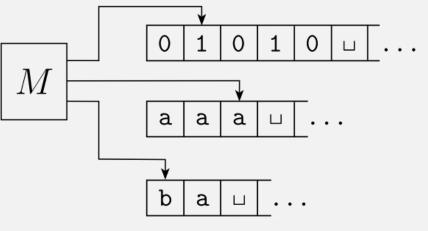
• Add "dotted" version of every char to <u>simulate</u> multiple <u>heads</u>



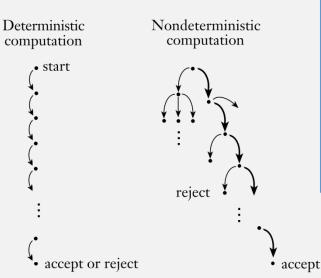
Theorem: Single-tape TM ⇔ Multi-tape TM

- ✓ ⇒ If a single-tape TM recognizes a language, then a multi-tape TM recognizes the language
 - Single-tape TM is equivalent to ...
 - ... multi-tape TM that only uses one of its tapes
- ✓ = If a multi-tape TM recognizes a language, then a single-tape TM recognizes the language
 - Convert: multi-tape TM → single-tape TM

✓ 1. Multi-tape TMs



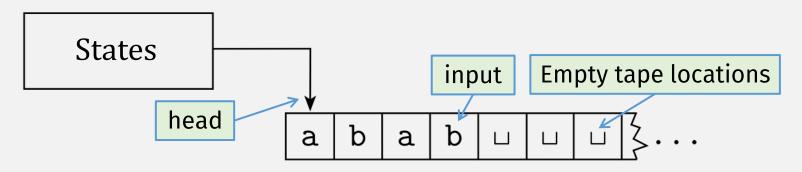
2. Non-deterministic TMs



Want to prove:
these TM variations
are equivalent to
deterministic,
single-tape
machines

Previously: Turing Machines

- Turing Machines can read and write to arbitrary "tape" cells
 - Tape initially contains input string
- The tape is infinite
 - (to the right)



On a transition, "head" can move left or right 1 step

Call a language *Turing-recognizable* if some Turing machine recognizes it.

Turing Machine: High-Level Description

• M_1 accepts if input is in language $B = \{w \# w | w \in \{0,1\}^*\}$

 M_1 = "On input string w:

1. Zig-zag across the side of the # side of the same symbols. Cross off symbols symbols correspond

We will (mostly)
define TMs using
high-level
descriptions,
like this one

ding positions on either

(But it must always correspond to some formal low-level tuple description)

to keep track of which

2. When all symbols to the check for any remaining s symbols remain, reject; ot

Analogy:

High-level (e.g., Python) <u>function definitions</u>
VS

Low-level assembly language

Turing Machines: Formal Tuple Definition

- A **Turing machine** is a 7-tuple, $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$, where Q, Σ, Γ are all finite sets and
 - **1.** Q is the set of states,
 - 2. Σ is the input alphabet not containing the **blank symbol** \Box
 - **3.** Γ is the tape alphabet, where $\square \in \Gamma$ and $\Sigma \subseteq \Gamma$,
 - **4.** $\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{L, R\}$ is the transition function,
 - 5. $q_0 \in \mathcal{C}$ read le sta write to move
 - **6.** $q_{\text{accept}} \in Q$ is the accept state, and
 - 7. $q_{\text{reject}} \in Q$ is the reject state, where $q_{\text{reject}} \neq q_{\text{accept}}$.

Flashback: DFAS VS NFAS

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- 3. $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the *start state*, and
- **5.** $F \subseteq Q$ is the *set of accept states*.

VS

Nondeterministic transition produces <u>set</u> of possible next states

A nondeterministic finite automaton

is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- **1.** Q is a finite set of states,
- 2. Σ is a finite alphabet,
- 3. $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,
- **4.** $q_0 \in Q$ is the start state, and
- **5.** $F \subseteq Q$ is the set of accept states.

