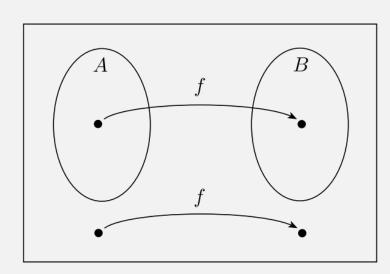
CS 420 / CS 620 Mapping Reducibility

Monday, November 24, 2025

UMass Boston Computer Science



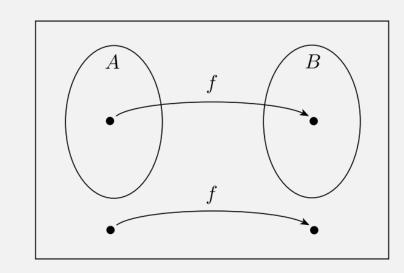
Announcements

- HW 11
 - Due: Mon 11/24 12pm (noon)
- HW 12
 - Out: Mon 11/24 12pm (noon)
 - Thanksgiving: 11/26-11/30
 - Due: Fri 12/5 12pm (noon)

Last HW

• HW 13

- Out: Fri 12/5 12pm (noon)
- Due: Fri 12/12 12pm (noon) (classes end)
- Late due: Mon 12/15 12pm (noon) (exams start)
 - Nothing accepted after this (please don't ask)



Flashback: "Reduced" $A_{TM} = \{\langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w\}$

known

To: $HALT_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \}$

Thm: $HALT_{TM}$ is undecidable

Proof, by **contradiction**:

• Assume: $HALT_{TM}$ has decider R; use it to create A_{TM} decider:

From:

Essentially, we convert decidability of an A_{TM} string ...

... into

decidability of a

*HALT*_{TM} string

S = "On input $\langle M, w \rangle$, an encoding of a TM M and a string w:

1. Run TM R on input $\langle M, w \rangle$. (Use R to) First: check if M will loop on w

2. If R rejects, reject.

Then: run *M* on *w*, knowing it won't loop!

3. If B accepts, simulate M on w until it halts.

4. If M has accepted, accept; if M has rejected, reject."

A potential problem: could the

Contradicti conversion itself go into an infinite loop? no decider!

Today: formalize this conversion, i.e., mapping reducibilty

Flashback: A_{NFA} is a decidable language

 $A_{\mathsf{NFA}} = \{ \langle B, w \rangle | \ B \text{ is an NFA that accepts input string } w \}$

Decider for A_{NFA} :

N = "On input $\langle B, w \rangle$, where B is an NFA and w is a string:

- 1. Convert NFA B to an equivalent DFA C, using the procedure NFA \rightarrow DFA
- **2.** Run TM M on input $\langle C, w \rangle$.
- 3. If M accepts, accept; otherwise, reject."

We said this NFA→DFA algorithm is a decider TM, but it doesn't accept/reject?

More generally, our analogy has been: "programs ~ TMs", but programs do more than accept/reject?

Definition: Computable Functions

A function $f: \Sigma^* \longrightarrow \Sigma^*$ is a *computable function* if some Turing machine M, on every input w, halts with just f(w) on its tape.

- A computable function is represented with a TM that, instead of accept/reject, "outputs" its final tape contents
- Example 1: All arithmetic operations

- Example 2: Converting between machines, like DFA→NFA
 - E.g., adding states, changing transitions, wrapping TM in TM, etc.

Definition: Mapping Reducibility

notation

Language A is *mapping reducible* to language B, written $A \leq_m B$, if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B.$$

 $w \in A$ "if and only if" $f(w) \in B$

The function f is called the **reduction** from A to B.

"forward" direction (\Rightarrow): if $w \in A$ then $f(w) \in B$ $w \in A$ then $f(w) \in B$ "reverse" direction (\Leftarrow): if $f(w) \in B$ then $w \in A$

A function $f: \Sigma^* \longrightarrow \Sigma^*$ is a *computable function* if some Turing machine M, on every input w, halts with just f(w) on its tape.

Flashback: Equivalence of Contrapositive

"If X then Y" is equivalent to ...?

1. "If *Y* then *X*" (converse)

2. "If not X then not Y" (inverse)

3. "If **not** *Y* then **not** *X*" (contrapositive)

Flashback: Equivalence of Contrapositive

"If X then Y" is equivalent to ...?

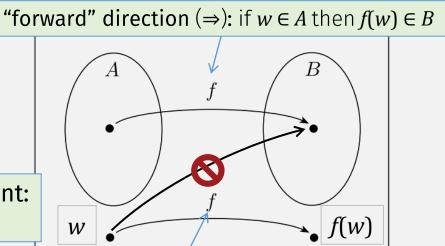
- \times "If Y then X" (converse)
 - No!
- × "If **not** *X* then **not** *Y*" (inverse)
 - No!
- ✓ "If not Y then not X" (contrapositive)
 - Yes!

Definition: Mapping Reducibility

Language A is *mapping reducible* to language B, written $A \leq_m B$, if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \Longleftrightarrow f(w) \in B$$
. "if and only if"

The function f is called the **reduction** from A to B.



Reverse direction just as important: "don't convert non-As into Bs"

"reverse" direction (\Leftarrow): if $f(w) \in B$ then $w \in A$

Equivalent (contrapositive): if $w \notin A$ then $f(w) \notin B$

Easier to prove

Proving Mapping Reducibility: 2 Steps

Step 1:

Show there is computable

Language A is mapping reducible to language B, written $A \leq_{\mathrm{m}} B$, fn f ... by creating a TM if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

 $w \in A \iff f(w) \in B$. "if and only if"

Step 2:

Prove the iff is true for that computable fn TM

The function f is called the **reduction** from A to B.

