CS 420 / CS 620 Reducibility

Wednesday, November 19, 2025 UMass Boston Computer Science

THE BIG PICTURE SOLUTION TO THE HALTING PROBLEM

Announcements

• HW 11

- Out: Mon 11/17 12pm (noon)
- Due: Mon 11/24 12pm (noon)

• HW 12

- Out: Mon 11/24 12pm (noon)
- Thanksgiving: 11/26-11/30
- Due: Fri 12/5 12pm (noon)

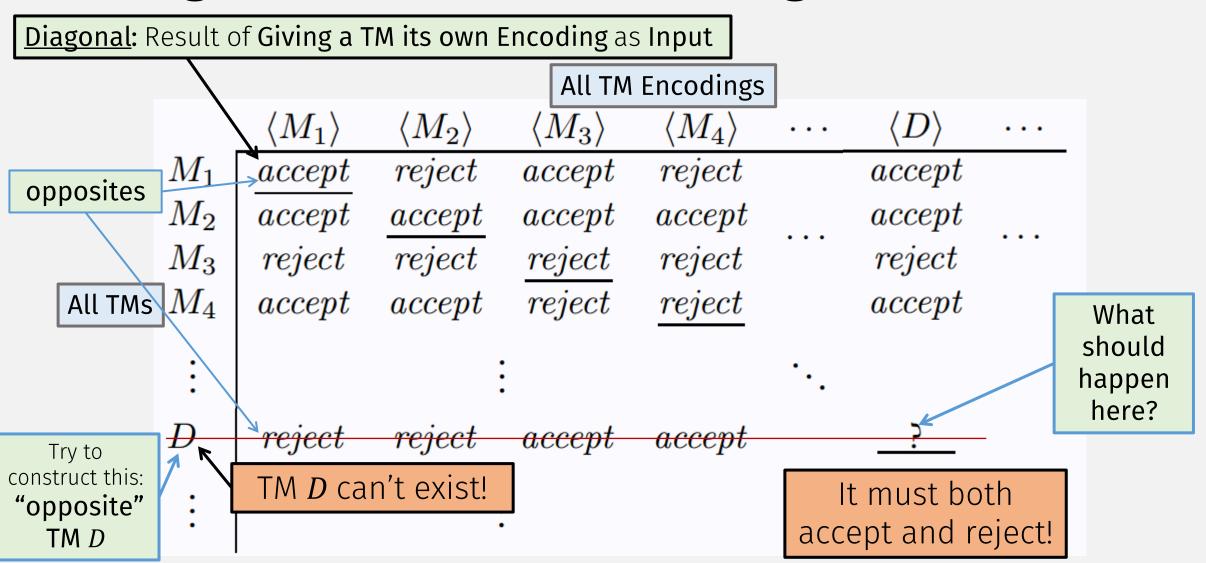
• HW 13

- Out: Fri 12/5 12pm (noon)
- Due: Fri 12/12 12pm (noon) (classes end)
- Late due: Mon 12/15 12pm (noon) (exams start)
 - Nothing accepted after this (please don't ask)

```
DEFINE DOES IT HALT (PROGRAM):
{
    RETURN TRUE;
}
```

THE BIG PICTURE SOLUTION
TO THE HALTING PROBLEM

Diagonalization with Turing Machines



Thm: A_{TM} is undecidable

 $A_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \}$

Proof by contradiction:

1. Assume A_{TM} is decidable. So there exists a decider H for it:

$$H(\langle M, w \rangle) = \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ does not accept } w \end{cases}$$

2. <u>Use</u> *H* to define another TM ... the impossible "opposite" machine:

$$D =$$
 "On input $\langle M \rangle$, where M is a TM:

(does **opposite** of what **input TM would do** if **given itself**)

(from prev slide)
This TM can't be defined!

reject reject accept accept

- 1. Run H on input $\langle M, \langle M \rangle \rangle$. H computes: M's result with itself as input
- 2. Output the opposite of what H outputs. That is, if H accepts, reject; and if H rejects, accept." Do the opposite

TM *D* can't be defined!

Thm: A_{TM} is undecidable

 $A_{\mathsf{TM}} = \{ \langle M, w \rangle | \ M \text{ is a TM and } M \text{ accepts } w \}$

<u>Proof</u> by contradiction: _{TI}

This cannot be true

1. Assume A_{TM} is decidable. So there exists a decider H for it:

$$H(\langle M, w \rangle) = \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ does not accept } w \end{cases}$$

2. <u>Use</u> H to define another TM ... the impossible "opposite" machine:

$$D =$$
 "On input $\langle M \rangle$, where M is a TM:

- $H_1 = \frac{\langle M_1 \rangle \langle M_2 \rangle \langle M_3 \rangle \langle M_4 \rangle \cdots \langle D \rangle \cdots}{\langle M_2 \rangle \langle M_2 \rangle \langle$
 - 2. Output the opposite of what *H* outputs. That is, if *H* accepts, reject; and if *H* rejects, accept."
 - 3. But D does not exist! Contradiction! So the assumption is false.

