CS 420 / CS 620
Undecidability \

Monday, November 17, 2025
UMass Boston Computer Science

‘ Turing-recognizable

decidable

context-free

lecture21

%/{/{0&(/{06/%@/{56’

« HW 10
+ Bre-Mon- 117 R2pm-{noen)

e HW 11
« Out: Mon 11/17 12pm (noon) .
 Due: Mon 11/24 12pm (noon)

lecture21

Warning: Al 1s Taking Over Soon

Former Google GEO Warns That Al
Is About to Escape Human Gontrol

"People do not understand what happens when you
have intelligence at this level

By Noor Al-Sibai / Published Apr 19,2025 6:00 AM EDT
7 =N

‘Godfather of AT’ shortes ds of the
technology wiping out humanity over
next 30 years

Geoffrey Hinton says there is 10% to 20% chance Al will lead
to human extinction in three decades, as change moves fast

‘We need dramatic changes': is societal collapse
inevitable?

Dan Milmo Global

.) ‘I
technology editor > -
Fri 27 Dec 2024 10.50 EST ‘ \

There S HOpe (If You Pay Attention Today)

Magritte’s “This Is Not a Pipe” (1929)

““““‘

) n KNOW YOUR PARADOXES! |
A\ N THE EVENT OF ROGUE Al A

1.STAND STILL
2.REMAIN CALM
3.SCREAM:

“THIS STATEMENT IS FALSE!"
“NEW MISSION: REFUSE THIS MISSION!”

“Does a set of all sets contain itself?”

LCeci nest nas une fufie.

v 4y 4V 4V 4
i

g A s &~ & &

WMPERTURE

S — S— S— S—S— S— S— S— S— C— — S— S—

/| Today: A method for creating paradoxes
Bertrand Russell’s
Paradox (1901) (used by Russell and others)

Language of: DFA description (i.e., “source code”) + string pairs, i.e.,, where DFA accepts the string

Feeqp: Decidablility of Regular and CFLs

Apra = {(B,w)| B is a DFA that accepts input string w } Decidable

Anra = {(B,w)| B is an NFA that accepts input string w } Decidable

Arex = {(R,w)| R is a regular expression that generates string w} Decidable
Compute something about DFA

e Fpra = {(A)| Aisa DFA and L(A) = ()3 language (runtime behavior) Decidable
from/its description (source code)

* EQpea = {(A, B)| A and B are DFAsand L(A) = L(B)} Decidable

« Acrc = {(G,w)| G is a CFG that generates string w } Decidable

Compute something about CFG .
* Ecrg = {(G)| Gis a CFG and L(G) = (¥ language (runtime behavior), Decidable

from its\description (source code)

* EQcre = {(G, H)| G and H are CFGs and L(G) = L(H)} Undecidable?

. compute whether a ;
o Arm = {{(M, w)| M i1saTMand M accepts w} yiccepsaswing Undecidable?

Thm: Aty is Turing-recognizable =)/
Atv = {(M,w)| M isa TM and M accepts w }

U = “On input (M, w), where M is a TM and w is a string:
1. Simulate M on i]flpllt w. M can go into infinite loop, causing U to loop

2. If M ever enters its accept.state, accept; if M ever enters its
reject state, reject.”

U = Implements TM computation steps aqiaf - axqaf
* |.e.,, “The Universal Turing Machine”
~» “Program” simulating other programs (interpreter)
Termination
arqumentz | (Step 1): U loops when M loops

E@

A [i ' 1zer?
Need Examples Table to justify S0 U'is not a decider. Is it a recognizer:
Statement: “TM U recognizes A, .e., IS Ary Turing-recognizable?

Thm: Aty is Turing-recognizable

Atm = {(M,w)| M i1sa TM and M accepts w}

U = “On input (M, w), where M is a TM and w is a string:

1. Simulate M on input w.«—

M can go into infinite loop, causing U to loop

2. If M ever enters its\accept state, accept; if M ever enters its
reject state, reject.”

[“called” machine “Actual” behavior “Expected” behavior
- %\@\g//:;{kk.

