CS 420 / CS 620

Decidability

for Regular Langs
Monday, November 10, 2025

UMass Boston Computer Science

Turing-recognizable

decidable
context-free .
Halting TMs,
a.k.a., “algorithms”
regula l,

.. about “regular”
computations

lecturel9

%/{/{0«/{0@%@/{5&’

« HW 9
+ Bue-Moen-1H10-Rpm-(neen)

« HW 10
 Out: Mon 11/10 12pm (noon)
 Due: Mon 11/17 12pm (noon)

Turing-recognizable

decidable

|
Halting TMs,
a.k.a., “algorithms”

<1 about “regular”
computations

context-free

@

lecturel9

Last [ine

How to Design Deciders

A DeciderisaTM ...

» See previous slides on how to:
 write a high-level TM description
« .. that uses encoded input strings

« E.g, M=0n input <B, w>, where Bis a DFA and w is a string: ...

« A Decider is a TM ... that must always halt
« Can only: accept or reject
« Cannot: go into an infinite loop

 So a Decider definition must include: an extra termination argument:
« Explains how every step in the TM halts
« (Pay special attention to loops)

« Remember our analogy: TMs ~ Programs ... so Creating a TM ~ Programming
 To design a TM, think of how to write a program (function) that does what you want

Last [ine

How to Design Deciders, Part 2

Hint:
* Previous theorems / constructions are a “library” of reusable TMs

« When creating a TM, use this “library” to help you!
* Just like libraries are useful when programming!

« E.g, “Library” for DFAs:
 NFASDFA, RegExpr->NFA
* UNIONpg,, STARpp,, ENC, reverse

 Deciders for: Appy, Anpar Arpxor -

Last [ine Remember:

TMs ~ programs

Decidable Languages About DFAS creating M ~ programming

Previous theorems ~ library

e Apra = {(B,w)| B is a DFA that accepts input string w }
« Decider TM: implements DFA’s extended 6 algorithm, use on Band w

o Anra = {(B,w)| B is an NFA thataccepts input string w}
 Decider TM: uses NFA->DFA algorithm +°4,, decider

o Arex = {(R,w)| R is a regular expression that generates string w }

« Decider TM: uses RegExpr->NFA algorithm +A4,;, decider

taskback: Why Study Algorithms on Computa

To predict what programs will do
without running them!

{n)
1f the number n 1s a
// 1f the ct

RANSOMWARE ATTACK /\

YOUR FILES HAVE BEEN ENCRYPTED

itive

prime"l} ;

a prime,

function

Leotuwre T shie

1on

Creating Computations: Then and Now

Given: a language

Want to: construct machine

that recognizes the language

Need to: write Examples Table
to “prove” machine recognizes the language

Now

Given: a language and a machine1 Analogy: :
. software requirements and code
terminating

Want to: construct machine2 that determines whether machine1 recognizes language

Analogy:

(algorithm) code that proves (no quotes!)
whether other code “works” ... without
running it, i.e., prediction!

Naive solution, write infinite tests: run machine1 ...
- for every string in language and check if accepts
- for every string not in language and check if rejects

taskback: Why Study Algorithms on Computa

To predict what programs will do
without running them!

1f the number n 1s a

Leotuwre T shie

1on

__ — Not possible for all programs! But ...

// 1if the ck

RANSOMWAREATTACK /\

YOUR FILES HAVE BEEN ENCRYPTED

prime')} i

a prime,

function

Lecture T stide

Predicting What Some Programs Will Do ...

What if we: look at simpler computation models
... Like DFAs and regular languages!

Thm: Epra is a decidable language
EDFA — {<A>‘ A 1s a DFA El]fld L(A) — @}

Epea 1S @ language ... of DFA descriptions, ... where the language of each DFA ...
e, (Q,%,8,qyF) .. must be {}, i.e,, DFA accepts no strings
T 0\
... by predicting somethin
Is there a decider that I . :

about the DFA’s language

accepts/rejects DFA descriptions ... (by analyzing its description)

Key idea / question we are about to study:

. : Analogy
Cr:)mput(? (predict) somethl?g about DFA’s description : a program'’s source code :
the puntime computation ora program, DFA’s language :a program’s runtime specification
by analyzing only its source code?