Step 2a: "forward" direction (\Rightarrow): if $w \in A$ then $f(w) \in B$ e.g. $A_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \} \bullet$ $\vdash HALT_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \}$ Step 2b: "reverse" direction (\Leftarrow): if $f(w) \in B$ then $w \in A$

Step 2b, alternate (contrapositive): if $w \notin A$ then $f(w) \notin B$

A function $f: \Sigma^* \longrightarrow \Sigma^*$ is a *computable function* if some Turing machine M, on every input w, halts with just f(w) on its tape.

$\underline{\text{Thm}}$: A_{TM} is mapping reducible to $\underline{HALT}_{\mathsf{TM}}$

 $A_{\mathsf{TM}} = \{ \langle M, w \rangle | \ M \text{ is a TM and } M \text{ accepts } w \}$

To show: $A_{\mathsf{TM}} \leq_{\mathsf{m}} \mathit{HALT}_{\mathsf{TM}}$

 $HALT_{\mathsf{TM}} = \{ \langle M, w \rangle | \ M \text{ is a TM and } M \text{ halts on input } w \}$

Step 1: create computable fn $f: \langle M, w \rangle \rightarrow \langle M', w \rangle$ where:

Step 2: show $\langle M, w \rangle \in A_{\mathsf{TM}}$ if and only if $\langle M', w' \rangle \in HALT_{\mathsf{TM}}$

The following machine F computes a reduction f.

F = "On input $\langle M, w \rangle$:

- 1. Construct the following machine M'. M' = "On input x:
 - **1.** Run *M* on *x*.
 - 2. If M accepts, accept.
 - **3.** If *M* rejects, enter a loop."
- 2. Output $\langle M', w \rangle$."

Output new M'

M' is like M, except it always loops when it doesn't accept

Converts *M* to *M'*

Step 2:

M accepts *w* if and only if *M'* halts on *w*

Language A is mapping reducible to language B, written $A \leq_{\mathrm{m}} B$, if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

 $w \in A \iff f(w) \in B$.

The function f is called the **reduction** from A to B.

A function $f: \Sigma^* \longrightarrow \Sigma^*$ is a *computable function* if some Turing machine M, on every input w, halts with just f(w) on its tape.

 \checkmark

 \Rightarrow If M accepts w, then M' halts on w

Expected output

assume

• M' accepts (and thus halts) if M accepts

 \Leftarrow If M' halts on w, then M accepts w



F = "On input $\langle M | w \rangle$:

1. Construct the following machine M'.

 $\overline{M'}$ = "On input x:

1. Run M on $x \leftarrow$ Assume M accepts w

2. If M accepts, accept.

3. If M rejects, enter a loop." then M' accepts w

2. Output $\langle M' | w \rangle$."

expected M' on w

 $HALT_{\mathsf{TM}}$

M on w Accept

 A_{TM}

Accept Accept/Reject (halt)

(and **halts**)

This step requires an Examples Table (for output-producing TMs)!

<u>Step 2</u>:

M accepts *w* if and only if M' halts on w

 \Rightarrow If M accepts w, then M' halts on w

Check that: You can write this proof as Statements / Justifications ...

• M' accepts (and thus halts) if M accepts

 \leftarrow If M' halts on w, then M accepts w assume

Expected output

 \Leftarrow (Alternatively) If *M* doesn't accept \bar{w} , then *M'* doesn't halt on \bar{w} (contrapositive)

- Two possibilities for "doesn't accept":
 - *M* loops: *M'* loops and doesn't halt
 - M rejects: M' loops and doesn't halt

The following machine F computes a reduction f.

F = "On input $\langle M, w \rangle$:

1. Construct the following machine M'.

M' = "On input x:

- **1.** Run *M* on *x*. ← If *M* loops ...
- 2. If M accepts, accept.
- **3.** If M rejects, enter a loop."

2. Output $\langle M', w \rangle$."

Reject Loop

If M rejects.

M on w

Accept

expected *M'* on *w M*' on w Accept Accept/Reject (halt) ... then

Loop

_00p

 A_{TM}

M' loops!

 $HALT_{\mathsf{TM}}$

... then *M'* loops

Loop

Loop

This step requires an Examples Table (for output-producing TMs)!

Previously

Hint: This is an IF-THEN Statement ...

A function $f: \Sigma^* \longrightarrow \Sigma^*$ is a **computable function** if some Turing machine M, on every input w, halts with just f(w) on its tape.

Language A is *mapping reducible* to language B, written $A \leq_{\mathrm{m}} B$, if there is a computable function $f \colon \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
.

The function f is called the **reduction** from A to B.

IF a TM *M* computes *f*, THEN *f* is a **computable function**

Definition of mapping reducible

IF there is a **computable function** f, where $w \in A \Leftrightarrow f(w) \in B$, THEN $A \leq_m B$

Now we know what mapping reducibility is, and how to prove it for two languages; but what is it used for?