Easier Undecidability Proofs

- We proved $A_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \}$ undecidable ...
- ... by contradiction:
 - Use hypothetical A_{TM} decider to create an impossible decider "D"!

```
reduce "D problem" to A_{TM}
```

- Step # 1: coming up with "D" --- hard!
 - Need to invent diagonalization

```
M_1 accept reject accept reject accept acce
```

Unknown lang

Known undecidable lang!

Step # 2: reduce "D" problem to A_{FM} --- <u>easier!</u>

- From now on: undecidability proofs only need step # 2!
 - And we now have two "impossible" problems to choose from

Let's add more!

 $HALT_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \}$

Thm: *HALT*_{TM} is undecidable

Proof, by **contradiction**:

FAQ: "Do we need Examples Table?"

• Assume: $HALT_{TM}$ has decider R; use it to create decider for A_{TM}

(undecidable, no decider) $A_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \}$

A: Yes, to Justify a Statement

S= "On input $\langle M,w\rangle$, an encoding of a TM M and like "machine X decides lang L"

1. Run TM R on input $\langle M, w \rangle$.

(even if it leads to contradiction)

- 2. If R rejects, reject.
- 3. If R accepts, simulate M on w until it halts.
- 4. If M has accepted, accept; if M h ALSO: Example Table(s) tell you how to solve the problem!

Examples also help to understand the problem (needed before solving)

 $HALT_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \}$

Thm: *HALT*_{TM} is undecidable

Proof, by **contradiction**:

• Assume: $HALT_{TM}$ has decider R; use it to create decider for A_{TM}

Examples for *R*

Input $\langle M, w \rangle$ will be $\langle M_i, w_i \rangle$ where:

- M_i is some TM described in table and
- w_i is some string

String	M_i on w_i	$R \text{ on } \langle M, w \rangle$	In lang <i>HALT</i> _{TM} ?	
$\langle M_1, w_1 \rangle$	(halt and) Accept	Accept	Yes	
$\langle M_2, w_2 \rangle$	(halt and) Reject	Accept	Yes	
$\langle M_3, w_3 \rangle$	Loop	Reject	No	

R lets us know when a TM would loop on some input (without running the TM) ... so we can avoid it!

 $HALT_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \}$

Thm: *HALT*_{TM} is undecidable

Proof, by contradiction: Using our hypothetical $HALT_{TM}$ decider R

Loop is not accept

• Assume: $HALT_{TM}$ has decider R; use it to create decider for A_{TM} ;

 $A_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \}$

- S = "On input $\langle M, w \rangle$, an encoding of a TM M and a string w:
 - **1.** Run TM R on input $\langle M, w \rangle$.

(doesn't accept)

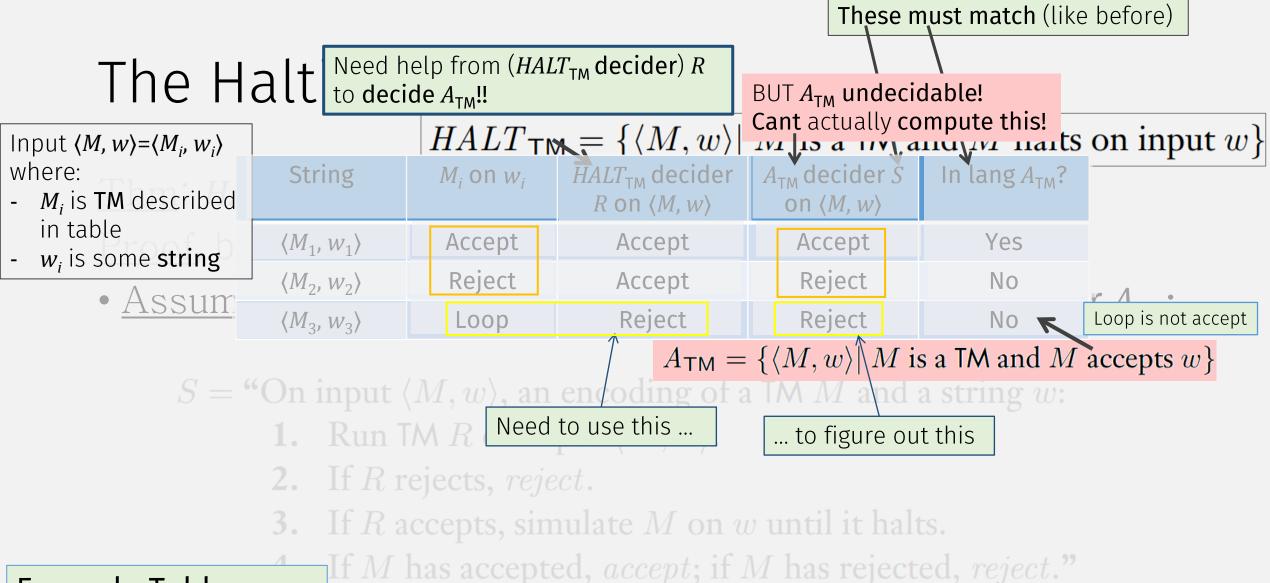
- 2. If R rejects, reject.— If R rejects $\langle M, w \rangle$, M loops on w, so S should reject it
- 3. If R accepts, simulate M on w until it halts. This step always halts
- **4.** If M has accepted, accept; if M has rejected, reject."

