CS 420 / CS 620
Decidability

Wednesday, November 5, 2025
UMass Boston Computer Science

Turing-recognizable

decidable

context-free

lecturel8

ﬁ/{/ma/wem/(zf‘s’

e HW 9
« Out: Mon 11/3 12pm (noon)
* Due: Mon 11/10 12pm (noon)

Turing-recognizable

decidable

context-free

lecturel8

Prewiusly: TUTING Machines and Algorithms

 Turing Machines can express more “computation” (tnan other prev machines)

« Analogy: a TM models a (Python, Java) program (function)!

« 2 classes of Turing Machines
« Recognizers: may loop forever
Today | o Deciders: always halt

 Deciders = Algorithms

e |l.e, an algorithm is a program that (for any input) always halts ‘

ALGORITHMS

Flastback: HW 1, Problem 2 - |
Figuring out this HW problem

G\ 2 \/@ (about a DFA’s computation) ...

is itself (meta) computation!

languasge

J'L It .) . 0 . ?
© ﬁ What “kind” of comptttation Is it?
Could you write a program (function)

to compute this algorithm?

1. Come up with 2 strings that are accepted by the DFA. These strings are said to be "in
the language" recognized bv the DFA.

o

o+ MNO

A function: DFAaccepts(B, w) “returns”
TRUE if DFA B=(Q,Z, 8, qy,F) accepts string w
\

2. Come up with 2 strings that are not accepted (rejected) by the DFA. These strings are ’|) Define “current” state Qourent = Start state q,
"not in the language" recognized by the DFA. 2) For each input chara. ...inw
. : 7 oo
Your tas k: a) Define Anext = B(qcurrent' ai) “get 83"
“compute” how a DFA b) Set Geurrent = Gnext
computes 3) Return TRUE if q .S in SetF

This is computation about compuation: whether DFA B’s computation with input w accepts!

The language of DFAaccepts

Apea = {(B,w)] B 1s a DFA that accepts input string w }

Def: a language is a set of strings

A function: DFAaccepts(B, w) “returns”
How is this a set of strings??? TR U DI B EEEEPIS SLINE v

mtertude: ENCOAING Things INto Strings

Definition: A language’s elements / (Turing) machine’s input is always a string

Problem: We sometimes want: TM’s (program'’s) input to be “something else” ...
¢ Setr graphr DFAr ot | f\l,(;oli‘lx\lsv

Solution: allow encoding “other kinds of input” as a string

Notation: <SOMETHING> = string encoding for SOMETHING
« Atuple combines multiple encodings, e.g., <B, W> (rom prev slice)

Details don’t matter! (In this class) Can

Example: Possible string encoding for a DFA? assume some encoding is always possible

LI JFLAP : (sipser-figl.4ff) ==
File Input Tes ew Convert Help

HO e O =0

Automaton Size

Or:

(Qa E: 51 qo, F)

(written as string)

meertute: High-Level TMs and Encodings

A high-level TM description, when it uses encoded input:

1. Needs to say the type of its input
« E.g, graph, DFA, etc. M = “On input (B, w), where B is a DFA and w is a string:

2. Doesn't need to say how input string is encoded

eg, .
« Assume 1: Inputis a valid encodlng ?ﬁfﬁ'ﬁfn”ao;ume. B=(0Q,2 6, q,F)
. = y <) Yy Yoy

7 Ivelliel encodlings lmplrelily ejedise Details don't matter! (In this class) Can
assume some encoding is always possible

« Assume 2: TM knows how to parse and extract parts of input

Implicit “getters”