Important: don’t confuse the different languages here!

Thm: Epra is a decidable language
EDFA — {<A>‘ A 1s a DFA El]fld L(A) — @}

Decider:
If loop marks at least 1 state on
T = “On input (A), where A is a DFA: each iteration, then it eventually
1. Mark the start state of A. terminates because there are finite

. states; else loop terminates
2. Repeat until no new states get marked: i

3. Mark any state that has a transition coming into it from any
state that is already marked.

4. If no accept state is marked, accept; otherwise, reject.”

is i il] i Terminati t?
.e,, this is a “reachability” algorithm ... ermination arsumen

... check if accept states are “reachable” from start state

Instead: compute something about DFA’s

Note: TM T is doing a new computation language (runtime computation) by analyzing
on DFAs! (It does not “run” the DFA!) its description (source code)

ThMm: EQpga is a decidable language
EQpea = {(A, B)| Aand B are DFAs and L(A) = L(B)}

l.e., Can we compute whether
two DFAs are “equivalent”?

4
Replacing “DFA” with “program” =
A “holy grail” of computer science!

1NM: EFQpga is a decidable language
(MO Copfbute EQpra = {(A, B)| A and B are DFAs and L(A) = L(B)}

l.e., Can we compute whether
two DFAs are “equivalent”?

A Naive Attempt (assume alphabet {a}):

1. Simulate: S .
A with input a, and This might not terminate!
* Bwith input a | (Hence it's not a decider)
* Reject If results are different, else ...

2. Simulate:

« A with input aa, and
« Bwith input aa ,
 Reject if results are different, else ... Hey ldie
. . Can we compute this without
running the DFAs, i.e,, by only

examining the DFA’s “source code”?

ThMm: EQpga is a decidable language
EQpea = {(A, B)| Aand B are DFAs and L(A) = L(B)}

Trick: Use Symmetric Difference

Symmetric Difference

L(A) L(B)

L(C) = (L(A) mﬁ) U (L(A)
L(C) = 0 iff L(A) = L(B)

N L(B))

ThMm: EQpga is a decidable language
EQpea = {(A, B)| Aand B are DFAs and L(A) = L(B)}

Construct decider using 2 parts:

1. Symmetric Difference algo: L(C) = (

(proved in prev hws!)

NOTE, This only works because: “COP”
regular langs closed under negation,
tion

l.e., set complement, union and intersecti

L(A) N L(B)) U (L(A) N L(B))

 Construct C = Union, intersection, negation of machines 4 and B

2. Decider T (from “library”) for: Epra = {(A)| Aisa DFA and L(A) = 0}
- Because L(C) = @iff/L(A) — L(B\)

(A)

P

Ny

L(B)

ThMm: EQpga is a decidable language
EQpea = {(A, B)| Aand B are DFAs and L(A) = L(B)}

TM input must use same string encoding as lang

Construct decider using 2 parts:

1. Symmetric Difference algo: L(C) = (L(A) ﬂL(B)) U (L(A) N L(B))
« Construct G= Union, intersection, negation of machines A and B

Termination
1. Construct DFA C' as described. argument?

2. RunTM T deciding Epra on input (C).
3. It T accepts, accept. It T rejects, reject.”

From Lecture 7

Predicting What Some Programs Will Do ...

@ microsoft.com/en-us/research/project/slam/

SLAM is a project for checking that software satisfies critical behavioral properties ol the interfaces it uses and to aid software
engineers in designing interfaces and software that ensure reliable and correct functioning. Static Driver Verifier is a tool in the
Windows Driver Development Kit that uses the SLAM verification engine.

“Things like even software verification, this has been the Holy Grail of computer science

for many decades but now in some very key areas, for example, driver verification we're
building tools that can do actual proof about the software and how it works in order to
guarantee the reliability” Bill Gates, April 18, 2002. Keynote address at WinHec . iF
2002 f .\
i=node.>\); | ++ VI Pocs end() Houe;{ ' ur computer. If you do

itiom in all open applice

Static Driver Verifier Research Platform README continue _

Overview of Static Driver Verifier Research Platform

Static Driver Verifier (SDV) is a compile-time static verification .
Research Platform (SDVRP) is an extension to SDV that allows MOdel CheCklng
e Support additional frameworks (or APIs) and write custq From Wikipedia, the free encyclopedia

e | Its “language”
* Experiment with the model checking step. In computer science, model checking or propertVI@ﬂng IS @ method for checking whether a
finite-state model of a system meets a given specification (also known as correctness). This is typically

DFAs!