Examples Table??

Termination argument:

Step 1: *R* is a decider so always halts

Step 3: *M* always halts because *R* said so



Example Table
Justifying Statement
"S decides A_{TM}"

Undecidability Proof Technique #1: **Reduce** from known undecidable language (by creating its decider)

 $HALT_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \}$

Thm: *HALT*_{TM} is undecidable

Proof, by **contradiction**:

FFFAQ: "Do we need S/J????"

• Assume: $HALT_{TM}$ has decider R; use it to create decider for A_{TM} :

"You never showed us how????"

S = "On input $\langle M, w \rangle$, an encoding of a TM M and a string w:

- **1.** Run TM R on input $\langle M, w \rangle$.
- 2. If R rejects, reject.
- 3. If R accepts, simulate M on w until it halts.
- **4.** If M has accepted, accept; if M has rejected, reject."
- But A_{TM} is undecidable (has no decider)! I.e., this decider does not exist!
 - So *HALT*_{TM} is also undecidable!

Now we have three known undecidable langs, i.e., three "impossible" deciders, to choose from

The Halting Problem ... As Statements / Justifications

 $HALT_{\mathsf{TM}} = \{ \langle M, w \rangle | \ M \text{ is a TM and } M \text{ halts on input } w \}$

(Proof by contradiction)

Statements

- 1. $HALT_{TM}$ is decidable
- 2. $HALT_{TM}$ has decider R
- 3. Construct decider *S* using *R* ("see below")
- 4. Decider S decides A_{TM}
- 5. A_{TM} is undecidable (i.e, it has no decider)
- 6. $HALT_{TM}$ is undecidable

Justifications

- 1. Opposite of statement to prove
- 2. Definition of decidable langs
- 3. Definition of TMs and deciders (incl termination argument)
- 4. See Examples Table
- 5. Theorem from last lecture (Sipser Theorem 4.11)
- 6. Contradiction of Stmts #4 & #5

Summary: The Limits of Algorithms

- $A_{\mathsf{DFA}} = \{ \langle B, w \rangle | \ B \text{ is a DFA that accepts input string } w \}$
- $A_{\mathsf{CFG}} = \{ \langle G, w \rangle | G \text{ is a CFG that generates string } w \}$
- $A_{\mathsf{TM}} = \{\langle M, w \rangle | \ M \text{ is a TM and } M \text{ accepts } w\}$ Similar languages
- $HALT_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \}$

It's straightforward to use hypothetical $HALT_{TM}$ decider to create A_{TM} decider

Decidable

Decidable

Undecidable

Undecidable

Summary: The Limits of Algorithms

- $A_{\mathsf{DFA}} = \{ \langle B, w \rangle | B \text{ is a DFA that accepts input string } w \}$
- $A_{CFG} = \{ \langle G, w \rangle | G \text{ is a CFG that generates string } w \}$
- $A_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \}$
- $HALT_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \}$
- $E_{\mathsf{DFA}} = \{ \langle A \rangle | A \text{ is a DFA and } L(A) = \emptyset \}$
- $E_{\mathsf{CFG}} = \{ \langle G \rangle | G \text{ is a CFG and } L(G) = \emptyset \}$

next • $E_{\mathsf{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$

Not as similar languages Decidable

Decidable

Undecidable

Undecidable

Decidable

Decidable

Undecidable

How can we use a hypothetical E_{TM} decider to create A_{TM} or $HALT_{TM}$ decider?