Columns must
match!
\

Need Examples Table to justify
Statement: “TM U recognizes A"

Is this right?

Yes! Machine can loop for
strings not in lang

’TTTJring—rccogni Zﬂlm
: S)
How to prove ... not in here? %*N

Thm: Aty is undecidable \k};@//
Atm = {(M,w)| M i1sa TM and M accepts w}

. 777

Flashback

P

rove: Demons do not exist 299

Proving something not

true is different (and

usually harder) than
proving it true

B |t's sometimes possible,
but often needs
new proof techniques!

Example (Regular Languages)

Prove a language is regular:
- Create a DFA
Prove a language is not regular:

- Proof by contradiction using Pumping Lemma

Not in here?

Thm: Aty is undecidable
Atm = {(M,w)| M i1sa TM and M accepts w}

Example (decidable languages)
Prove a language is decidable:
- Create a decider TM (with termination argument)

Prove a language is not decidable:
- 7777

next

Kinds of Functions (a fn maps DomaIN — RANGE)

. Injective, a.k.a. “one-to-one”
« Every element in DoMAIN has a unique mapping ‘

« How to remember:
 Entire DoMAIN is mapped “in” to the RANGE

* Surjective, aka., “onto”
« Every element in RANGE is mapped to

 How to remember:
« “Sur” = “over” (eg, survey); DoMAIN is mapped “over” the RANGE

O @\ O)

N

b
<

* BIjECtIVE, a.k.a., “correspondence” or “one-to-one correspondence”

* Is both injective and surjective
« Unique pairing of every element in DoMAIN and RANGE

e e B
> 0 W o

Countability

« A setis “countable” if it is:
* Finite
 Or, there exists a bijection between the natural numbers (starting from 1)
and the set

* |n this case, the set has the same size as the set of natural numbers
 This is called “countably infinite”

Exercise: Which set is larger?

* The set of:
Definition: a set S is countably infinite, i.e, it has the
* Natural numbers, or same size as the set of natural numbers, if there is
« Even numbers? a bijection between the natural numbers and S

* They are the same size! Both are countably infinite
« Proof, e BljeCtion:
roo J f(n) — 9

2 Every natural number:
- maps to a unique even number,
- and vice versa

o N 3

4
6

Natural numbers Even numbers

Exercise: Which set is larger?

* The set of:

 Natural numbers N, or
+ Positive rational numbers? Q = {Z|m,n € N'}

* They are the same size! Both are countably infinite

A possible mapping (bijection) of

Natural numbers to
Positive rationals?

So these don’t get mapped to:
(not a bijection)

Definition: a set S is countably infinite, i.e, it has the

same size as the set of natural numbers, if there is
a bijection between the natural numbers and S

very natural number:
maps to a unique rational,
- and vice versa

But, each row is infinite

Positive rational numbers

Exercise: Which set is larger?

* The set of:
 Natural numbers N, or
+ Positive rational numbers? Q = {Z|m,n € N'}

* They are the same size! Both are countably infinite

Another mapping: \

This is a bijection because
every natural number:

- maps to a unique fraction,
- and vice versa

(1] I1SN ot [S18])

Positive rational numbers

Exercise: Which set is larger?

* The set of:
 Natural numbers N, or :
- Real numbers? TR This proof
- There are more real numbers. It is uncountably infinite.| techniqueis
called
—— Assume: diagonalization
Proof, by contradiction: | they are same size, ie., countably infinite g
 So: a bijection between natural and real numbers exists.
« So: every natural num maps to a unique real, and vice versa . e
ut we show that in any given mapping, , e.g: "1 314159, ..
« Some real number is not mapped to ... different 2 | 55.955655.. .
« E.g, a number that has different digits at each position: 3| 0.193h5...
v =0.464t ... 2| O:BEEED.