Sumary: AlgOrithms About Regular Langs

. Apra = {(B,w)| B is a DFA that accepts input string w }
 Decider: Simulates DFA by implementing extended & function

« Anpa = {(B,w)| B is an NFA thataccepts input string w }

 Decider: Uses NFA->DFA decider + Ap, decider

o Arex = {(R,w)| R is a regular expression that generates string w }

 Decider: Uses RegExpr->NFA decider + Ay, decider

° EDFA = {<A>| A is a DFA and L(A — @}
- Decider: Reachability algorithm™| Lang of the DFA

e« FQpea = {(A,B)| Aand B are DFAs and L(A) = L(B)}

Remember:
TMs ~ programs
Creating TM ~ programming
Previous theorems ~ library

%" - Decider: Uses complement and intersection closure construction + E., decider

Mext: Algorithms (Decider TMs) for CFLS?

« What can we predict about CFGs or PDAs?

Thm: Acrg is a decidable language

Acrc = {{G,w)| G is a CFG that generates string w}

 This is a very practically important problem ...

e ... equivalent to:

 Algorithm determining: possible to parse “program” w for a
programming language with grammar G?

* A Decider for this problem could ... ? i~
- Try every possible derivation of G, and check if it's equal tow? / /|
- But this might never halt NIEARN
« E.g,whatif there are rules like:S—>0SorS—S
« This TM would be a recognizer but not a decider

|[dea: can the TM stop checking after some length?

* |l.e, Isthere upper bound on the number of derivation steps?

Chomsky Normal Form

Noam Chomsky

Turing-recognizable

decidable He came up with

this hierarchy of
languages

context-free

Chomsky Normal Form

A context-free grammar is in Chomsky normal form if every rule is
of the form A (non-start) Variables only

A — 507 2 rule shapes

A—as

Terminals only
where a is any terminal and A, B, and C are any variables—except

that B and C' may not be the start variable. |In addition, we permit

the rule S — &, where S is the start variable|

Chomsky Normal Form Example

Makes the string long enough Convert variables to terminals
e S—>AB « To generate string of length: 2
e B— AB « Use Srule: 1time; Use A or B rules: 2 times

e« S>AB=>aB=>ab
* Derivation total steps: 1+ 2 =|3

*B-b * To generate string of length: 3
e Use Srule: 1time; A rule: 1time; A or B rules: 3 times
« S=> AB= AAB = aAB > aaB = aab
 Derivation total steps: 1+ 1+ 3 =[5

« To generate string of length: 4
A context-free grammar is in Chomsky normal form if every rule is) Use S rUle: 1 time ;A rule: 2 times; Aorb rUleS: 4 times
of the form * S= AB = AAB > AAAB = aAAB > aaAB = aaaB = aaab
M 4.~ 2ruleshapes | « Derjvation total steps: 3 + 4 =|7

where a is any terminal and A, B, and C are any variables—except
that B and C' may not be the start variable. [n addition, we permit
the rule S — &, where S is the start variable.

e 4—>a

Chomsky Normal Form: Number of Steps

To generate a string of length n:
n - 1 steps: to generate n variables Makes the string long enough
+ n steps: to turn each variable into a terminal Convert string to terminals
Total: 2n - 1 steps

(A finite number of steps!) Chomsky normal form

A — B(C' | Use n-1 times
A — a Use n times

Thm: Acrg is a decidable language

Acrc = {(G,w)| G is a CFG that generates string w }
Proof: create the decider:

S = “On input (G, w), where G is a CFG and w is a string:

We first 1. Convert G to an equivalent grammar in Chomsky normal form.
need to 2. Listall derivations with 2n — 1 steps, where n is the length of w;
prove this is except if n = 0, then instead list all derivations with one step.
true for all
CFGs!

