CS 420 / CS 620
Decidability
for CFLs

Wednesday, November 12, 2025
UMass Boston Computer Science

Turing-recognizable

decidable

context-free

Halting TMs,
a.k.a., “algorithms”

... that analyze CFLs

lecture20

lecture20

ﬁ/{/ma/wem/(zf‘s’

« HW 10
« Out: Mon 11/10 12pm (noon)
e Due: Mon 11/17 12pm (noon)

Turing-recognizable

|
Halting TMs,
a.k.a., “algorithms”

Z e

context-free

... that analyze CFLs

2 /‘Mv/&’a&é

How to Design Deciders

A DeciderisaTM ...

» See previous slides on how to:
 write a high-level TM description
« .. that uses encoded input strings

« E.g, M=0n input <B, w>, where Bis a DFA and w is a string: ...

« A Decider is a TM ... that must always halt
« Can only: accept or reject
« Cannot: go into an infinite loop

 So a Decider definition must include: an extra termination argument:
« Explains how every step in the TM halts
« (Pay special attention to loops)

« Remember our analogy: TMs ~ Programs ... sO Creating a TM ~ Programming
. To design a TM, think of how to write a program (function) that does what you want

2 /‘Mv/&’a&é

How to Design Deciders, Part 2

Hint:
* Previous theorems / constructions are a “library” of reusable TMs

« When creating a TM, use this “library” to help you!
* Just like libraries are useful when programming!

« E.g, “Library” for DFAs:
 NFASDFA, RegExpr->NFA
* UNIONpg,, STARpp,, ENC, reverse

 Deciders for: Appy, Anpar Arpxor -

Creating Computations: Then and Now

Up to now

Given: a language

Want to: construct machine
that recognizes the language

Need to: write Examples Table
to “prove” machine recognizes the language

Now
. . _ Analogy:
Given: a machine1 and (something about) a language code and its requirements
terminating . .
Want to: construct machine2 that computes whether machine1 recognizes language

. ; SO : Analogy:
Nalve solution, write infinite tests: run machine1 ...

o) p !
- for every string in language and check if accept code t0 prove (no quotes)

- for every string not in language and check if reject whether other code "works™...
y g guas) .. without running it, i.e., prediction!

Last [ine

Algorithms About Regular Langs

Fpra = {(A)| Aisa DFA and L(A) = ()} | Epea Decider: graph reachability algorithm
/‘(ls there any path from start state to accept state)

Glven: a machere1 and a languag// /

terminating
Want to: construct machine2 that computes whether machine1 recognizes language

Last [ine

Algorithms About Regular Langs

EQpea = {(A4, B)| A and B are DFAs and L(A) = L(B)}

Given: machine(s) and (something about their) language, i.e, their expected “run” behavior

terminating predicts . |
Want to: construct machine that esmputes whether machine(s) have that “run” behavior

EQ,¢, Decider: Use neg, union, intersection
closure constructions + E,, decider to
determine when symmetric difference is @

Mext: Algorithms (Decider TMs) for CFLS?

« What can we predict about CFG or PDA computation?

Thm: Acrg is a decidable language

Acrc = {{G,w)| G is a CFG that generates string w}

 This is a very practically important problem ...

e ... equivalent to:

 Algorithm determining: possible to parse “program” w for a
programming language with grammar G?

* A Decider for this problem could ... ? i~
- Try every possible derivation of G, and check if it's equal tow? / /|

- But this might never halt NIEARN

« E.g, what if there are rules like:S—> 0SorS—S

« (This TM could be a recognizer but not a decider)

|[dea: can the TM stop checking after some length?

* |l.e, Isthere upper bound on the number of derivation steps?

Chomsky Normal Form

Noam Chomsky

Turing-recognizable

decidable He came up with

this hierarchy of
languages

context-free

Chomsky Normal Form

A context-free grammar is in Chomsky normal form if every rule is
of the form A (non-start) Variables only

A — 507 2 rule shapes

A—as

Terminals only
where a is any terminal and A, B, and C are any variables—except

that B and C' may not be the start variable. |In addition, we permit

the rule S — &, where S is the start variable|

Chomsky Normal Form Example

Makes the string long enough Convert variables to terminals
e S—>AB « To generate string of length: 2
e B— AB « Use Srule: 1time; Use A or B rules: 2 times

e« S>AB=>aB=>ab
* Derivation total steps: 1+ 2 =|3

*B-b * To generate string of length: 3
e Use Srule: 1time; A rule: 1time; A or B rules: 3 times
« S=> AB= AAB = aAB > aaB = aab
 Derivation total steps: 1+ 1+ 3 =[5

« To generate string of length: 4
A context-free grammar is in Chomsky normal form if every rule is) Use S rUle: 1 time ;A rule: 2 times; Aorb rUleS: 4 times
of the form * S= AB = AAB > AAAB = aAAB > aaAB = aaaB = aaab
M 4.~ 2ruleshapes | « Derjvation total steps: 3 + 4 =|7

where a is any terminal and A, B, and C are any variables—except
that B and C' may not be the start variable. [n addition, we permit
the rule S — &, where S is the start variable.