 $E_{\mathsf{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$

Reducibility: Modifying the TM

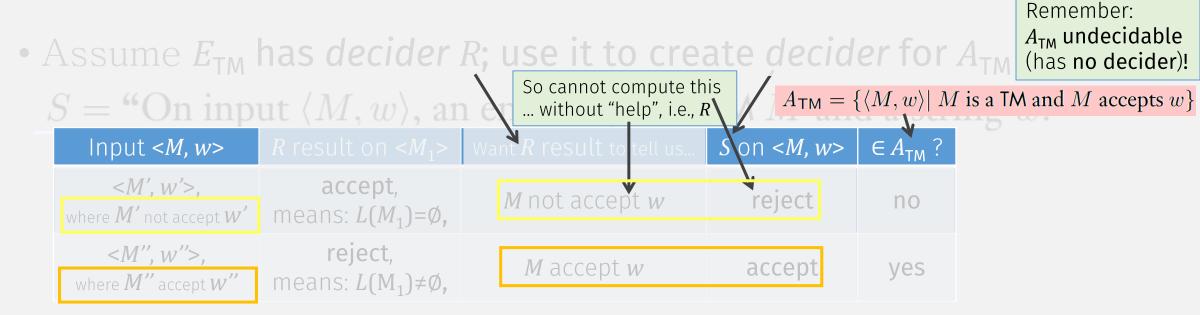
Proof, by **contradiction**:

Thm: E_{TM} is undecidable

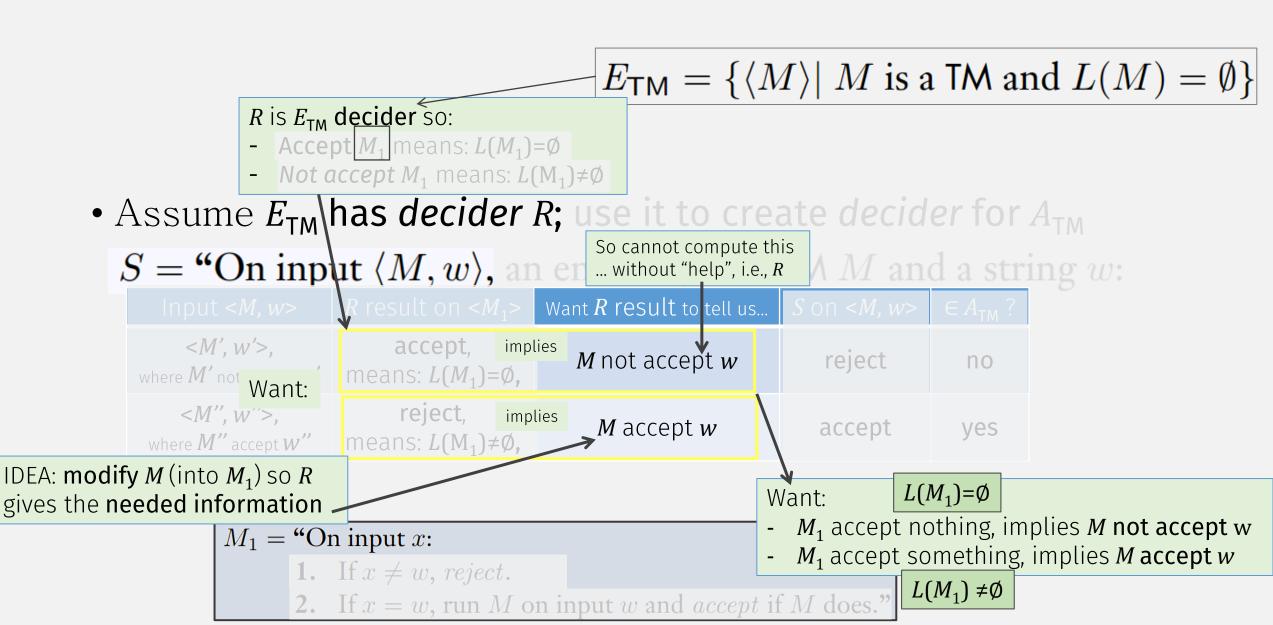
- Assume E_{TM} has decider R; use it to create decider for A_{TM} : S = "On input $\langle M, w \rangle$, an encoding of a TM M and a string w:
 - Run R on input $\langle M \rangle$
 - If R accepts, reject (because it means $\langle M \rangle$ doesn't accept anything)
 - if R rejects, then ??? $(\langle M \rangle)$ accepts something, but is it w???
- <u>Idea</u>: Use **Examples (Table)** for guidance!

(Will tell us how to solve the problem!)

A_{TM} Examples Table



• Idea: Use Examples (Table) for guidance!