Step 1: Conversion to Chomsky Normal Form is an algorithm ...
Step 2:

Step 3: . .
P Termination argument?

Thm: Every CFG has a Chomsky Normal Form

Chomsky normal form

Proof: Create algorithm to convert any CFG into Chomsky Normal Form

1. Add new start variable S, that does not appear on any RHS A — BC
* l.e, add rule S, > S, where S'is old start var A—a

SQ—>S
jjg%’aB j> S — ASA|aB
A— B|S

B —ble B ble

Thm: Every CFG has a Chomsky Normal Form

Chomsky normal form
1. Add new start variable S, that does not appear on any RHS A — BC

* l.e, add rule S, > S, where Sis old start var A—a
2. Remove all “empty” rules of the form A > ¢
« A must not be the start variable
« Then for every rule with 4 on RHS, add new rule with A deleted
« Eg,IfR> udvisarule,add R > uv
« Must cover all combinations if A appears more than once in a RHS
« Eg,Iif R> uAvAw s a rule, add 3 rules: R 2 uvAw, R 2 uAvw, R 2 uvw
So — S So — S
S — ASA|aB|a S — ASA|aB|a|SA|AS|S
A— B|S|e A— B|S
B — b Then, add B — b Then add, to account for possibly empty A

First, remove Then, remove

Thm: Every CFG has a Chomsky Normal Form

Chomsky normal form
1. Add new start variable S, that does not appear on any RHS A — BC

* l.e,add rule S,> S, where Sis old start var A—a
2. Remove all “empty” rules of the form A > ¢
« A must not be the start variable
« Then for every rule with A on RHS, add new rule with 4 deleted
« Eg, IfR> udvisarule,add R > uv
« Must cover all combinations if A appears more than once in a RHS
« Eg, if R> udAvAw is a rule, add 3 rules: R = uvAw, R 2 uAvw, R 2 uvw
3. Remove all “unit” rules of the form A >B
* Then, for every rule B> u,add rule A > u
S — ASA|aB|a|SA| AS S — ASY |aB|a|SA| AS S — ASA|aB|a|SA|AS
A B|S A— S.b|ASA|aB|a|SA| AS
A= B|S _— \
B —b B — Db
B — Db Remove, no add

(same variable) Remove, then add S RHSs to S, Remove, then add S RHSs to 4

Termination argument of this algorithm?

Thm: Every CFG has a Chomsky Normal Form

1.

2.

3.

4,

* l.e,add rule S, > S, where S'is old start var

Remove all “empty” rules of the form A4 2> ¢
« A must not be the start variable

« Then for every rule with A on RHS, add new rule with 4 deleted

« Eg, IfR> udvisarule,add R > uv

Remove all “unit” rules of the form A 2B
* Then, for every rule B> u, add rule A 2> u

Split up rules with RHS longer than length 2
« Eg,A > wxyzbecomesA > wB,B>xC,C~>yz

Replace all terminals on RHS with new rule
« Eg, forabove,add W>w,X2>x,Y2>y,Z>z

Chomsky normal form

Add new start variable S, that does not appear on any RHS A — BC
A—=a

Sy — ASA||aB|a|SA| AS

B — b
« Must cover all combinations if A appears more than once in a RHS

« Eg, if R> udAvAw is a rule, add 3 rules: R = uvAw, R 2 uAvw, R 2 uvw

S —- ASA|aB|a|SA|AS
A—Db|ASA|aB|a|SA|AS

!

S[) — AAl ’

S — AA, |UB |a| SA| AS
A—b|AA; |UB|a|SA|AS

Al—)*SA
U — a
B — Db

UB

la| SA|AS

Thm: Acrg is a decidable language

Acre = {(G, w)| G is a CFG that generates string w }
Proof: create the decider:

S = “On input (G, w), where G is a CFG and w is a string:

We first 1. Convert G to an equivalent grammar in Chomsky normal form.
need to 2. Listall derivations with 2n — 1 steps, where n is the length of w;
prove this is except if n = 0, then instead list all derivations with one step.
true for all 3. Ifany of these derivations generate w, accept; if not, reject.”
CFGs!