Remember: Turing Machine Formal Definition

A **Turing machine** is a 7-tuple, $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$, where Q, Σ, Γ are all finite sets and

- **1.** Q is the set of states,
- **2.** Σ is the input alphabet not containing the *blank symbol* \Box ,
- **3.** Γ is the tape alphabet, where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$,
- **4.** $\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{L, R\}$ is the transition function,
- 5. $q_0 \in Q$ is the start state,
- **6.** $q_{\text{accept}} \in Q$ is the accept state, and
- 7. $q_{\text{reject}} \in Q$ is the reject state, where $q_{\text{reject}} \neq q_{\text{accept}}$.

Nondeterministic Nondeterministic Nondeterministic Turing Machine Formal Definition

A Nondeterministic is a 7-tuple, $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$, where Q, Σ, Γ are all finite sets and

- **1.** Q is the set of states,
- **2.** Σ is the input alphabet not containing the *blank symbol* \Box ,
- **3.** Γ is the tape alphabet, where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$,

4.
$$\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{L, R\}$$
 $\delta: Q \times \Gamma \longrightarrow \mathcal{P}(Q \times \Gamma \times \{L, R\})$

- **5.** $q_0 \in Q$ is the start state,
- **6.** $q_{\text{accept}} \in Q$ is the accept state, and
- 7. $q_{\text{reject}} \in Q$ is the reject state, where $q_{\text{reject}} \neq q_{\text{accept}}$.

Thm: Deterministic TM ⇔ Non-det. TM

- ⇒ If a **deterministic TM** recognizes a language, then a **non-deterministic TM** recognizes the language
 - Convert: Deterministic TM → Non-deterministic TM ...
 - ... change Deterministic TM δ output to: one-element set
 - $\delta_{\text{NTM}}(q, a) = \{\delta_{\text{DTM}}(q, a)\}$
 - (just like conversion of DFA to NFA --- from previous hws)
 - DONE!
- ← If a non-deterministic TM recognizes a language, then a deterministic TM recognizes the language
 - Convert: Non-deterministic TM → Deterministic TM ...
 - ... ???

Review: Nondeterminism

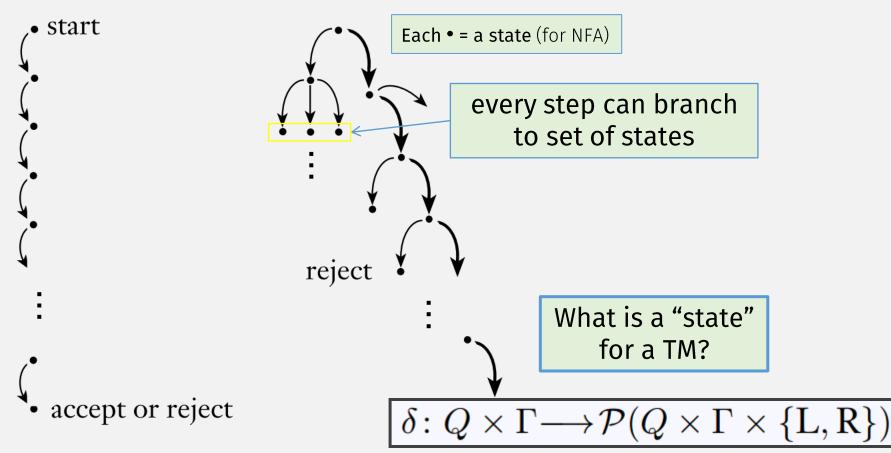
Deterministic computation

Start

Nondeterministic computation

• start

• Start



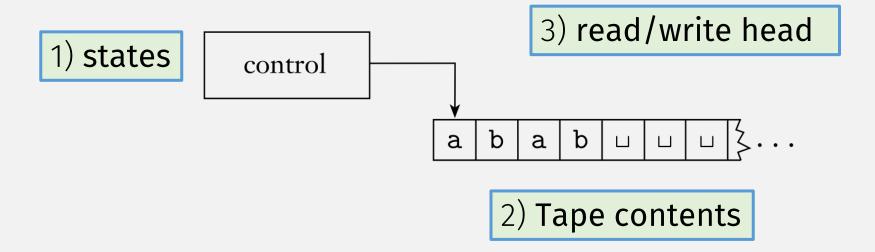
Flashback: PDA Configurations (IDs)