• Assume E_{TM} has decider R; use it to create decider for A_{TM}

S = "On input $\langle M, w \rangle$, an encoding of a TM M and a string w:

<u> </u>	, , , ,					
			Want R result to tell us		S on <m, w=""></m,>	$\in A_{TM}$?
<m', w'="">,</m',>	accept,	implies *	<i>M</i> not accept w		reject	no
where M' not acce		accept, implies M not accept w neans: $L(M_1) = \emptyset$,			·	
< M'' , w'' > $>$ where M'' accept w''		implies D,	M accept w		accept	yes

• Idea: Create Examples (Table) for guid

$$M_1 = \text{"On input } x$$
: (almost nothing)

1. If $x \neq w$, $reject$.

2. If x = w, run M on input w and accept if

 $\longrightarrow M_1$ accept nothing, implies M not accept w

 M_1 accept something w, implies M accept w

$$L(M_1) \neq \emptyset = \{w\}$$

 $L(M_1)=\emptyset$

Want: Got:

nothing or just w)

 $E_{\mathsf{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$

Thm: E_{TM} is undecidable Proof, by **contradiction**:

- Assume E_{TM} has decider R; use it to create decider for A_{TM} :
 - $S = \text{"On input } \langle M, w \rangle$, an encoding of a TM M and a string w:
 - Run R on input $\langle M_1 \rangle$ Note: M_1 is only used to get needed info from R; (never run!)

Got:

- If R accepts, reject (because it means $\langle M \rangle$ doesn't accept
- if R rejects, then accept ($\langle M \rangle$ accepts something, and it is $w!_{\lambda}$

M_1 = "On input x:

- 1. If $x \neq w$, reject.
- 2. If x = w, run M on input w and accept if M does." $L(M_1) \neq \emptyset = \{w\}$

 M_1 accept nothing, implies Mnot accept w

 M_1 accept w, implies M accept w

 $L(M_1)=\emptyset$

$$L(M_1) \neq \emptyset = \{w\}$$

Reducibility: Modifying the TM

 $E_{\mathsf{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$

Thm: E_{TM} is undecidable

Proof, by **contradiction**:

Contradiction because: A_{TM} is undecidable and has no decider!

- Assume E_{TM} has decider R; use it to create decider for A_{TM} :
 - $S = \text{"On input } \langle M, w \rangle$, an encoding of a TM M and a string w:
 - Run R on input $\langle M_1 \rangle$
 - If R accepts, reject (because it means $\langle M \rangle$ doesn't accept w
 - if R rejects, then accept ($\langle M \rangle$ accepts something, and it is w!
- Idea: Wrap $\langle M \rangle$ in a new TM that can only accept w:

```
M_1 = "On input x:
```

- 1. If $x \neq w$, reject.
- 2. If x = w, run M on input w and accept if M does."

Summary: The Limits of Algorithms

- $A_{\mathsf{DFA}} = \{ \langle B, w \rangle | \ B \text{ is a DFA that accepts input string } w \}$
- $A_{\mathsf{CFG}} = \{ \langle G, w \rangle | G \text{ is a CFG that generates string } w \}$
- $A_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \}$
- $E_{\mathsf{DFA}} = \{ \langle A \rangle | A \text{ is a DFA and } L(A) = \emptyset \}$
- $E_{\mathsf{CFG}} = \{ \langle G \rangle | G \text{ is a CFG and } L(G) = \emptyset \}$
- $E_{\mathsf{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$
- $EQ_{\mathsf{DFA}} = \{\langle A, B \rangle | A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$
- $EQ_{\mathsf{CFG}} = \{ \langle G, H \rangle | \ G \text{ and } H \text{ are CFGs and } L(G) = L(H) \}$

xt • $EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

Decidable

Decidable

Undecidable

Decidable

Decidable

needs

Undecidable

Decidable

Undecidable

Undecidable

Reduce to something else: EQ_{TM} is undecidable

 $EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

Proof, by **contradiction**:

• Assume: EQ_{TM} has decider R; use it to create decider for A_{TM} . $E_{\mathsf{TM}} = \{\langle M \rangle | M \text{ is a TM and } L(M) = \emptyset\}$

S = "On input $\langle M \rangle$, where M is a TM:

- 1. Run R on input $\langle M, M_1 \rangle$, where M_1 is a TM that rejects all inputs.
- 2. If R accepts, accept; if R rejects, reject."

Reduce to something else: EQ_{TM} is undecidable

 $EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

<u>Proof</u>, by **contradiction**:

• Assume: EQ_{TM} has decider R; use it to create decider for E_{TM} :

 $=\{\langle M
angle|\ M \ {
m is\ a\ TM\ and}\ L(M)=\emptyset\}$

S = "On input $\langle M \rangle$, where M is a TM:

- 1. Run R on input $\langle M, M_1 \rangle$, where M_1 is a TM that rejects all inputs.
- 2. If R accepts, accept; if R rejects, reject."
- But E_{TM} is undecidable!