/Dﬁw/ba&fy

DFAaccepts as a TM recognizing Ape,

Remember:
TM ~ program (function)
Creating TM ~ programming

Apea = {(B,w)| B is a DFA that accepts input string w }

A function: DFAaccepts(B,w) “returns”
TRUE If DFA B accepts string w

1) Define “current” state q .. = Start state g,
2) For each inputcharag,..in w
a) Define qnext - 5(qcurrent' ai)

b) Set qcurrent - qnext
3) Return TRUE if q e 1S @CCEPt State in F

TM Mpe, =

“Oninp pefinition of

s a DFA and w is a string:
TM M can assume: B = (Q, 2,6, q,, F) 'mplicit

“getters”

1) Define “current” state g« = start state q,
2) For each input char g7 inw
a) De-Fine Qnext = 6 QCurrent' al)

b) Se.t CIcurrent.z qnext .
3) Accept if g e IS @N accept state in F

The language of DFAaccepts

. language

What “kind” of COWS it?
Apea = {(B,w)| B is a DFA that accepts input string w }

™ M
DFA Turing-recognizable

* Apea has a Turing machine

* |s the TM a decider or recognizer?
e |.e, is it an algorithm?

* To show It's an algo, need to prove:

decidable

® o o
context-free

Apra 1s a decidable language

How to prove that a language 1s decidable?

How to prove that a language 1s decidable?

Statements Justifications

1. If a decider decides alang L, 1. Definition of decidable langs
then L is a decidable lang

2. Define decider M = oninputw..., 2. See M TM def, and Examples Table
key M decides L

step

3. Lis a decidable language 3. By statements #1 and #2

How to Design Deciders

A DeciderisaTM ...

» See previous slides on how to:
 write a high-level TM description
« Express encoded input strings

« E.g, M=0n input <B, w>, where Bis a DFA and w is a string: ...

« A Decider is a TM ... that must always halt
« Can only: accept or reject
« Cannot: go into an infinite loop

« So a Decider definition must include: an extra termination argument:
« Explains how every step in the TM halts
« (Pay special attention to loops)

« Remember our analogy: TMs ~ Programs ... so Creating a TM ~ Programming
 To design a TM, think of how to write a program (function) that does what you want

Thm: Apga is a decidable language

Apea = {(B,w)| B is a DFA that accepts input string w }

Key

step Decider for ADFA Decider input must match (encodings of) strings in the language!
M = “On input (B, w), where B is a DFA and w is a string:
“Calling” the DFA (with an input argument)
Where “Simulate =
 Define “current” state qcurrcnt = start state do Remember:
e For each |npUt charxinw. ™M ~ program
(meta) Compute |- Define Arext = 5(chrren ’) 1 ~ 1
S e . Set qcurrent; T i Creating TM ~ programming

would compute
(with input w)

Thm:

Apra 1s a decidable language

Apea = {(B,w)| B is a DFA that accepts input string w }

Decider for A DFA - NOTE: A TM must declare “function” parameters and types ... (don't forget it)

M =

Undeclared parameters can’t be used! (This TM is now invalid because B, w are undefined!) ‘

1. Simulate B on iﬂpllt w. ... which can be used (properly!) in the TM description

2. If the simulation ends in an accept state, accept. If it ends in a
nonaccepting state, reject.”

Termination Argument

Thm: Apga is a decidable language

Apea = {(B,w)| B is a DFA that accepts input string w }
Decider for Appa :

M = “On input (B, w), where B is a DFA and w is a string:
1. Simulate B on input w.

2. If the simulation ends in anvaccept state, accept. If it ends in a

nonaccepting state, reject.”
Where “Simulate” =
« Define “current” state g, ... = Start state g,
* For each inputcharxinw...

- Define Qnext = 5(chrrent' X)
- Set Qcurrent = Qnext

<

Termination Argument: Step #1\always halts because: the simulation
Input Is always finite, so the loop has finite iterations and always halts

Deciders must have a termination argument:
Explains how every step in the TM halts (we typically only care about loops)

Termination Argument

Thm: Apga is a decidable language

Apea = {(B,w)| B is a DFA that accepts input string w }

Decider for Appa :

M = “On input (B, w), where B is a DFA and w is a string:
1. Simulate B on input w.
2. [If the simulation ends in an accept state, accept. If it ends in a
nonaccepting state, reject.”