• A configuration (or ID) is a "snapshot" of a PDA's computation

3 components (q, w, γ):
 q = the current state
 w = the remaining input string
 γ = the stack contents

A **sequence of configurations** represents a **PDA** computation

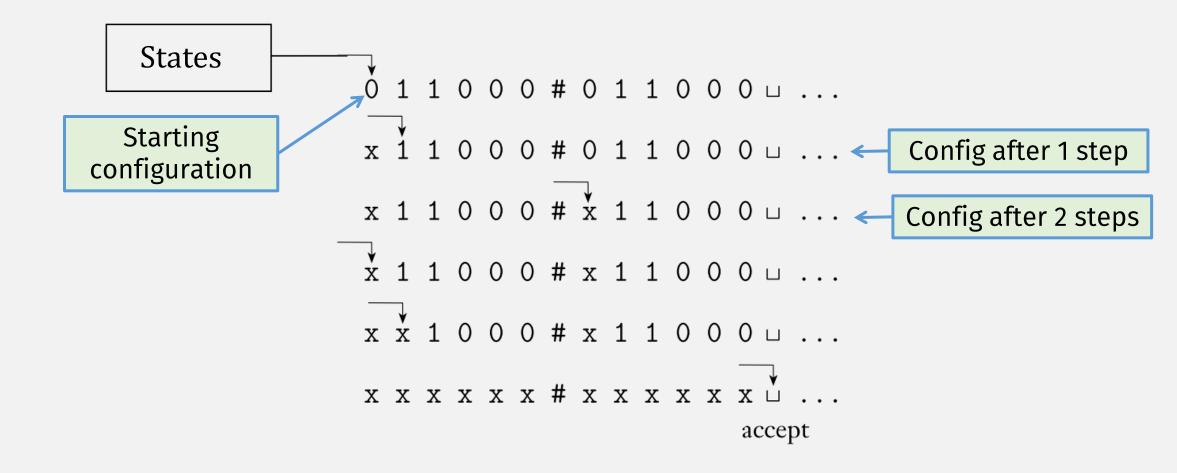
TM Configuration (ID) = ???



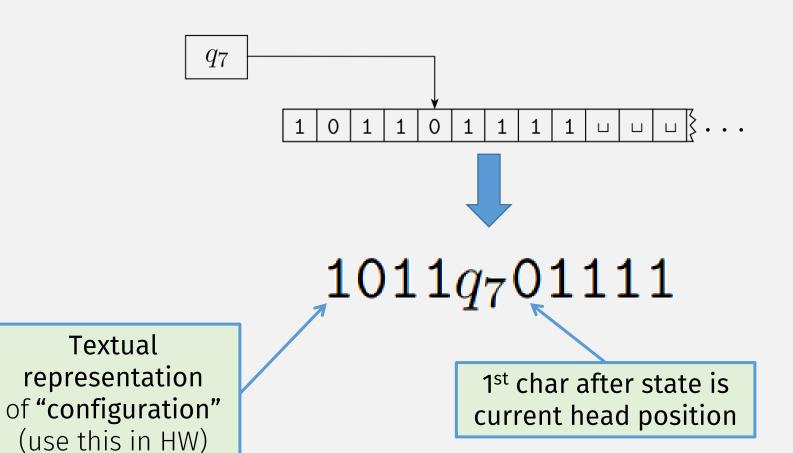
A *Turing machine* is a 7-tuple, $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$, where Q, Σ, Γ are all finite sets and