Thm: A_{TM} is mapping reducible to $HALT_{TM}$

Statements

TODO

- 1. TM *F* computes a function *f*
- 2. f is a computable function
- 3. $\langle M, w \rangle \in A_{\mathsf{TM}} \Rightarrow f(\langle M, w \rangle) \in HALT_{\mathsf{TM}}$
- 4. $\langle M, w \rangle \notin A_{\mathsf{TM}} \Rightarrow f(\langle M, w \rangle) \notin HALT_{\mathsf{TM}}$
- 5. $\langle M, w \rangle \in A_{\mathsf{TM}} \Leftrightarrow f(\langle M, w \rangle) \in HALT_{\mathsf{TM}}$
- 6. $A_{TM} \leq_m HALT_{TM}$ (Statement to Prove)

Definition of computable function

IF a TM *M* computes *f*,

THEN *f* is a **computable function**

Justifications

- 1. **Definition** of (output-producing) **TM**
- 2. Definition of computable function
- 3. Examples Table, row 1 TODO
- 4. Examples Table, row 2-3
- 5. Stmts 4 and 5
- 6. Definition of mapping reducible

Definition of mapping reducible IF there is a computable function f, where $w \in A \Leftrightarrow f(w) \in B$, THEN $A \leq_{\mathrm{m}} B$

Uses of Mapping Reducibility

To prove Decidability

To prove Undecidability

Thm: If $A \leq_{\mathrm{m}} B$ and B is decidable, then A is decidable.

Has a decider

Must create decider

We let M be the decider for B and f be the reduction from A to B. **PROOF** f converts:

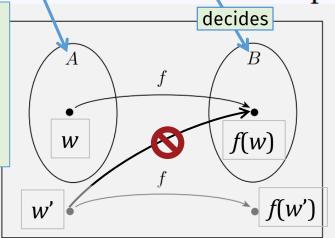
We describe a decider N for A as follows.

N = "On input w:

1. Compute f(w).

decides Run M on input f(w) and output whatever M outputs."

We know this is true bc of the iff (specifically the reverse direction)



Why is it true that:

If *M* accepts *f*(*w*) then *N* should accept *w* ?? i.e., f(w) in B guarantees that w in A???

> Language A is *mapping reducible* to language B, written $A \leq_{\rm m} B$, if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
.

The function f is called the **reduction** from A to B.

 $w \in A$ to $f(w) \in B$, and

 $w' \notin A$ to $f(w') \notin B$

Uses of Mapping Reducibility

✓ To prove Decidability

??? • To prove Undecidability

Corollary: If $A \leq_{\mathrm{m}} B$ and A is undecidable, then B is undecidable.

• <u>Proof</u> by **contradiction**.

• Assume B is decidable.

Then A is decidable (by the previous thm).

• Contradiction: we already said A is undecidable

If $A \leq_{\mathrm{m}} B$ and B is decidable, then A is decidable.

Uses of Mapping Reducibility

✓ To prove Decidability

To prove Undecidability

Summary: Showing Mapping Reducibility

Language A is mapping reducible to language B, written $A \leq_{\mathrm{m}} B$, if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

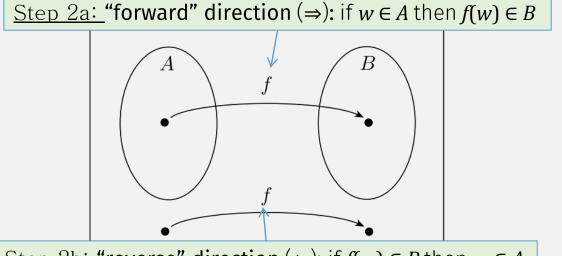
$$w \in A \iff f(w) \in B$$
. "if and only if"

Step 1: Show there is computable

fn f ... by creating a TM

Step 2: Prove the iff is true

The function f is called the **reduction** from A to B.



(using an Examples Table, for output-producing TMs)

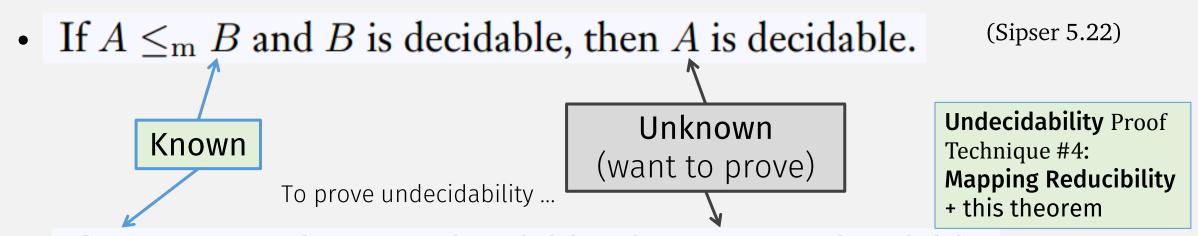
Step 2b: "reverse" direction (\Leftarrow): if $f(w) \in B$ then $w \in A$

Step 2b, alternate (contrapositive): if $w \notin A$ then $f(w) \notin B$

A function $f: \Sigma^* \longrightarrow \Sigma^*$ is a *computable function* if some Turing machine M, on every input w, halts with just f(w) on its tape.

Summary: Using Mapping Reducibility

To prove decidability ...



• If $A \leq_{\mathrm{m}} B$ and A is undecidable, then B is undecidable. (Sipser 5.23)

Be careful with: the <u>direction</u> of the reduction, i.e., what is known and what is unknown!

Alternate Proof: The Halting Problem

 $HALT_{TM}$ is undecidable

• If $A \leq_{\mathrm{m}} B$ and A is undecidable, then B is undecidable.