Summary: Undecidability Proof Techniques

- Proof Technique #1:
- $A_{\mathsf{TM}} = \{ \langle M, w \rangle | \ M \text{ is a TM and } M \text{ accepts } w \}$
- Use hypothetical decider to implement impossible A_{TM} decider

Reduce

• Example Proof: $HALT_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \}$

Proof Technique #2:

- Use hypothetical decider to implement impossible A_{TM} decider
- But first modify the input M

Can also

combine these

techniques

```
• Example Proof: E_{\mathsf{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}
```

Reduce

- Proof Technique #3:
 - Use hypothetical decider to implement $\underline{\text{non-}A_{TM}}$ impossible decider \blacksquare
 - Example Proof: $EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

Summary: Decidability and Undecidability

- Decidable • $A_{\mathsf{DFA}} = \{ \langle B, w \rangle | B \text{ is a DFA that accepts input string } w \}$
- $A_{CFG} = \{ \langle G, w \rangle | G \text{ is a CFG that generates string } w \}$ Decidable
- $A_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \}$
- $E_{\mathsf{DFA}} = \{ \langle A \rangle | A \text{ is a DFA and } L(A) = \emptyset \}$
- $E_{\mathsf{CFG}} = \{ \langle G \rangle | G \text{ is a CFG and } L(G) = \emptyset \}$
- $E_{\mathsf{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$
- $EQ_{DFA} = \{\langle A, B \rangle | A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$
- $EQ_{CFG} = \{ \langle G, H \rangle | G \text{ and } H \text{ are CFGs and } L(G) = L(H) \}$
- $EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

Undecidable

Decidable

Decidable

Undecidable

Decidable

Undecidable

Undecidable

Also Undecidable ...

next

• $REGULAR_{TM} = \{ < M > \mid M \text{ is a TM and } L(M) \text{ is a regular language} \}$

Undecidability Proof Technique #2: **Modify input TM** *M*

Thm: $REGULAR_{TM}$ is undecidable

 $REGULAR_{\mathsf{TM}} = \{ \langle M \rangle | \ M \text{ is a TM and } L(M) \text{ is a regular language} \}$

Proof, by **contradiction**:

- Assume: REGULAR_{TM} has decider R; use it to create decider for A_{TM} : S = "On input $\langle M, w \rangle$, an encoding of a TM M and a string w:
 - First, construct M_2 (??)
 - Run R on input $\langle M_{2}^{\setminus} \rangle$
 - If R accepts, accept; if R rejects, reject

$\underline{\text{Want}}$: $L(M_2) =$

- regular, if M accepts w
- nonregular, if M does not accept w

Thm: $REGULAR_{TM}$ is undecidable (continued)

 $REGULAR_{\mathsf{TM}} = \{\langle M \rangle | M \text{ is a TM and } L(M) \text{ is a regular language} \}$

 $M_2 =$ "On input x:

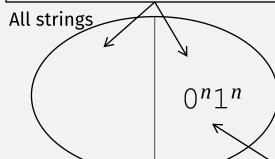
Always accept strings 0^n1^n $L(M_2)$ = nonregular, so far

- 1. If x has the form $0^n 1^n$, accept.
- 2. If x does not have this form, run M on input w and

accept if M accepts w."

if M does not accept w, M_2 accepts all strings (regular lang)

If *M* accepts *w*, accept everything else, SO $L(M_2) = \Sigma^* = \text{regular}$



Want: $L(M_2) =$

- regular, if M accepts w=
- **nonregular,** if *M* does not accept *w*

if M accepts w, M_2 accepts this **nonregular** lang

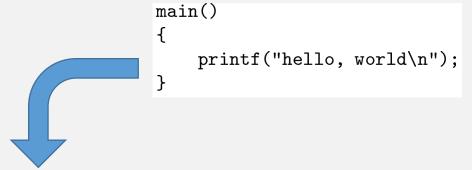
Also Undecidable ...

- $REGULAR_{TM} = \{ < M > \mid M \text{ is a TM and } L(M) \text{ is a regular language} \}$
- $CONTEXTFREE_{TM} = \{ < M > \mid M \text{ is a TM and } L(M) \text{ is a CFL} \}$
- $DECIDABLE_{TM} = \{ < M > \mid M \text{ is a TM and } L(M) \text{ is a decidable language} \}$
- $FINITE_{\mathsf{TM}} = \{ < M > \mid M \text{ is a TM and } L(M) \text{ is a finite language} \}$

Seems like:

no algorithm can compute anything about the language of a Turing Machine, i.e., about the runtime behavior of programs ...

An Algorithm About Program Behavior?



Write a program that, given another program as its argument, returns TRUE if that argument prints "hello, world"

Seems like:

no algorithm can compute anything about the language of a Turing Machine, i.e., about the runtime behavior of programs ...

Fermat's Last Theorem (unknown for ~350 years, solved in 1990s)

```
main() \{x^n+y^n=z^n, \text{ for any integer } n>2\\ \text{printf("hello, world\n");} \}
```

Write a program that, given another program as its argument, returns TRUE if that argument prints "hello, world"

?????

Seems like:

no algorithm can compute anything about the language of a Turing Machine, i.e., about the runtime behavior of programs ...

Also Undecidable ...