- **1.** Q is the set of states,
- **2.** Σ is the input alphabet not containing the *blank symbol* \sqcup ,
- **3.** Γ is the tape alphabet, where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$,
- **4.** $\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{L, R\}$ is the transition function,
- 5. $q_0 \in Q$ is the start state,
- **6.** $q_{\text{accept}} \in Q$ is the accept state, and
- 7. $q_{\text{reject}} \in Q$ is the reject state, where $q_{\text{reject}} \neq q_{\text{accept}}$.

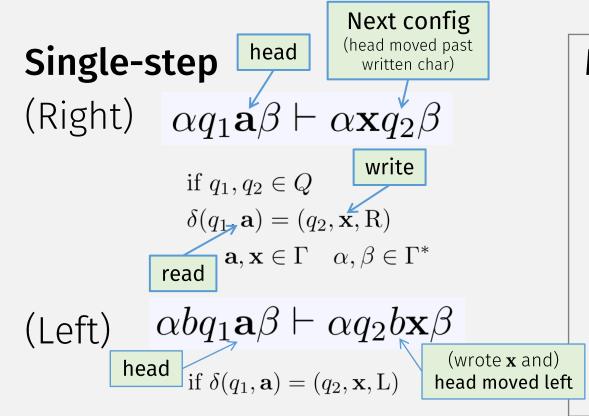
TM Configuration = State + Head + Tape



TM Configuration = State + Head + Tape



TM Computation, Formally



$$M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$$

Multi-step

Base Case

$$I \stackrel{*}{\vdash} I$$
 for any ID I

Recursive Case

 $I \stackrel{*}{\vdash} J$ if there exists some ID Ksuch that $I \vdash K$ and $K \vdash^* J$

Edge cases:
$$q_1\mathbf{a}\beta \vdash q_2\mathbf{x}\beta$$

if $\delta(q_1, \mathbf{a}) = (q_2, \mathbf{x}, \mathbf{L})$

 $\alpha q_1 \vdash \alpha \Box q_2$

if $\delta(q_1, \square) = (q_2, \square, R)$

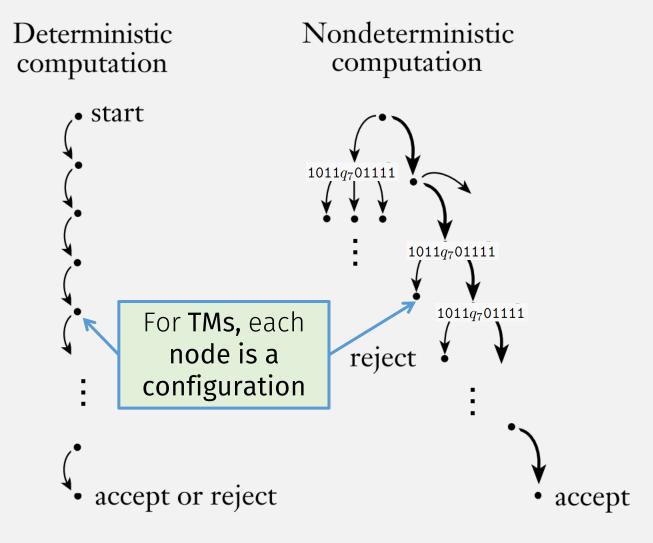
(L move, when already at leftmost cell)

(R move, when at rightmost filled cell)

Add blank symbol to config

Head stays at leftmost cell

Nondeterminism in TMs



1st way

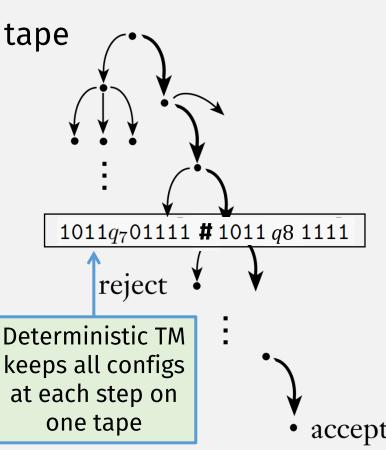
Simulate NTM with Det. TM:

• Det. TM keeps multiple configs on single tape

• Like how single-tape TM simulates multi-tape

- Then run all computations, concurrently
 - l.e., 1 step on one config, 1 step on the next, ...
- Accept if any accepting config is found
- Important:
 - Why must we step configs concurrently?