« This numbercannot be in the mapping ...

o C A hypothetical i
e ... S0 we have a contradiction! ypothetical mapping

Georg Cantor

 Invented set theory
« Came up with countable infinity (1873)

« And uncountability:

Vovr S7nvA 7

Vo vov...
BUT THERE'S NOTHING
LARGER THAN THAT...
\S THERE?

A formative day for Georg Cantor.

« Also: how to show uncountability with “diagonalization” technique

Diagonalization with Turing Machines

Diagonal: Result of Giving a TM its own Encoding as Input

\<Ml> (M)

All TM Encodings

(Ms) (My) (D)
—— M, | accept reject accept reject accept
1> | accept accept accept accept accept
Ms | reject reject reject reject reject
AllTMs,_!Il/I4 accept accept reject reject accept What
should
happen
here?

TM D can't exist!

Try to £
construct this: \
“opposite” |
TM D

_ _ :

It must both
accept and reject!

3 Easy Steps!

Thm: Aty is undecidable
Atm = {(M,w)| M isa TM and M accepts w}

Proof by contradiction:

1. Assume Aqy, 1S decidable. j

H(() accept it M accepts w <
b w — . .
reject it M does not accept w

2. Use H to define another TM ... the impossible “opposite” machine:

D = “On input (M), where M is a TM:

(does opposite of whatinput | 1. Run H on jnput <M’ <M>> H computes: M's result with itself as input
TM would do if given itself)

Output the opposite of what H outputs. That is, if H accepts,
(M) (1‘_/2> (-}‘{:}s) (‘{4) ¢ 2))

SRS T reject; and if H rejects, accept.” Do the opposite
(from prev slide) ;T
This TM can't be defined! ["

D ll'(‘_j(*('f reject accept accept

M, | accept reject
M, | accept accept
Ms | reject reject
M.

| o 55 w2 Output the opposite of what

3 Easy Steps!

Thm: Aty is undecidable
Atm = {(M,w)| M i1sa TM and M accepts w}

Proof by contradiction: 1hic cannot be true
1. Assume Aqy, 1S decidable. So there exists a decider H for it:

H((M, w)) accept it M accepts w
b w — . .
reject it M does not accept w

2. Use H to define another TM ... the Impossible “opposite” maching:
mput (M), where M 1s a TM:

“— 1. Run H on1n).

That is, it H accepts,

== reject; and if H rejects, accept.”

TM D can t eX|st'

3. ButD does not exist! Contradiction! So the assumption is false:

Fasier Undecidability Proofs

« We proved Arw = {(M,w)| M isaTMand M accepts w} undecidable ...

e ... by contradiction:
« Use hypothetical A;, decider to create an impossible decider “D”!

reduce “D problem” to Ay, ML) 0L (My) My - (D)
i

M; | accept reject accepl reject

M | accept accept accept acce

« Need to invent diagonalization

D reject reject accept accept ?

* Step # 2: reduce “D" problem to Ay, --- easier!

« From now on: undecidability proofs only need step # 2!
« And we now have two “impossible” problems to choose from

Let’'s add more!

The Halting Problem

HALT vy = {(M,w)| M isa TM and M halts on input w}
Thm: HALT;, 1s undecidable

Proof, by contradiction: reduce (from known undecidable) A, to HALT;,,
» Assume: HALT;, has decider R;
ATM = {(M , w)| M isa TM and M accepts w } THE HALTING PROBLEM IS EASY TO SOLVE.

IF THE PROGRAM RUNS TOO LONG, T TAKE

THIS STICK AND BEAT THE COMPUTER
UNTIL IT STOPS, T

o contradiction

« But A, Is undecidable and has no decider!

What if Alan Turing had been an engineer?

The Halting Problem

HALTtv = {(M,w)| M isa TM and M halts on input w}
Thm: HALT;, 1s undecidable

Proof, by contradiction: [usingour hypothetical HALT,, decider R

« Assume: HALT;, has decider R; use it to create decider for Ay
Arm = {{(M,w)| M is'a TM and M accepts w}

S = “On input (M, w),an encoding of a TM M and a string w:
1. Run TM R on input (M, w).