• $A_{\mathsf{TM}} \leq_{\mathrm{m}} HALT_{\mathsf{TM}}$

Undecidability Proof Technique #4: **Mapping Reducibility** + this theorem

- Since A_{TM} is undecidable,
- ... and we showed mapping reducibility from A_{TM} to $HALT_{TM}$,
- then HALT_{TM} is undecidable

Alternate Proof: The Halting Problem

Statements

Justifications

 $HALT_{\mathsf{TM}}$ is undecidable

Previous proof of: $A_{TM} \leq_m HALT_{TM}$

- 1. TM *F* computes a function *f*
- 2. f is a computable function
- 3. $\langle M, w \rangle \in A_{\mathsf{TM}} \Rightarrow f(\langle M, w \rangle) \in HALT_{\mathsf{TM}}$
- 4. $\langle M, w \rangle \notin A_{\mathsf{TM}} \Rightarrow f(\langle M, w \rangle) \notin HALT_{\mathsf{TM}}$
- 5. $\langle M, w \rangle \in A_{\mathsf{TM}} \Leftrightarrow f(\langle M, w \rangle) \in HALT_{\mathsf{TM}}$
- 6. $A_{\mathsf{TM}} \leq_{\mathsf{m}} HALT_{\mathsf{TM}}$
- 7. A_{TM} is undecidable
- 8. $HALT_{TM}$ is undecidable

- 1. Definition of (output-producing) TM
- 2. Definition of computable function
- 3. Examples Table, row 1
- 4. Examples Table, row 2-3
- 5. Stmts 4 and 5
- 6. Definition of mapping reducible
- 7. Sipser 4.11
- 8. Sipser 5.23

Flashback:

EQ_{TM} is undecidable

 $EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle | \ M_1 \ \text{and} \ M_2 \ \text{are TMs and} \ L(M_1) = L(M_2) \}$

Proof by **contradiction**:

• Assume EQ_{TM} has decider R; use it to create E_{TM} decider:

 $= \{ \langle M \rangle | \ M \text{ is a TM and } L(M) = \emptyset \}$

S = "On input $\langle M \rangle$, where M is a TM:

- 1. Run R on input $\langle M, M_1 \rangle$, where M_1 is a TM that rejects all inputs.
- 2. If R accepts, accept; if R rejects, reject."

Alternate Proof: EQ_{TM} is undecidable

 $EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle | \ M_1 \ \text{and} \ M_2 \ \text{are TMs and} \ L(M_1) = L(M_2) \}$

Show mapping reducibility: $E_{\mathsf{TM}} \leq_{\mathsf{m}} EQ_{\mathsf{TM}}$

Step 1: create computable fn $f: \langle M \rangle \rightarrow \langle M_1, M_2 \rangle$, computed by S

```
S = "On input \langle M \rangle, where M is a TM:
```

- 1. Construct: $\langle M, M_1 \rangle$, where M_1 is a TM that rejects all inputs.
- **2.** Output: $\langle M, M_1
 angle$

Step 2: show iff requirements of mapping reducibility

Alternate Proof: EQ_{TM} is undecidable

 $EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle | \ M_1 \ \text{and} \ M_2 \ \text{are TMs and} \ L(M_1) = L(M_2) \}$

Show mapping reducibility: $E_{\mathsf{TM}} \leq_{\mathsf{m}} EQ_{\mathsf{TM}}$

Step 1: create computable fn $f: \langle M \rangle \rightarrow \langle M_1, M_2 \rangle$, computed by S

S = "On input $\langle M \rangle$, where M is a TM:

- 1. Construct: $\langle M, M_1 \rangle$, where M_1 is a TM that rejects all inputs.
- **2.** Output: $\langle M, M_1
 angle$

Step 2: show iff requirements of mapping reducibility

- $\square \Rightarrow \text{If } \langle M \rangle \in E_{TM}, \text{ then } \langle M, M_1 \rangle \in EQ_{TM}$

Flashback: E_{TM} is undecidable

 $E_{\mathsf{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$

Proof, by **contradiction**:

• Assume E_{TM} has decider R; use it to create A_{TM} decider:

```
S = "On input \langle M, w \rangle, an encoding of a TM M and a string w:
```

- 1. Use the description of M and w to construct the TM M_1
- 2. Run R on input $\langle M_1 \rangle$.

 1. If $x \neq w$, reject.

 2. If x = w, run M on input w and accept if M does."

 3. If R accepts, reject; if R rejects, accept."

 $M_1 =$ "On input x:

If *M* accepts *w*, then M_1 accepts w, meaning M_1 is not in E_{TM} !

Alternate Proof: E_{TM} is undecidable

 $E_{\mathsf{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$

Show mapping reducibility??: $A_{TM} \leq_m E_{TM}$

Step 1: create computable fn $f: \langle M, w \rangle \rightarrow \langle M' \rangle$, computed by S

```
S = "On input \langle M, w \rangle, an encoding of a TM M and a string w:
```

- 1. Use the description of M and w to construct the TM M_1
- 2. Output: $\langle M_1 \rangle$. $M_1 = \text{``On input } x$:

 1. If $x \neq w$, reject.

 2. If x = w, run M on input w and accept if M does."
- 3. If R accepts, reject; if R rejects, accept."

• So this only reduces A_{TM} to $\overline{E_{\mathsf{TM}}}$

- If M accepts w, then M_1 accepts w, meaning M_1 is not in E_{TM} !
- Maybe ok? Can still prove: E_{TM} is undecidable
 - If ... undecidable langs are <u>closed</u> under **complement**

Step 2: show iff requirements of mapping reducibility (hw exercise?)

Language Complement

Complement (COP from hw9) of a language A, written \overline{A} ...