Because any one path can go on forever!



Nondeterministic

computation

Interlude: Running TMs inside other TMs

Remember analogy: TMs are like function definitions, they can be "called" like functions ...

Exercise:

• Given: TMs M_1 and M_2

• Create: TM M that accepts if either M_1 or M_2 accept

Possible Results for M

 $\rightarrow M_2$

accept

"in the lang" that we <u>want</u> M to recognize

M Expected?

accept

accept

accept

accept

Possible solution #1:

M = on input x,

- 1. Call M_1 with arg x; accept x if M_1 accepts
- 2. Call M_2 with arg x; accept x if M_2 accepts

Note: This solution would be ok if we knew M_1 and M_2 were deciders (which halt on all inputs)

 M_1

reject

"loop" means input string not accepted (but it should be)

M

Interlude: Running TMs inside other TMs $\alpha q_1 \mathbf{a} \beta \vdash \alpha \mathbf{x} q_2 \beta$

Just an analogy: "calling" a TM actually requires "computing" how it computes ...

Exercise:

• Given: TMs M_1 and M_2

• Create: TM *M* that accepts if either M_1 or M_2 accept

... with concurrency!

Possible solution #1:

M = on input x,

- 1. Call M_1 with arg x; accept x if M_1 accepts
- 2. Call M_2 with arg x; accept x if M_2 accepts

M_1	M_2	M
reject	accept	accept
accept	reject	accept
accept	loops	accept
loops	accept	loops

Possible solution #2:

M = on input x,

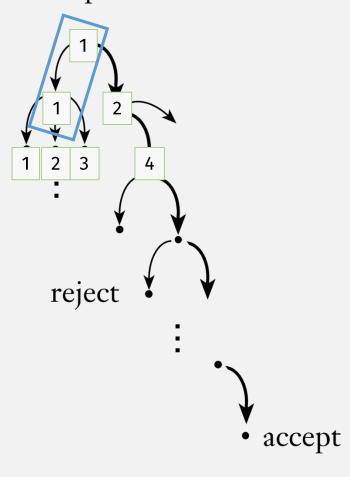
- 1. Call M_1 and M_2 , each with x, concurrently, i.e.,
 - a) Run M_1 with x for 1 step; accept x if M_1 accepts
 - b) Run M_2 with x for 1 step; accept x if M_2 accepts
 - c) Repeat

M_1	M_2	M	M Expected?
reject	accept	accept	accept
accept	reject	accept	accept
accept	loops	accept	accept
loops	accept	accept	accept

2nd way (Sipser)

- Simulate NTM with Det. TM:
 - Number the nodes at each step
 - Check all tree paths (in breadth-first order)
 - 1
 - 1-1

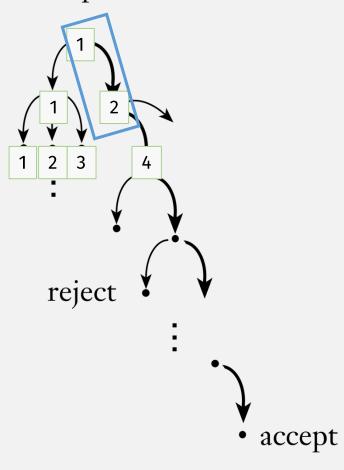
Nondeterministic computation



2nd way (Sipser)