Termination Argument: Step #2 always halts because:
determining accept requires checking finite number of accept states

Deciders must have a termination argument:
Explains how every step in the TM halts (we typically only care about loops)

Correctness / Examples Table

Thm: Apga is a decidable language
Apea = {(B,w)| B is a DFA that accepts input string w }
Decider for Appa :

M = “On input (B, w), where B is a DFA and w is a string:
1. Simulate B on input w.
2. If the simulation ends\lin an accept state, accept. If it ends in a

nonacceptin state, rejct.”
(New for TMs) column(s) for “called” ma ines Actual" behavior “Expected” behavior
Let: Columns must
D, = DFA, accepts w, match!
D, = DFA, rejects w,

\ (especially important when
machine could loop)

Thm: Anea is a decidable language
Anea = {(B,w)| B 1s an NFA that accepts input string w}

Decider for AnEga :

Decider input must match (encodings of) strings in the language!

N = “On input (B, w), where B is an NFA and w is a string:

e

(tashback: NFA->DF A

Have: N = (Q, 2,9, qq, I)
Want to: construct a DFA M = (Q’, 3,9, qo’, F')

This conversion is computation!

by a
hine

New TM Variation!
. : Doesn’t accept or reject,
Turing Machine N FA_)D FA Just writes “output” to tape

TM NFA->DFA = On input <N>, where Nisan NFAand N = (Q, .4, q, I)
1. Write to the tape:

Where:

Why Is this guaranteed to halt?

I
Because a DFA description has

only finite parts (finite states,
finite transitions, etc)

So any loop Iiteration
over them is finite

Thm: Anea is a decidable language
Anea = {(B, w)| B 1s an NFA that accepts input string w}

" - Remember:
Decider for AnFa : M
Creating TM ~ programming
“Calling” |N = “On input (B, w), where B is an NFA and w is a string:— Previous theorems ~ library
a,r\],&tsr]cegrilgn ' 1. Convert NFA B to an equivalent|DFA C'|usingthe procedure
correct arg type! NFA—-DFA

New capability:
TM can|check tape
of another TM
after calling it

Termination argument: This is a decider (i.e,, it always halts) because:
- Step 1 always halts bc: NFA->DFA is decider (finite number of NFA states)
- Step 2 always halts because: M is a decider (prev Agg, thm)

How to Design Deciders, Part 2

Hint:
* Previous theorems / constructions are a “library” of reusable TMs

« When creating a TM, use this “library” to help you!
* Just like libraries are useful when programming!

« E.g, “Library” for DFAs:
 NFASDFA, RegExpr->NFA
* UNIONpg,, STARpp,, ENC, reverse

 Deciders for: Appy, Anpar Arpxor -

Thm: Arex is a decidable language

Arex = {(R,w)| R is a regular expression that generates string w }

Decider: NOTE: A TM must declare “function” parameters and types ... (don't forget it)
P = “On input (R, w), where R is a regular expression and w is a string:
1. Convert regular expression R to an equivalent NFA A by using
the Pl’OCGdUI‘e RegEXpr->NFA ... which can be used (properly!) in the TM description

Remember:
TMs ~ programs
Creating TM ~ programming
Previous theorems ~ library

Flashback

RegEXpr->NFA

... SO guaranteed to always
reach base case(s)

R is\a regular expression it R is
1 a for some a in the alphabet ¥,

?

(R1 U Ry), where Ry and R ar

(R1 0 R2), where Ry and R» ar
(R7)\ where R; is a regular exp

Yes, because recursive call only happens
STARyp on “smaller” regular expressions ...

-0 4

Does this conversion
always halt, and why?