... is the set of all strings not in set A

```
Example:
```

$$E_{\mathsf{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}$$

$$\overline{E_{\mathsf{TM}}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \neq \emptyset \}$$

$$\bigcup \{ w \mid w \text{ is a string that is not a TM description } \}$$

Undecidable Langs Closed under Complement

Proof by contradiction

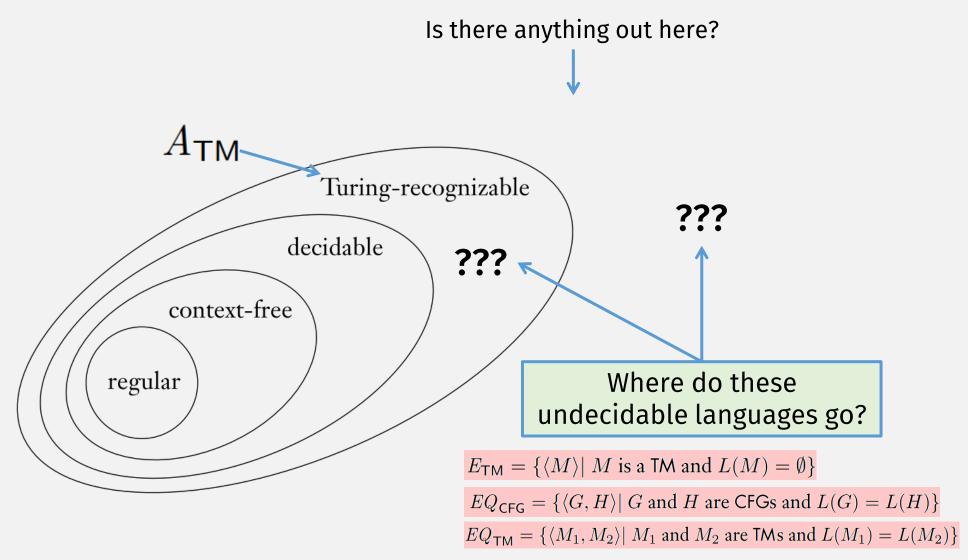
- Assume some lang L is undecidable and \overline{L} is decidable ...
 - Then \overline{L} has a decider

• ... then we can create decider for L from decider for \overline{L} ...

Because decidable languages are closed under complement (hw?)!

Contradiction!

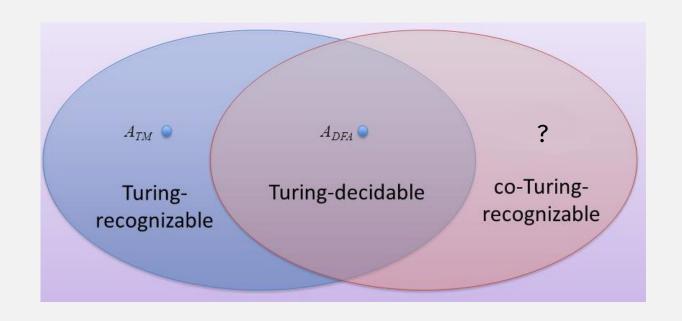
Next: Turing Unrecognizable?



Co-Turing-Recognizability

- A language is **co-Turing-recognizable** if ...
- ... it is the complement of a Turing-recognizable language.

Thm: Decidable ⇔ Recognizable & co-Recognizable (complement)



A Turing-unrecognizable language

We've proved:

 A_{TM} is Turing-recognizable

 A_{TM} is undecidable

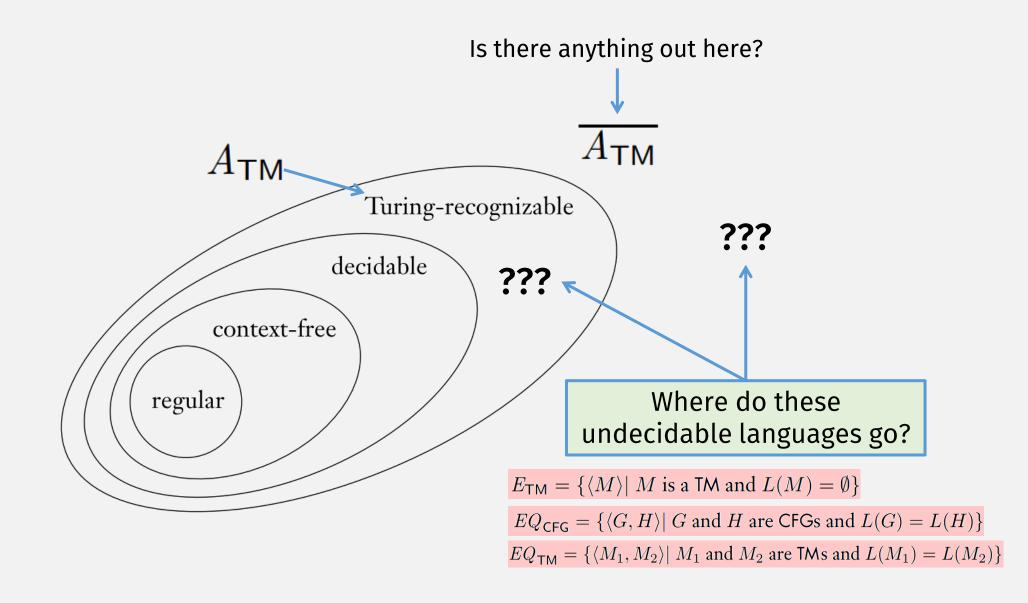
• So:

 $\overline{A_{\mathsf{TM}}}$ is not Turing-recognizable

Unrecognizability Proof Technique #1

• We know: recognizable & co-recognizable ⇒ decidable

<u>Contrapositive</u>: undecidable ⇒ can't be both recognizable & co-recognizable



Thm: EQ_{CFG} is not Turing-recognizable

Recognizable & co-recognizable ⇒ decidable

Unrecognizability Proof Technique #1

<u>Contrapositive</u>: undecidable ⇒ can't be both recognizable & co-recognizable

- We didn't prove this yet (but it is true and we will assume it here): EQ_{CFG} is undecidable
- We now prove: EQ_{CFG} is co-Turing recognizable
 - And conclude that:
 - *EQ*_{CFG} is not Turing recognizable

Thm: EQ_{CFG} is co-Turing-recognizable

 $EQ_{\mathsf{CFG}} = \{ \langle G, H \rangle | \ G \ \text{and} \ H \ \text{are CFGs and} \ L(G) = L(H) \}$

Recognizer for \overline{EQ}_{CFG} :

```
M = \mbox{On input } \langle G, H \rangle, where G and H are CFGs:

• For every possible string w:

Accept if

• w \in L(G) and w \notin L(H), or

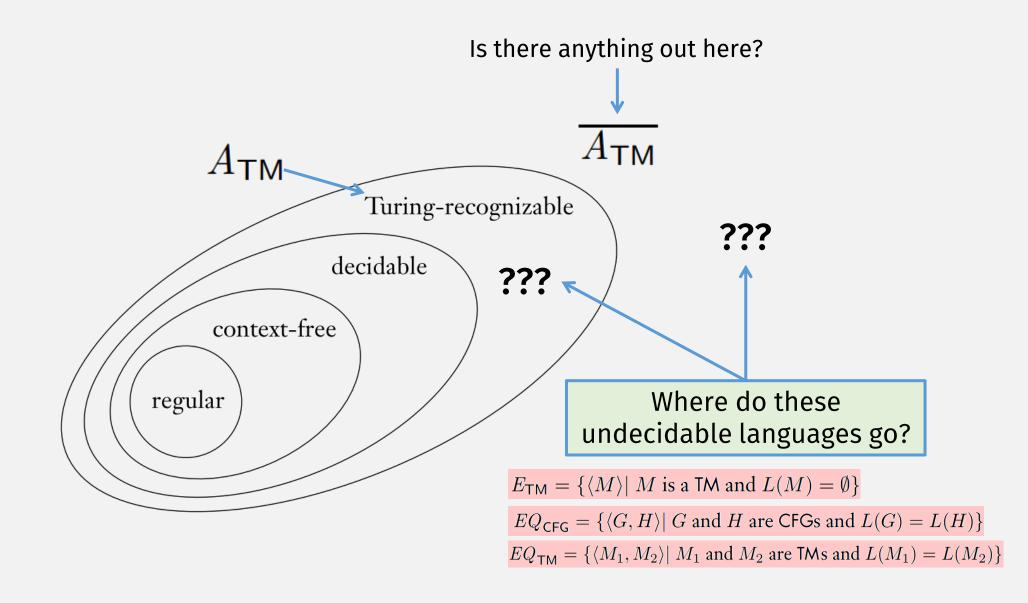
• w \notin L(G) and w \in L(G) Use decider for:

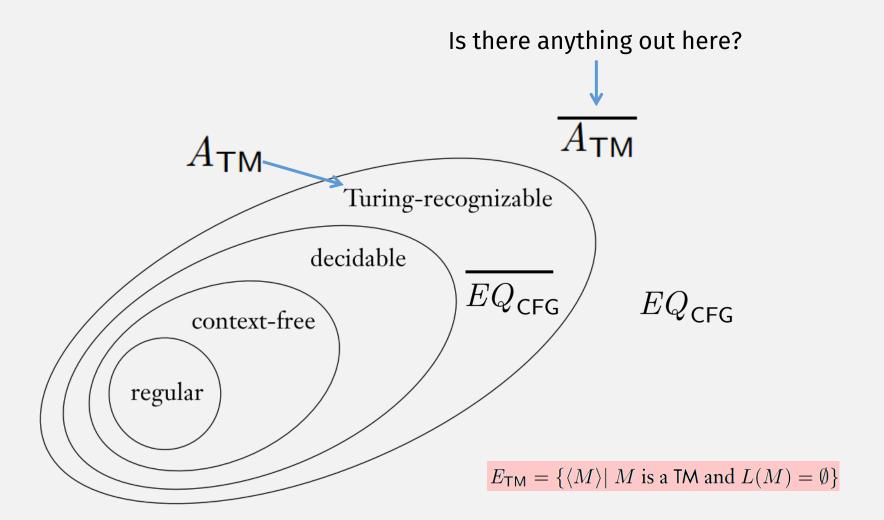
• Else reject

• Use decider for:

A_{CFG} = \{\langle G, w \rangle | G \text{ is a CFG that generates string } w\}
```

This is only a **recognizer** because it loops forever when L(G) = L(H)





 $EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle | \ M_1 \ \mathrm{and} \ M_2 \ \mathrm{are} \ \mathsf{TMs} \ \mathrm{and} \ L(M_1) = L(M_2) \}$

Thm: E_{TM} is not Turing-recognizable

Recognizable & co-recognizable ⇒ decidable

Unrecognizability Proof Technique #1

<u>Contrapositive</u>: undecidable ⇒ can't be both recognizable & co-recognizable