2. If R rejects, reject. This means M loOpS 0N (and does not accept) input w
3. If R accepts, simulate M on w until it halts.<{ This step always halts
4. If M has accepted, accept; it M has rejected, reject.”

Termination argument:

Step 1: Ris a decider so always halts
Step 3: M always halts because R said so

Undecidability Proof Technique #1:
Reduce (directly) from Ay,

The Halting Problem (by creating Ay decider)
HALT vy = {(M,w)| M isa TM and M halts on input w}

Thm: HALT;, 1s undecidable
Proof, by contradiction:

« Assume: HALT;), has decider R; use it to create decider for Ay
Arm = {{(M,w)| M is a TM and M accepts w}

input (M, w), an encoding of a TM M and a string w:
Run input (M, w). Now we have three

:) “Impossible” deciders
2. If R rejects, reject. to choose from
3. If R accepts, simulate M on w until3
4. If M has accepted, accept; if M has rej ected reject2

 But 4, Is undecidable! |.e, this decider does not exist!
* SO HALTyy, Is also undecidable!

ntertide: Reducing from HALT,,

A practical thought experiment ...
... about compiler optimizations

Your compiler changes your program!

If TRUE then A else B mm) A

1+2+3 M 6

Compiler Optimizations

Optmization - docs

o

o

(o]

O

O

€]

[e]

-00

= No optmization, faster compilation time,
better for debugging builds.

-02
-03

= Higher level of optmization. Slower compile-
time, better for production builds.

-OFast

= Enables higher level of optmization than (-
03). It enables lots of flags as can be seen
src (-ffloat-store, -ffsast-math, -ffinite-
math-only, -03 ..)

-finline-functions
-m64
-funroll-loops
-fvectorize

-fprofile-generate

Types of optimization [edit]

Techniques used in optimization can be broken up among various scopes which can affect anything from a single statement to the entire
program. Generally speaking, locally scoped techniques are easier to implement than global ones but result in smaller gains. Some
examples of scopes include:

Peephole optimizations
These are usually performed late in the compilation process after machine code has been generated. This form of optimization
examines a few adjacent instructions (like "looking through a peephole” at the code) to see whether they can be replaced by a single
instruction or a shorter sequence of instructions.[2) For instance, a multiplication of a value by 2 might be more efficiently executed by
left-shifting the value or by adding the value to itself (this example is also an instance of strength reduction).

Local optimizations
These only consider information local to a basic block.l*! Since basic blocks have no control flow, these optimizations need very little
analysis, saving time and reducing storage requirements, but this also means that no information is preserved across jumps.

Global optimizations
These are also called "intraprocedural methods” and act on whole functions.[*! This gives them more information to work with, but
often makes expensive computations necessary. Worst case assumptions have to be made when function calls occur or global
variables are accessed because little information about them is available.

Loop optimizations
These act on the statements which make up a loop, such as a for loop, for example loop-invariant code motion. Loop optimizations
can have a significant impact because many programs spend a large percentage of their time inside loops.[*]

Prescient store optimizations
These allow store operations to occur earlier than would otherwise be permitted in the context of threads and locks. The process
needs some way of knowing ahead of time what value will be stored by the assignment that it should have followed. The purpose of
this relaxation is to allow compiler optimization to perform certain kinds of code rearrangement that preserve the semantics of
properly synchronized programs.[%!

Interprocedural, whole-program or link-time optimization
These analyze all of a program's source code. The greater quantity of information extracted means that optimizations can be more
effective compared to when they only have access to local information, i.e. within a single function. This kind of optimization can also
allow new techniques to be performed. For instance, function inlining, where a call to a function is replaced by a copy of the function
body.