-0

~— UNIONygp ~

A

RegEXpr->NFA(R, UR,) =
RegExpr->NFA(R,))

-

Construction of N to recognize 4; o A

.9

CONCAT ;4

Thm: Arex is a decidable language

Arex = {(R,w)| R is a regular expression that generates string w }

Decider:

P = “On input (R, w), where R is a regular expression and w is a string:

1. Convert regular expression R to an equivalent NFA A by using
the procedure RegExpr->NFA When “calling” another TM, must give proper arguments!

2. Run TM N on iIlpllt <A, ’lU) (from prev slide)
3. If N accepts, accept; if N rejects, reject.”

Termination Argument: This is a decider because:

- Step 1: always halts because: converting a reg expr to NFA is done recursively,
where the reg expr gets smaller at each step, eventually reaching the base case

- Step 2: always halts because: N is a decider

Remember:
TMs ~ programs

Decidable Languages About DFAS creating M ~ programming

Previous theorems ~ library

e Apra = {(B,w)| B is a DFA that accepts input string w }
« Decider TM: implements B DFA’s extended 6 fn algorithm

o Anra = {(B,w)| B is an NFA that accepts input string w}
 Decider TM: uses NFA->DFA algorithm + A, decider

o Arex = {(R,w)| R is a regular expression that generates string w }

« Decider TM: uses RegExpr->NFA algorithm + A, decider

Leotuwre T shie

thstback: \Why Study Algorithms About Computing

To predict what programs will do
without running them!

1f the number n 1s a

__ — Not possible for all programs! But ...

// 1if the ck

RANSOMWAREATTACK /\

YOUR FILES HAVE BEEN ENCRYPTED

prime')} i

a prime,

function

Lecture T stide

Predicting What Some Programs Will Do ...

What if we: look at simpler computation models
... Like DFAs and regular languages!

Thm: Epra is a decidable language
EDFA — {<A>‘ A 1s a DFA El]fld L(A) — @}

Epea 1S @ language ... of DFA descriptions, ... where the language of each DFA ...
e, (Q,%,8,qyF) .. must be {}, i.e,, DFA accepts no strings
T 0\
... by predicting somethin
Is there a decider that L : =

about the DFA’s language

accepts/rejects DFA descriptions ... (by analyzing its description)

Key idea / question we are about to study:

. : Analogy

Cr:)mputg (predict) somethl?g about DFA’s description : a program’s source code ::

the runtime computation of a program, DFA’s language :a program’s runtime computation
by analyzing only its source code?

Important: don’t confuse the different languages here!

Thm: Epra is a decidable language
EDFA — {<A>‘ A 1s a DFA El]fld L(A) — @}

Decider:
If loop marks at least 1 state on
T = “On input (A), where A is a DFA: each iteration, then it eventually
1. Mark the start state of A. terminates because there are finite

. states; else loop terminates
2. Repeat until no new states get marked: i

3. Mark any state that has a transition coming into it from any
state that is already marked.

4. If no accept state is marked, accept; otherwise, reject.”

is i il] i Terminati t?
.e,, this is a “reachability” algorithm ... ermination arsumen

... check if accept states are “reachable” from start state

Instead: compute something about DFA’s

Note: TM T is doing a new computation language (runtime computation) by analyzing
on DFAs! (It does not “run” the DFA!) its description (source code)

ThMm: EQpga is a decidable language
EQpea = {(A, B)| Aand B are DFAs and L(A) = L(B)}

l.e., Can we compute whether
two DFAs are “equivalent”?

4
Replacing “DFA” with “program” =
A “holy grail” of computer science!

1NM: EFQpga is a decidable language
(MO Copfbute EQpra = {(A, B)| A and B are DFAs and L(A) = L(B)}

l.e., Can we compute whether
two DFAs are “equivalent”?

A Naive Attempt (assume alphabet {a}):

1. Simulate: S .
A with input a, and This might not terminate!
* Bwith input a | (Hence it's not a decider)
* Reject If results are different, else ...