- $REGULAR_{TM} = \{ < M > \mid M \text{ is a TM and } L(M) \text{ is a regular language} \}$
- $CONTEXTFREE_{TM} = \{ < M > \mid M \text{ is a TM and } L(M) \text{ is a CFL} \}$
- $DECIDABLE_{TM} = \{ < M > \mid M \text{ is a TM and } L(M) \text{ is a decidable language} \}$
- $FINITE_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a finite language} \}$

• ...

Rice's Theorem

• $ANYTHING_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and "... anything ..." about } L(M) \}$

Rice's Theorem: $ANYTHING_{TM}$ is Undecidable

 $ANYTHING_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } \dots \text{ anything } \dots \text{ about } L(M) \}$

• "... Anything ...", more precisely:

For any M_1 , M_2 ,

- if $L(M_1) = L(M_2)$
- then $M_1 \in ANYTHING_{\mathsf{TM}} \Leftrightarrow M_2 \in ANYTHING_{\mathsf{TM}}$
- Also, "... Anything ..." must be "non-trivial":
 - $ANYTHING_{TM} != \{\}$
 - *ANYTHING*_{TM}!= set of all TMs

Rice's Theorem: $ANYTHING_{TM}$ is Undecidable

 $ANYTHING_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } \dots \text{ anything } \dots \text{ about } L(M) \}$

Proof still works! Just use the complement of $ANYTHING_{TM}$ instead!

Proof by contradiction

- Assume some language satisfying $ANYTHING_{TM}$ has a decider R.
 - Since $ANYTHING_{TM}$ is non-trivial, then there exists $M_{ANY} \in ANYTHING_{TM}$
 - Where R accepts M_{ANY}

• Else reject

• Use R to/create decider for A_{TM} :

On input *kM*, *w*>: These two cases M_w = on input x: - Run M on wmust be different, • Create M_w : If M accepts w: $M_w = M_{ANY}$ (so *R* can distinguish If M doesn't accept w: M_w accepts nothing when M accepts w) - If *M* rejects *w*: reject *x* - If *M* accepts *w*: Wait! What if the TM that accepts Run M_{ANY} on x and accept if it accepts, else reject nothing is in $ANYTHING_{TM}$! • Run R on M_w • If it accepts, then $M_w = M_{ANY}$, so M accepts w, so accept

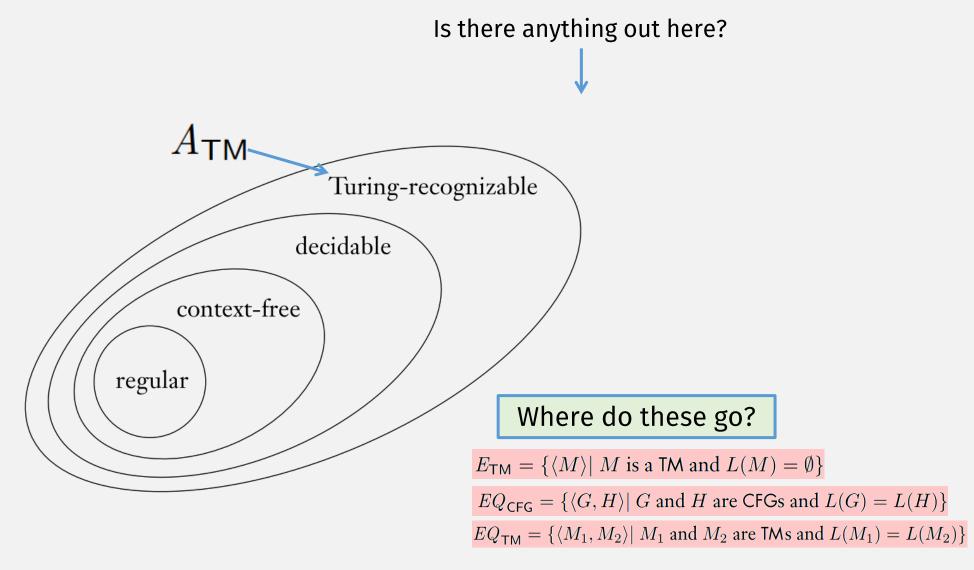
Rice's Theorem Implication

{<*M*> | *M* is a TM that installs malware}

Undecidable! (by Rice's Theorem)

```
unction check(n)
 // check if the number n is a prime
 var factor; // if the checked number is not a prime, this is its first factor
  // try to divide the checked number by all numbers till its square root
  for (c=2; (c <= Math.sqrt(n)); c++)
     if (n%c == 0) // is n divisible by c?
        { factor = c; break}
  return (factor);
   // end of check function
unction communicate()
                         checked number
  var factor; // if the
                         necked number is not
                                               rime, this is its first factor
                         number.value;
                                               t the checked number
 if ((isNaN(i)) || (i <
                         0) || (Math.floor(i = i))
                         iect should be a le positive number")} ;
   { alert ("The checked
    factor = check (i);
    if (factor == 0)
       {alert (i + " is a prime")} ;
      // end of communicate function
```


Turing Unrecognizable?