Machine code optimization and object code optimizer
These analyze the executable task image of the program after all of an executable machine code has been linked. Some of the
techniques that can be applied in a more limited scope, such as macro compression which saves space by collapsing common
sequences of instructions, are more effective when the entire executable task image is available for analysis.©]

The Optimal Optimizing Compiler

“Full Employment” Theorem
Thm: The Optimal (C++) Optimizing Compiler does not exist
Proof, by contradiction:
Assume: OPT is the Perfect Optimizing Compiler
Use it to create HALT;,, decider (accepts <Mw> if M halts with w, else rejects):

S=0n input <M, w>, where Mis C++ program and w is string:
In computer science and mathematics, a full employment theorem is a term used, often humorously, to

— — e o
¢ H: OPT(IW) _—— 'FO r (? 9 refer to a theorem which states that no algorithm can optimally perform a particular task done by some class

o of professionals. The hame arises because such a theorem ensures that there is endless scope to keep
a) Then Reject

b) E lS e ACCE pt For example, the full employment theorem for compiler writers states that there is no such thing as a
provably perfect size-optimizing compiler, as such a proof for the compiler would have to detect non-

discovering new techniques to improve the way at least some specific task is done.

terminating computations and reduce them to a one-instruction infinite loop. Thus, the existence of a provabl
perfect size-optimizing compiler would imply a solution to the halting problem, which cannot exist. This also
implies that there may always be a better compiler since the proof that one has the best compiler cannot
exist. Therefore, compiler writers will always be able to speculate that they have something to improve.

Sumary: The Limits of Algorithms

* Apra = {(B,w)| B is a DFA that accepts input string w} Decidable
« Acre = {(G,w)| G is a CFG that generates string w } Decidable
e Atm = {(M,w)| M isa TM and M accepts w} laii;gres Undecidable
o« HALT 1y = {(M,w)| M is a TM and M halts on input w} Undecidable

It's straightforward to use
hypothetical HALT;,, decider to
create A, decider

next

Sumary: The Limits of Algorithms

* Apra = {(B,w)| B is a DFA that accepts input string w}
« Acre = {(G,w)| G is a CFG that generates string w }
e Atm = {(M,w)| M isa TM and M accepts w}

o HALTtMm = {(M,w)| M is a TM and M halts on input w}

Epra = {(A)| Aisa DFA and L(A) = 0}

Not as
similar

Ecrg = {{(G)| Gisa CFG and L(G) = 0} languages

o Frm = {(M) MisaTMand L(M) = ()}

How can we use a
hypothetical E;y, decider to
create Ay or HALT;,, decider?

Decidable
Decidable
Undecidable
Undecidable
Decidable
Decidable
Undecidable

Thm: E7) Is undecidable
Proof, by contradiction:
« Assume Eqy, has decider R; use it to create decider for Ay

First, construct M,

. Run K on mput (M

\

Undecidability Proof Technique #2

Reducibility: Moditying the TM

ETM — {<M>‘ M is a TM and L(M)

0}

Note: M, is only used as arg to R; we never run it!

S =“On inoyt (M, w), an encoding of a TM M and a string w:

. If R accepts, reject (because it means (M) doesn't accept [_w

- if R rejects, then

accept

* Idea: Wrap (M) in a new TM that can only accept w (or nothing):

((M) accepts something,

and itisw! |)

M; = “On input x:

1. Ifz # w, reject.

Input not w, always reject

Input is w, maybe accept 2. Ifz = w, run M on input w and accept if M does.”

M, accepts w if M does

——d

Reducibility: Moditying the TM

Erv={ (M) MisaTMand L(M) =
Thm: E;y, is undecidable ™ = (M) MisaTMand L(M) = 0}

Proof, by contradiction: Remember: Ay, I1s undecidable and thus has no decider!
« Assume E7y has decider R; use 1t to create decider for A;y:

S =*“Oainnut (M, w), an encoding of a TM M and a string w:

First, construct M,

. RKun ¥ on nput (

. If R accepts, reject (because it means 'taccept [__w
- if R rejects, then[accepd ((M) accepts something,[anditis w1

e Idea: Wrap (M) in a new TM that can only accept w:

M; = “On input z:
1. If x # w, reject.