e 4—>a

Chomsky Normal Form: Number of Steps

To generate a string of length n:
n - 1 steps: to generate n variables Makes the string long enough
+ n steps: to turn each variable into a terminal Convert string to terminals
Total: 2n - 1 steps

(A finite number of steps!) Chomsky normal form

A — B(C' | Use n-1 times
A — a Use n times

Thm: Acrg is a decidable language

Acrc = {(G,w)| G is a CFG that generates string w }
Proof, key step: create the decider:

S = “On input (G, w), where G is a CFG and w is a string:

We first 1. Convert G to an equivalent grammar in Chomsky normal form.
need to 2. Listall derivations with 2n — 1 steps, where n is the length of w;
prove this is except if n = 0, then instead list all derivations with one step.
true for all
CFGs!

Step 1: Conversion to Chomsky Normal Form is an algorithm ...
Step 2:

Step 3: . .
P Termination argument?

Thm: Every CFG has a Chomsky Normal Form

Chomsky normal form

Proof: Create algorithm to convert any CFG into Chomsky Normal Form

1. Add new start variable S, that does not appear on any RHS A — BC
* l.e, add rule S, > S, where S'is old start var A—a

SQ—>S
jjg%’aB j> S — ASA|aB
A— B|S

B —ble B ble

Thm: Every CFG has a Chomsky Normal Form

Chomsky normal form

1. Add new start variable S, that does not appear on any RHS A — BC
* |.e,add rule S, > S, where Sis old start var A—a

2. Remove all “empty” rules of the form A > ¢
« A must not be the start variable
« Then for every rule with A on RHS, add new rule with A deleted
« Eg,If R> udvisarule,add R-> uv (4 is deleted)
« Must cover all combinations of deletions if A appears more than once in a RHS
« Eg,Iif R> uAvAw s a rule, add 3 rules: R 2 uvAw, R 2 uAvw, R 2 uvw

deleted A4 deleted A || deleted As
So — S So — S
S — ASA|aB|a S — ASA|aB|a|SA|AS|S
A— B|S|e A— B|S
B — b Then add (for deleted Bs) B — b Then add (for deleted As)

First, remove Then, remove

Thm: Every CFG has a Chomsky Normal Form

Chomsky normal form

1. Add new start variable S, that does not appear on any RHS A — BC
* |.e, add rule S,> S, where S is old start var A—a

2. Remove all “empty” rules of the form A > ¢
« A must not be the start variable
« Then for every rule with A on RHS, add new rule with A deleted
« Eg,IfR> udvisarule,add R > uv
« Must cover all combinations of deletions if A appears more than once in a RHS
« Eg, if R> udAvAw is a rule, add 3 rules: R = uvAw, R 2 uAvw, R 2 uvw

3. Remove all “unit” rules of the form A =>B
« Then, for every rule B> u, add rule A > u

Sy — S Sy — 5 ASA |aB|a|SA|As| S0 — ASA|aBla|SA|AS
S — ASA|aB|a|SA| AS S —» ASA |aB|a|SA| AS=—2 S — ASA|aB|a|SA|AS

A B|S 7 A— B|S A— S:b|ASA|aB|a|SA| AS
B — b B—>b\
B — Db Remove, no add

(same variable) Remove, then add S RHSs to S, Remove, then add B and S RHSs to 4

Termination argument of this algorithm?

(Algorithm only loops over finite num of rules)

Thm: Every CFG has a Chomsky Normal Form

1.

2.

3.

4,

* l.e,add rule S, > S, where S'is old start var

Remove all “empty” rules of the form A4 2> ¢
« A must not be the start variable

« Then for every rule with A on RHS, add new rule with A deleted

« Eg, IfR> udvisarule,add R > uv

Chomsky normal form

Add new start variable S, that does not appear on any RHS A — BC
A—=a

Sy — ASA||aB|a|SA| AS

B — b

« Eg, if R> udAvAw is a rule, add 3 rules: R = uvAw, R 2 uAvw, R 2 uvw

S —- ASA|aB|a|SA|AS
A—Db|ASA|aB|a|SA|AS

« Must cover all combinations of deletions if A appears more than once in a RHS 1

Remove all “unit” rules of the form A 2B
* Then, for every rule B> u,add rule A 2> u

Split up rules with RHS longer than length 2
« Eg,A > wxyzbecomesA > wB,B>xC,C~>yz

Replace all terminals on RHS with new rule
« Eg, forabove,add W>w,X2>x,Y2>y,Z>z

S() — AAl ’

S — AA, |UB |a| SA| AS
A—b|AA; |UB|a|SA|AS

Al—)*SA
U — a
B — Db

UB

la| SA|AS

Thm: Acrg is a decidable language

Acre = {(G, w)| G is a CFG that generates string w }
Proof: create the decider:

S = “On input (G, w), where G is a CFG and w is a string:

We first 1. Convert G to an equivalent grammar in Chomsky normal form.
need to 2. Listall derivations with 2n — 1 steps, where n is the length of w;
prove this is except if n = 0, then instead list all derivations with one step.
true for all 3. Ifany of these derivations generate w, accept; if not, reject.”
CFGs!