- We've proved:
 - E_{TM} is undecidable
- We now prove: E_{TM} is co-Turing recognizable
 - And then conclude that:
 - E_{TM} is not Turing recognizable

Thm: E_{TM} is co-Turing-recognizable

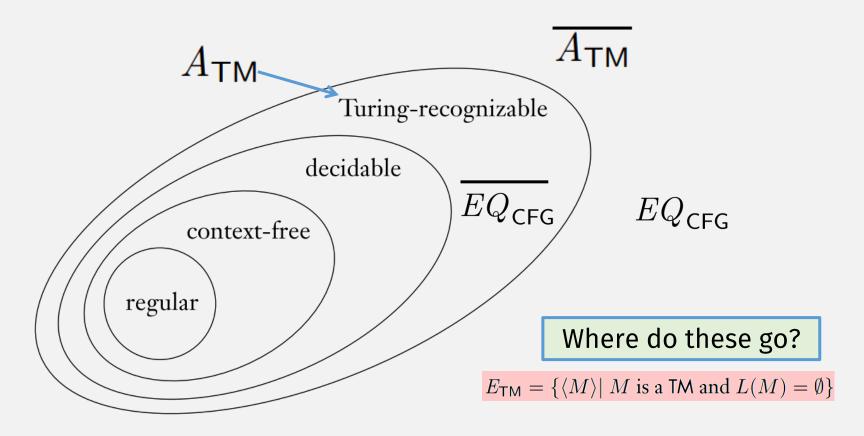
 $E_{\mathsf{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$

Recognizer for $\overline{E_{\mathsf{TM}}}$: Let s_1, s_2, \ldots be a list of all strings in Σ^*

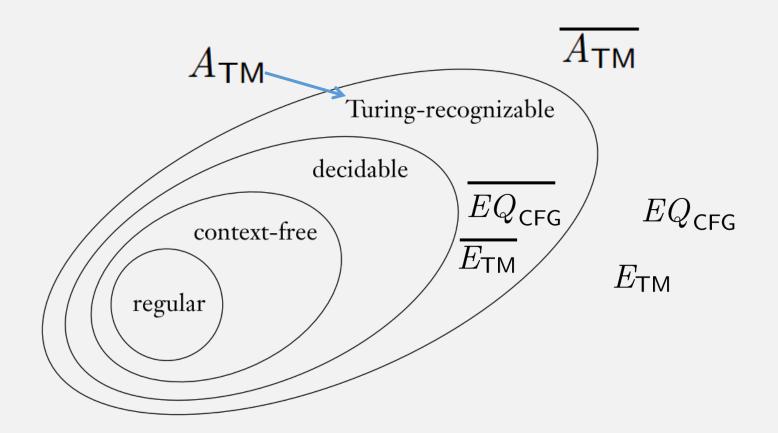
"On input $\langle M \rangle$, where M is a TM:

- 1. Repeat the following for $i = 1, 2, 3, \ldots$
- 2. Run M for i steps on each input, s_1, s_2, \ldots, s_i .
- 3. If M has accepted any of these, accept. Otherwise, continue."

This is only a **recognizer** because it loops forever when L(M) is empty



 $EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle | \ M_1 \ \text{and} \ M_2 \ \text{are TMs and} \ L(M_1) = L(M_2) \}$



Mapping Reducibility Can be Used to Prove ...

Decidability

Undecidability

Recognizability

Unrecognizability

More Helpful Theorems

If $A \leq_{\mathrm{m}} B$ and B is Turing-recognizable, then A is Turing-recognizable.

If $A \leq_{\mathrm{m}} B$ and A is not Turing-recognizable, then B is not Turing-recognizable.

Same proofs as:

If $A \leq_{\mathrm{m}} B$ and B is decidable, then A is decidable.

If $A \leq_{\mathrm{m}} B$ and A is undecidable, then B is undecidable.

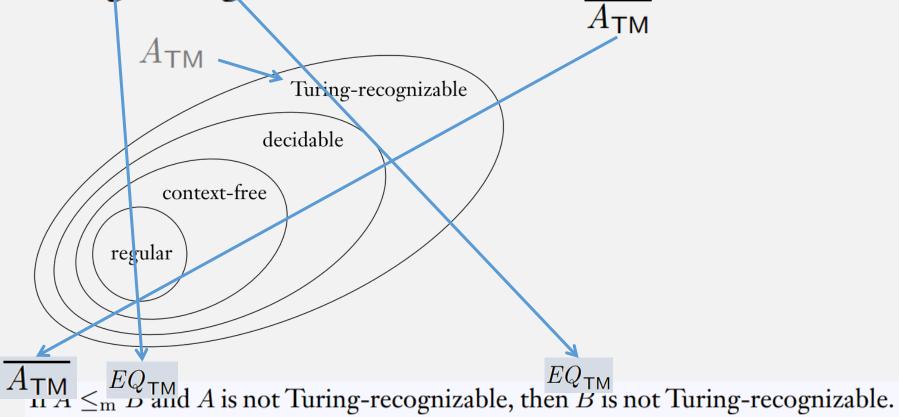
Unrecognizability

Proof Technique #2: Mapping reducibility + this theorem

$\overline{\prod} \underline{\bigcap} : EQ_{\mathsf{TM}}$ is neither Turing-recognizable nor co-Turing-recognizable.