- Simulate NTM with Det. TM:
 - Number the nodes at each step
 - Check all tree paths (in breadth-first order)
 - 1
 - 1-1
 - 1-2

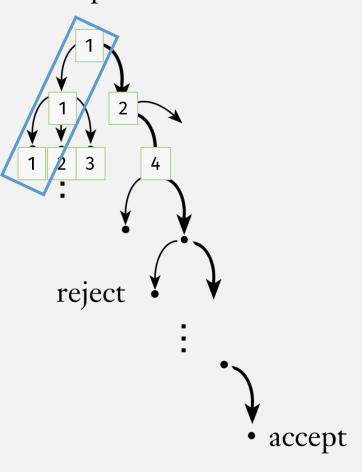
Nondeterministic computation



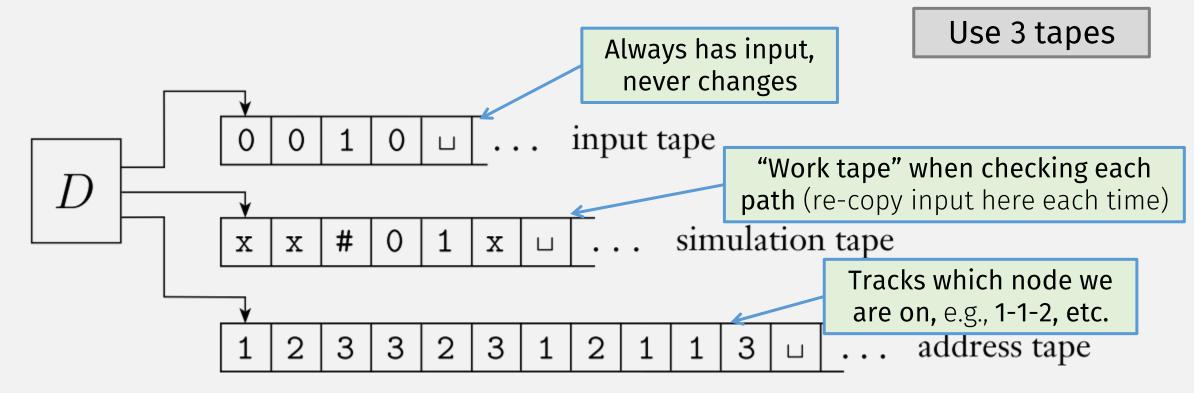
2nd way (Sipser)

- Simulate NTM with Det. TM:
 - Number the nodes at each step
 - Check all tree paths (in breadth-first order)
 - 1
 - 1-1
 - 1-2
 - 1-1-1

Nondeterministic computation



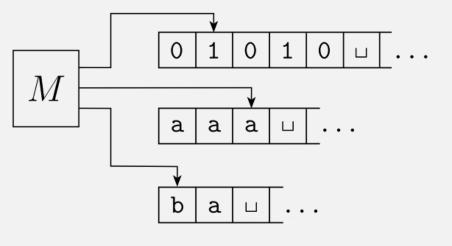
2nd way (Sipser)



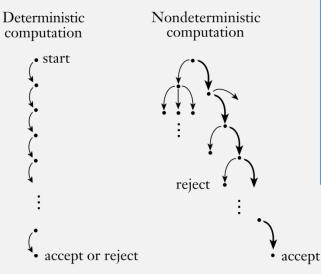
- ✓ ⇒ If a deterministic TM recognizes a language, then a nondeterministic TM recognizes the language
 - Convert Deterministic TM → Non-deterministic TM

- - Convert Nondeterministic TM → Deterministic TM

✓ 1. Multi-tape TMs



✓ 2. Non-deterministic TMs



We have proven:
these TM variations
are equivalent to
deterministic,
single-tape
machines

Conclusion: These are All Equivalent TMs!

Single-tape Turing Machine

Multi-tape Turing Machine

Non-deterministic Turing Machine