Termination argument:

Step 1: any CFG has only a finite # rules

Step 2: 2n-1 =finite # of derivations to check
Step 3: checking finite number of derivations

Thm: FEckg is a decidable language

Ecre = {(G)| Gis a CFG and L(G)

Recall:
EDFA — {<A>‘ A iS d DFA and L(A) — @}

T = “On input (A), where A is a DFA:
1. Mark the start state of A.
2. Repeat until no new states get marked:
3. /' Mark any state that has a transition coming into it from any
state that is already marked.
4. If no accept state is marked, accept; otherwise, reject.”

“Reachability” (of accept state from start state) algorithm

Can we compute “reachability” for a CFG?

0}

Thm: FEckg is a decidable language
Ecrg = {(G)| GisaCFGand L(G) = 0}

Proof: create decider that calculates reachability for grammar G
« Go backwards, start from terminals, to avoid getting stuck in looping rules

9 , / Loop marks 1 new variable on each iteration
R =%“On mput <G>, where G/1s a CFG: or stops: it eventually terminates because
1. Mark all terminal Symbols in G there are a finite # of variables
2. | Repeatfuntil no new variables get marked:
3. Mark any variable A where G hasarule A — U,Us - - - U, and

each symbol Uy, . .., Uy has already been marked.

Termination argument?

Thm: EQcr¢ 1S @ decidable language? g
EQcrc = {(G, H)| G and H are CFGs and L(G) = L(H)}

Recall: FQpra = {(A,B)| Aand B are DFAs and L(A) = L(B)}
» Used Symmetric Difference

@ L(C) = 0 iff L(A) = L(B)

« where € = complement, union, intersection of machines 4 and B

» Can’t do this for CFLs!
* Intersection and complement are not closed for CFLs!!

Intersection of CFLs Is Not Closed!

Proof (by contradiction), Assume: intersection is closed for CFLs
e Then intersection of these CFLs should be a CFL:

A = {a™b"c"| m,n > 0}

IF-THEN stmt (for proving “closed” ops):
If A and B are CFLs,then An Bis a CFL
B ={a"b"c"|m,n > 0} ' |

« ButAnB={a"b"c"|n > 0}

e .. which is not a CFL! (So we have a contradiction)

Complement of a CFL i1s not Closed!

 Assume: CFLs closed under complement

men: 1f (71 and Go context-free

L(G1) and L(G3) context-free
L(G1) U L(Gz) context-free

L(G1) U L(G) context-free
L(G1) N L(G2) context-free

But intersection is not closed for CFLS (prev slide)

[F-THEN stmt:
If A is a CFL, then Ais a CFL

From the assumption

Union of CFLs is closed

From the assumption

DeMorgan’s Law!

Thm: FQcec 1S a decidable language?
EQcec = {(G,H)| Gand H are CFGs and L(G) = L(H)}
* No! Eﬂ

* There’s no algorithm to decide whether two grammars are equivalent!

* [t's not recognizable either! (Can't create any TM to do this!!)
e (details later)

* |.e, this is an Impossible computation!

(has no machine that recognizes it!)

Sunmary AlgOrithms About CFLS

e Acrc = {(G,w)| G is a CFG that generates string w}

 Decider: Convert grammar to Chomsky Normal Form
« Then check all possible derivations up to length 2|w]| - 1 steps

. ECFG — {<G>| GG is a CFG and L(G) — @}

 Decider: Compute “reachability” of start variable from terminals

e« EQcre ={(G,H)| G and H are CFGs and L(G) = L(H)}

« We couldn’t prove that this is decidable!
* (So you cant use this theorem when creating another decider)

The Limits of Turing Machines?

« TMs represent all possible “computations”
* e, any (Python, Java, ...) program you write is a TM

« But some things are not computable? l.e, some langs are out here ?

 To explore the limits of computation, we have been Studylg ____________
... computation about other computation .. . KNOW YOUR PARADOXES!

» Thought: Is there a decider (algorithm) to \ A\ INTHE EVENTOF ROGUE A
determine whether a TM is an decider?

\ 1.STAND STILL
\ 2.REMAIN CALM
3.SCREAM:
\
\

“THIS STATEMENT IS FALSE!”
“NEW MISSION: REFUSE THIS MISSION!”
“DOES A SET OF ALL SETS CONTAIN ITSELF?*

I I EPEHTURE —

Hmmm, this doesn’t feel right ...

Newt tine: 1S A7y decidable?
Atm = {(M,w)| M is a TM and M accepts w}