 $EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

1. EQ_{TM} is not Turing-recognizable



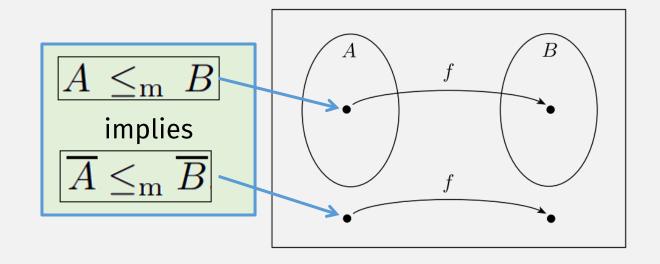
Now just have to show this mapping reducibility

Mapping Reducibility implies Mapping Red. of Complements

Language A is *mapping reducible* to language B, written $A \leq_m B$, if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
.

The function f is called the **reduction** from A to B.



$\bigcap \mathcal{E}Q_{\mathsf{TM}}$ is neither Turing-recognizable nor co-Turing-recognizable.

 $EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

1. EQ_{TM} is not Turing-recognizable

Two Choices:

• Create Computable fn: $\overline{A_{TM}} \rightarrow EQ_{TM}$

$$\overline{A_{\mathsf{TM}}} \to EQ_{\mathsf{TM}}$$

Or **Computable fn**:

$$A_{\mathsf{TM}} \to \overline{EQ_{\mathsf{TM}}}$$

Because mapping reducibility implies mapping reducibility of complements

And use theorem ...

If $A \leq_{\mathrm{m}} B$ and A is not Turing-recognizable, then B is not Turing-recognizable.

Thm: EQ_{TM} is not Turing-recognizable

Step 1 Computable fn

 $EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle | \ M_1 \ \text{and} \ M_2 \ \text{are TMs and} \ L(M_1) = L(M_2) \}$

- Create Computable fn: $A_{\mathsf{TM}} \to \overline{EQ_{\mathsf{TM}}}$
- $\langle M, w \rangle \rightarrow \langle M_1, M_2 \rangle$ M_1 and M_2 are TMs and $L(M_1) \neq L(M_2)$

F = "On input $\langle M, w \rangle$, where M is a TM and w a string:

1. Construct the following two machines, M_1 and M_2 .

$$M_1 =$$
 "On any input: \leftarrow Accepts nothing

1. Reject."

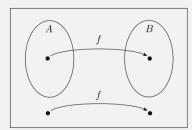
 M_2 = "On any input: \longleftarrow Accepts nothing or everything

Step 2, iff:

- \Rightarrow If M accepts w, then $M_1 \neq M_2$
- because M_1 accepts nothing but M_2 accepts everything
- \Leftarrow If M does not accept w, then $M_1 = M_2$
- because M_1 accepts nothing and M_2 accepts nothing

1. Run M on w. If it accepts, accept."

 $\langle M_1, M_2 \rangle$."



$\square \square \square : EQ_{\mathsf{TM}}$ is neither Turing-recognizable nor co-Turing-recognizable.

 $EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle | \ M_1 \ \text{and} \ M_2 \ \text{are TMs and} \ L(M_1) = L(M_2) \}$

1. EQ_{TM} is not Turing-recognizable

- Create Computable fn: $\overline{A}_{TM} \rightarrow EQ_{TM}$
- Or Computable fn: $A_{TM} \rightarrow \overline{EQ_{TM}}$

And use theorem ...

DONE!

If $A \leq_{\mathrm{m}} B$ and A is not Turing-recognizable, then B is not Turing-recognizable.

(Definition of co-Turing-recognizable)

- 2. $\overline{EQ}_{\mathsf{TM}}$ is not A -Turing-recognizable
 - (A lang is co-Turing-recog. if it is complement of Turing-recog. lang)

Previous: EQ_{TM} is not Turing-recognizable

 $EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle | \ M_1 \ \text{and} \ M_2 \ \text{are TMs and} \ L(M_1) = L(M_2) \}$

• Create Computable fn: $A_{\mathsf{TM}} \to \overline{EQ_{\mathsf{TM}}}$

Step 1 • $\langle M, w \rangle \rightarrow \langle M_1, M_2 \rangle$ M_1 and M_2 are TMs and $L(M_1) \neq L(M_2)$

F = "On input $\langle M, w \rangle$, where M is a TM and w a string:

1. Construct the following two machines, M_1 and M_2 .

$$M_1 =$$
 "On any input: \leftarrow Accepts nothing

1. Reject."

$$M_2 =$$
 "On any input: Accepts nothing or everything

- **1.** Run M on w. If it accepts, accept."
- **2.** Output $\langle M_1, M_2 \rangle$."

NOW: \overline{EQ}_{TM} is not Turing-recognizable

 $EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

- Create Computable fn: $A_{TM} \rightarrow \widehat{EQ_{TM}}$
- Step 1 $\langle M, w \rangle \rightarrow \langle M_1, M_2 \rangle$ M_1 and M_2 are TMs and $L(M_1) \neq L(M_2)$

F = "On input $\langle M, w \rangle$, where M is a TM and w a string:

1. Construct the following two machines, M_1 and M_2 .

 $M_1 =$ "On any input: \leftarrow Accepts nothing everything

1. Accept."

 $M_2 =$ "On any input: Accepts nothing or everything

- **1.** Run M on w. If it accepts, accept."
- **2.** Output $\langle M_1, M_2 \rangle$."

Step 2, iff:

- \Rightarrow If *M* accepts *w*, then $M_1 = M_2$
- \Leftarrow If M does not accept w, then $M_1 \neq M_2$

DONE!