Termination argument:

Step 1: any CFG has only a finite # rules

Step 2: 2n-1 =finite # of derivations to check
Step 3: checking finite number of derivations

Thm: FEckg is a decidable language

Ecre = {(G)| Gis a CFG and L(G)

Recall:
EDFA — {<A>‘ A iS d DFA and L(A) — @}

T = “On input (A), where A is a DFA:
1. Mark the start state of A.
2. Repeat until no new states get marked:
3. /' Mark any state that has a transition coming into it from any
state that is already marked.
4. If no accept state is marked, accept; otherwise, reject.”

“Reachability” (of accept state from start state) algorithm

Can we compute “reachability” for a CFG?

0}

Thm: FEckg is a decidable language
Ecrg = {(G)| GisaCFGand L(G) = 0}

Proof: create decider that calculates reachability for grammar G
* Go backwards, start from terminals, to avoid getting stuck in looping rules

9 , _ Loop marks 1 new variable on each iteration
R =%“On mput <G>, where G 1s a CFG: or stops: it eventually terminates because
1. Mark all terminal Symbols inG there are a finite # of variables
2. | Repeatfuntil no new variables get marked:
3. Mark any variable A where G hasarule A — U,Us - - - U, and

each symbol Uy, . .., Uy has already been marked.

Termination argument?

Thm: EQcr¢ 1S @ decidable language? g
EQcrc = {(G, H)| G and H are CFGs and L(G) = L(H)}

Recall: FQpra = {(A,B)| Aand B are DFAs and L(A) = L(B)}
» Used Symmetric Difference

@ L(C) = 0 iff L(A) = L(B)

« where € = complement, union, intersection of machines 4 and B

« Can't do this for CFLs!
* Intersection and complement are not closed for CFLs!!!

Intersection of CFLs Is Not Closed!

Proof (by contradiction), Assume intersection is closed for CFLs
e Then intersection of these CFLs should be a CFL;:

A = {a™b"c"| m,n > 0}

B ={a"b"c™|m,n > 0}
« ButAnB={a"b"c"|n >0}

e ... which is not a CFL! (So we have a contradiction)

Complement of a CFL i1s not Closed!

» Assume CFLs closed under complement, then:

if G1 and GG context-free

L(G1) and L(G3) context-free
L(G1) U L(Gz) context-free

L(G1) U L(G) context-free
L(G1) N L(G2) context-free

But intersection is not closed for CFLS (prev slide)

From the assumption

Union of CFLs is closed

From the assumption

DeMorgan’s Law!

Thm: FQcec 1S a decidable language?
EQcec = {(G,H)| Gand H are CFGs and L(G) = L(H)}
* No! Eﬂ

* There’s no algorithm to decide whether two grammars are equivalent!

* [t's not recognizable either! (Can't create any TM to do this!!)
e (details later)

* |.e., this Is an Impossible computation!

(has no machine that recognizes it!)

Sunmary AlgOrithms About CFLS

e Acrc = {(G,w)| G is a CFG that generates string w}

 Decider: Convert grammar to Chomsky Normal Form
« Then check all possible derivations up to length 2|w]| - 1 steps

. ECFG — {<G>| GG is a CFG and L(G) — @}

 Decider: Compute “reachability” of start variable from terminals

e« EQcre ={(G,H)| G and H are CFGs and L(G) = L(H)}

« We couldn’t prove that this is decidable!
* (So you cant use this theorem when creating another decider)

The Limits of Turing Machines?

« TMs represent all possible “computations”
* e, any (Python, Java, ...) program you write is a TM

« But some things are not computable? l.e, some langs are out here ?

* To explore the limits of computation, we have been studying..
... computation about other computation .. . KNOW YOUR PARADOXES!

» Thought: Is there a decider (algorithm) to \ A\ INTHE EVENT OF ROGUE A
determine whether a TM is an decider?

\ 1.STAND STILL
\ 2.REMAIN CALM
3.SCREAM:
\
\

“THIS STATEMENT IS FALSE!”
“NEW MISSION: REFUSE THIS MISSION!”
“DOES A SET OF ALL SETS CONTAIN ITSELF?*

I I EPEHTURE —

Hmmm, this doesn’t feel right ...

Newt tine: 1S A7y decidable?
Atm = {(M,w)| M is a TM and M accepts w}