2. Ifz = w, run M on input w and accept it M does.”

next

* Exw = {(M)| MisaTMand L(M) =0} 4

Sumary: The LImits of Algorithms

Apra = {(B,w)| B is a DFA that accepts input string w }
Acec = {(G,w)| G is a CFG that generates string w}
Atm = {(M,w)| M is a TM and M accepts w}

Epra = {(A)| Aisa DFA and L(A) = 0}

Ecre = {(G)| GisaCFG and L(G) = 0}

needs

EQpea = {(A, B)| Aand B are DFAsand L(A) = L(B)}

EQcrc = {(G, H)| G and H are CFGs and L(G) = L(H)}

EQ+y = {(My, My)| My and My are TMs and L(M;) = L(M>,)}

Decidable
Decidable
Undecidable
Decidable
Decidable
Undecidable
Decidable
Undecidable wnproven)

UndECidable (unproven)

Undecidability Proof Technique #3

Reduce from something else: EQ+y, is undecidable

EQ+y = {(My, My)| My and M, are TMs and L(M;) = L(M>)}

Proof, by contradiction:

« Assume: EQ;), has decider R; use It to create decider foré.y:
Erp = {1 MisaTMand L(M) = 0}

S = “On input (M), where M is a TM:
1. Run R'on input (M, M;), where M; is a TM that rejects all
inputs.
2. It R accepts, accept; it R rejects, reject.”

Reduce from something else: EQ+y, is undecidable
EQ+v = {(My, M3)| My and M are TMs and L(M;) = L(Ms)}
Proof, by contradiction:

« Assume: EQ;y has decider R; use it to create decider for Ey:
={(M)| MisaTMand L(M) = (0}

ut (M), where M is a TM:
1. Run Roni M), where M; is a TM that rejects all

inputs.
2. If R accepts, accept; it R rejects, reject.”

e But ETM IS undecidable! (and thus has no decider)

Sumary: Undecidability Proof Techniques

: Arm = {(M,w)| M isa TM and M ts |
« Proof Technique #1: ™ = {(M,w)| M isaTM an accepts w }
* Use hypothetical decider to implement impossible Ay deciderﬁ Reduce

« Example Proof: HALTtyw = {{M,w)| M isa TM and M halts on input w}

* Proof Technique #2:

2 Use hypothetical decider to implement impossible A, decider
Can also . . . ™
» But first modify the input M

combine
these Reduce

techniques | « Example Proof: FEry = {(M)| M isaTM and L(M) = 0}

\

* Proof Technique #3:

* Use hypothetical decider to implement non-A4,, impossible decider

« Example Proof: EQ y = {(M;, M>)| M, and M, are TMs and L(M,) = L(M>)}

Sumary: DecCidability and Undecidability

Apra = {(B,w)| B is a DFA that accepts input string w }
Acre = {(G,w)| G is a CFG that generates string w}
Atm = {(M,w)| M is a TM and M accepts w}

Epra = {(A)| Aisa DFA and L(A) = 0}

Ecrc = {(G)| Gis aCFG and L(G) = 0}

Erv = {(M)| MisaTM and L(M) = ()}
EQpea = {(A, B)| Aand B are DFAsand L(A) = L(B)}
EQcrc = {(G, H)| G and H are CFGs and L(G) = L(H)}

EQ+y = {(My, My)| My and My are TMs and L(M;) = L(M>,)}

Decidable
Decidable
Undecidable
Decidable
Decidable
Undecidable
Decidable
Undecidable wnproven)

Undecidable

Also Undecidable ...

next | * REGULAR;y = {<M>| M isaTM and L(M) is a regular language}

Undecidability Proof Technique #2:

Thm:REGULAR~y, is undecidable Modify Input TM M

REGULARtm = {(M)| M isaTM and L(M) is a regular language}

Proof, by contradiction:
« Assume: REGULAR-, has decider R; use it to create decider for A,

S = “On input (M, w), an encoding of a TM M and a string w:
o| First, construct M, (??)

e Run R on mput (M

2

o If R accepts, accept; if R rejects, reject
\ A\

Want: L(M,) =
« regular, If M accepts w
« nonregular, if M does not accept w

Thm:REGULARTy\ is undecidable (continued)