2. Simulate:

« A with input aa, and
« Bwith input aa ,
 Reject if results are different, else ... Hey ldie
. . Can we compute this without
running the DFAs, i.e,, by only

examining the DFA’s “source code”?

ThMm: EQpga is a decidable language
EQpea = {(A, B)| Aand B are DFAs and L(A) = L(B)}

Trick: Use Symmetric Difference

Symmetric Difference

L(A) L(B)

L(C) = (L(A) mﬁ) U (L(A)
L(C) = 0 iff L(A) = L(B)

N L(B))

ThMm: EQpga is a decidable language
EQpea = {(A, B)| Aand B are DFAs and L(A) = L(B)}

Construct decider using 2 parts:

1. Symmetric Difference algo: L(C) = (

(proved in prev hws!)

l.e., set complement, union and intersection

NOTE, This only works because:
regular langs closed under negation,

L(A) N L(B)) U (L(A) N L(B))

 Construct C = Union, intersection, negation of machines 4 and B

2. Decider T (from “library”) for: Epra = {(A)| Aisa DFA and L(A) = 0}
- Because L(C) = @iff/L(A) — L(B\)

(A)

P

Ny

L(B)

ThMm: EQpga is a decidable language
EQpea = {(A, B)| Aand B are DFAs and L(A) = L(B)}

TM input must use same string encoding as lang

Construct decider using 2 parts:

1. Symmetric Difference algo: L(C) = (L(A) ﬂL(B)) U (L(A) N L(B))
« Construct G= Union, intersection, negation of machines A and B

Termination
1. Construct DFA C' as described. argument?

2. RunTM T deciding Epra on input (C).
3. It T accepts, accept. It T rejects, reject.”

From Lecture 7

Predicting What Some Programs Will Do ...

@ microsoft.com/en-us/research/project/slam/

SLAM is a project for checking that software satisfies critical behavioral properties ol the interfaces it uses and to aid software
engineers in designing interfaces and software that ensure reliable and correct functioning. Static Driver Verifier is a tool in the
Windows Driver Development Kit that uses the SLAM verification engine.

“Things like even software verification, this has been the Holy Grail of computer science

for many decades but now in some very key areas, for example, driver verification we're
building tools that can do actual proof about the software and how it works in order to
guarantee the reliability” Bill Gates, April 18, 2002. Keynote address at WinHec . iF
2002 f .\
i=node.>\); | ++ VI Pocs end() Houe;{ ' ur computer. If you do

itiom in all open applice

Static Driver Verifier Research Platform README continue _

Overview of Static Driver Verifier Research Platform

Static Driver Verifier (SDV) is a compile-time static verification .
Research Platform (SDVRP) is an extension to SDV that allows MOdel CheCklng
e Support additional frameworks (or APIs) and write custq From Wikipedia, the free encyclopedia

e | Its “language”
* Experiment with the model checking step. In computer science, model checking or propertVI@ﬂng IS @ method for checking whether a
finite-state model of a system meets a given specification (also known as correctness). This is typically

Sumary: AlgOrithms About Regular Langs

. Apra = {(B,w)| B is a DFA that accepts input string w }
 Decider: Simulates DFA by implementing extended & function

« Anpa = {(B,w)| B is an NFA thataccepts input string w }

 Decider: Uses NFA->DFA decider + Ap, decider

o Arex = {(R,w)| R is a regular expression that generates string w }

 Decider: Uses RegExpr->NFA decider + Ay, decider

° EDFA = {<A>| A is a DFA and L(A — @}
- Decider: Reachability algorithm™| Lang of the DFA

e« FQpea = {(A,B)| Aand B are DFAs and L(A) = L(B)}

Remember:
TMs ~ programs
Creating TM ~ programming
Previous theorems ~ library

%" - Decider: Uses complement and intersection closure construction + E., decider

Mext: Algorithms (Decider TMs) for CFLS?

« What can we predict about CFGs or PDAs?