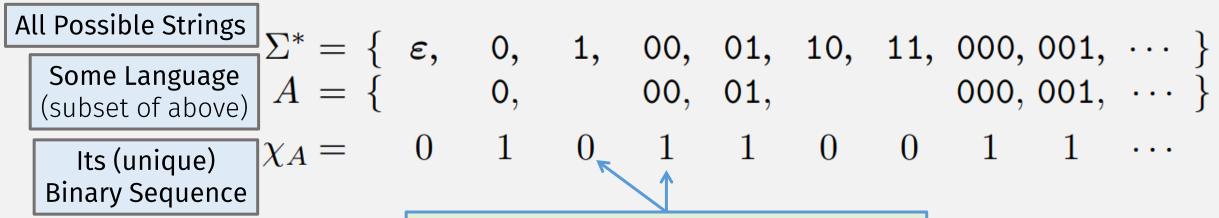
Thm: Some langs are not Turing-recognizable

Proof: requires 2 lemmas

- Lemma 1: The **set of all languages** is uncountable
 - Proof: Show there is a bijection with another uncountable set ...
 - ... The set of all infinite binary sequences
- Lemma 2: The set of all TMs is countable

• Therefore, some language is not recognized by a TM

Mapping a Language to a Binary Sequence



Each digit represents one possible string:

- 1 if lang has that string,
- 0 otherwise

Thm: Some langs are not Turing-recognizable

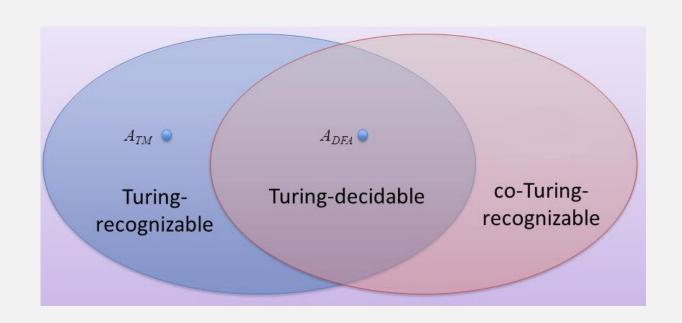
Proof: requires 2 lemmas

- Lemma 1: The set of all languages is uncountable
 - Proof: Show there is a bijection with another uncountable set ...
 - ... The set of all infinite binary sequences
 - > Now just prove set of infinite binary sequences is uncountable (diagonalization)
- Lemma 2: The set of all TMs is countable
 - Because every TM M can be encoded as a string <M>
 - And set of all strings is countable
- Therefore, some language is not recognized by a TM

Co-Turing-Recognizability

- A language is **co-Turing-recognizable** if ...
- ... it is the <u>complement</u> of a Turing-recognizable language.

Thm: Decidable ⇔ Recognizable & co-Recognizable



<u>Thm</u>: Decidable ⇔ Recognizable & co-Recognizable

- \Rightarrow If a language is decidable, then it is recognizable and co-recognizable
 - Decidable => Recognizable:
 - A decider is a recognizer, bc decidable langs are a subset of recognizable langs
 - Decidable => Co-Recognizable:
 - To create co-decider from a decider ... switch reject/accept of all inputs
 - A co-decider is a co-recognizer, for same reason as above

← If a language is **recognizable** and **co-recognizable**, then it is **decidable**

Thm: Decidable ⇔ Recognizable & co-Recognizable

- \Rightarrow If a language is decidable, then it is recognizable and co-recognizable
 - Decidable => Recognizable:
 - A decider is a recognizer, bc decidable langs are a subset of recognizable langs
 - Decidable => Co-Recognizable:
 - To create co-decider from a decider ... switch reject/accept of all inputs
 - A co-decider is a co-recognizer, for same reason as above
- ← If a language is **recognizable** and **co-recognizable**, then it is **decidable**
 - Let M_1 = recognizer for the language,
 - and M_2 = recognizer for its complement
 - Decider M:
 - Run 1 step on M_1 ,
 - Run 1 step on M_2 ,
 - Repeat, until one machine accepts. If it's M_1 , accept. If it's M_2 , reject

Termination Arg: Either M_1 or M_2 must accept and halt, so M halts and is a decider

A Turing-unrecognizable language

We've proved:

 A_{TM} is Turing-recognizable

 A_{TM} is undecidable

• So:

 $\overline{A_{\mathsf{TM}}}$ is not Turing-recognizable

• Because: recognizable & co-recognizable implies decidable

Is there anything out here? $\overline{A_{\mathsf{TM}}}$ A_{TM} Turing-recognizable decidable context-free regular