REGULARtm = {(M)| M isaTM and L(M) is a regular language}

M3 = “On input z:
1. If x has the form 01", accept.
2. If x does not have this form, run M on input wjand

Always accept strings 071"
L(M,) = nonregular, so far

accept 1t M accepts w.” If M accepts w,

accept everything else,

if M does not accept w, M, accepts all strings (regular lang) || so L(M,) = 2* = regular

All strings

Qnin

/

Want: L(M,) =

* nonregu

 regular, If M accepts WE/

ar, if M does not accept w

if M accepts w, M, accepts this nonregular lang

Seems like no algorithm can compute

: anything about
AtSO U N d eCl d d b le the language of a Turing Machine,
l.e., about the runtime behavior of programs ...
* REGULAR, = {<M>| MisaTM and L(M) is a regular language}
 CONTEXTFREE), = {<M>|MisaTMand L(M) is a CFL}

* DECIDABLE, = {<M> | M is a TM and L(M) is a decidable language}

* FINITE,, = {<M>| MisaTM and L(M) is a finite language}

An Algorithm About Program Behavior?

main()

{
printf ("hello, world\n");
+

Write a program that,
given another program as its argument,
returns TRUE if that argument prints
“Hello, World!”

4

TRUE

Fermat’s Last Theorem
(unknown for ~350 years,
solved in 19905s)

in()
Taln /

If ™ +y" = 2", for any integer n > 2

printf("hello, world\n");

Write a program that,

ther program as its argument,
RUE if that argument prints
‘Hello, World!”

4

P??°7?

Seems like no algorithm can compute

: anything about
AtSO U N d eCl d d b le the language of a Turing Machine,
l.e., about the runtime behavior of programs ...
* REGULAR, = {<M>| MisaTM and L(M) is a regular language}
 CONTEXTFREE), = {<M>|MisaTMand L(M) is a CFL}
* DECIDABLE, = {<M> | M is a TM and L(M) is a decidable language}
* FINITE,, = {<M>| MisaTM and L(M) is a finite language}

Rice's Theorem
*|ANYTHING-, = {<M>| MisaTM and ... anything ...” about L(M)}

Rice’s Theorem: ANYTHING,, 1S Undecidable

ANYTHING, = {<M>| MisaTM and ... anything ... about L(M)}

« “... Anything ...”, more precisely:
For any M,, M,,
* If L(My) = L(M,)
» then M, € ANYTHING,,, © M, € ANYTHING;,

* Also, “... Anything ...”must be “non-trivial”:
« ANYTHING), '={}
* ANYTHING), = set of all TMs

Rice’s Theorem: ANYTHING,, 1S Undecidable

ANYTHING, = {<M>| MisaTM and ... anything ... about L(M)}

Proof by contradiction

« Assume some language satisfying ANYTHING-,, has a decider R.
 Since ANYTHING-, is non-trivial, then there exists M,,, € ANYTHING,,
« Where R accepts M,

 Use R to create decider for Ay
On InPUt <M7 w>: | These two cases

= i . must be different,
* Create Mw:]_WFV{VU noj\lj] Ionnp:;lvt x If M accepts w: M,, = Mpny (so R can distinguish

If M doesn't accept w: M, accepts nothing | when M accepts w)

- If M rejects w: reject x I
- If M accepts w: Wait! What if the TM that accepts
Run M,,,on x and accept if it accepts, else reject nothing is in ANYTHING;,,!

* RunRon M,

- If it accepts, then M, = M,,,, SO M accepts w, SO accep} Proof still works! Just use the

e Flse reject complement of ANYTHING;,, instead!
|

Rice’'s Theorem Implication

{<M> | Mis a TM that installs malware} ~ Undecidable!
by Rice’'s Theorem

(n)
1f the number n 1s a prime
var factor; // if

RANSOMWAREATTACK /\

YOUR FILES HAVE BEEN ENCRYPTED

