CS 420 / CS 620
Mapping Reducibility

Monday, November 24, 2025

UMass Boston Computer Science

lecture23

%/{/{0&(/(0@/%@/{56’

e HW 11
~Pue-Mon 11/24 12pm {(noon)

e HW 12
 Out: Mon 11/24 12pm (noon)
« Thanksgiving: -11/30
 Due: Fri 12/5 12pm (noon)

Last HW

e HW 13
e Out: Fri 12/5 12pm (noon)
 Due: Fri 12/12 12pm (noon) (classes end)

e Late due: Mon 12/15 12pm (noon) (exams start)
« Nothing accepted after this (please don't ask)

lecture23

From:
Arm = {(M,w)| M isa TM and M accepts w} known

Flasttack: “Reduced” 3

To: HALTtv = {(M,w)| M is a TM and M halts on input w} | unknown

Thm: HALT 1\ is undecidable
Proof, by contradiction:

e Assume: HALTtm has decider R; use it to create Atm decider:

Essentially, we

S = “On input (M, w), an encoding of a TM M and a string w: |
convert /1))/)

Secee iy of . Run TM R on input (M, w). (Use R to) First: check if M will loop on w
an Aq, string ... 2. If R rejects, reject. Then: run M on w, knowing it won’t loop!

o 3. If cepts, simulate M on w until it halts.
decidability of a If M has accepted, accept; if M has rejected, reject.”

HALTyy, string A potential problem: could the .
e Contradicti conversion itself go into an infinite loop? | No decider!

Today: formalize this conversion, i.e.,, mapping reducibilty

(lashback: ANpa is a decidable language

Anra = {(B,w)| B is an NFA that accepts input string w }

Decider for Anga :

N = “On input (B, w), where B is an NFA and w is a string:
1. Convert NFA B to an equivalent DFA (', using the procedure

NFA—-DFA —
2 Rui ?M V/ on it (O w) We said this NFA>DFA
3. If M accepts, accept; otherwise, reject.” but it doesn’t accept/reject?

More generally, our analogy has been:
“programs ~ TMs”,
but programs do more than accept/reject?

Defintior: COMputable Functions

A function f: ¥*——3* is a computable function if some Turing
machine M, on every input w, halts with just f(w) on its tape.

« A computable function is represented with a TM that,
instead of accept/reject, “outputs” its final tape contents

« Example 1: All arithmetic operations

« Example 2: Converting between machines, like DFA>NFA
« E.g, adding states, changing transitions, wrapping TM in TM, etc.

Defintior: MAppPINg Reducibility

notation

Language A is mapping reducible to language B, written A <., B,
if there is a computable function f: ¥* — ¥* where for every w,
weEA

“if and only if”
The function f is called the reduction from Ato B. flw) €B

“forward” direction (=): if we Athen lw) € B

we A<= f(w) € B.

f
///—--_\
* * 2?79
“reverse” direction (<): if lw) € Bthen we'A® °
A function f: X*—3* is a computable function if some Turing
machine M, on every input w, halts with just f(w) on its tape.

thstback: EQqUIValence of Contrapositive

“If X then Y” Is equivalent to ... ?

1. “If Ythen X" (converse)
2. “If not X then not Y” (inverse)

3. “If not Y then not X” (contrapositive)

thstback: EQqUIValence of Contrapositive

“If X then Y”|is equivalent to ... ?

x “If Ythen X" (converse)
 No!

X “If not X then not Y” (inverse)
e No!

v'|“If not Y then not X”|(contrapositive)
* Yes!

Defintior: MAppPINg Reducibility

Language A is mapping reducible to language B, written A <, B,
if there is a computable function f: ¥* — ¥* where for every w,

w € A<+ f(w) € B. “if and only if”

The function f is called the reduction from A to B.

“forward” direction (=): if we Athen lw) € B

Reverse direction just as important:
“don’t convert non-4s into Bs”

Equivalent (contrapositive): if w & A then fiw) & B Easier to prove

Proving Mapping Reducibility: 2 Steps

Step 1:
Show there is computable

Language A is mapping reducible to language B, written A <., B, N f... by creatinga TM

if there is a computable function f: ¥* — ¥* where for every w,
Step 2:
we A<= f(w) € B. “if and only if” | Prove the iff is true for

that computable fn TM
The function f is called the reduction from A to B. 2

Step 2a: “forward” direction (=): if w € Athen filw) € B

e.g.
Arm = {{M,w)| M isa TM and M acce

Step 2b: “reverse” direction (<): if lw) E Bthen we A

A function f: X*—3* is a computable function if some Turing
machine M, on every input w, halts with just f(w) on its tape.

Step 2b. alternate (contrapositive): if w & A then flw) ¢ B

Thm: Avm1s mapping reducible to HALTtwm

Arm = {(M,w)| M isa TM and M accepts w}

g
To show: Atm <, HALT1m HALTtv = {(M,w)| M is a TM and M halts on input w}
Step 1: create computable fn £ <M, w> > <M’jw> where:
Step 2: show (M, w) € Aty if and only if (M’ w') € HALT 1y .
The following machine F' computes a reduction f.
F = “On input (M, |w): '/,_L_x_\.
1. j(\j/[olnitl"%; t?;:pﬁllxo.wing machine| M’. Converts M to M’
. 1. Run M on z.
Step 2! 2. It M accepts, accept.
M accepts w 3. If M I'ejeCtS, enter a IOOp.” Language A is mabbing reducible to language B, written A <., B,

if there i a computable function f: ¥*—3*, where for every w,

it and only if 2. Output (M",w).” | M’is like M, except it
M’ halts onw ‘

we A+ f(w) € B.

d lways l.OO pS Wh en it The function f is called the reduction from A to B.
Outp ut new M’ doesn’t acce pt A function f: ¥*—Y* is a computable function if some Turing

machine M, on every input w, halts with just f(w) on its tape.

vVl | = If M accepts w, then M’ halts on w<—— Expected output

assume -~ * M’ accepts (and thus halts) if M accepts

PN PN
AMTTM\
The following machine F' computes a reduction f. \)
f
— T

F = “On input (M| w):
1. Construct the following machine M’.

I <On inpt Wonw Bhnw expeced wonw

1. Run M on x| Assume M acceptsw —

Step 2: 2. If M acce

. pts, accept. |
M accepts w 3. If M rejects, enter a lkp.” then M" accepts w /
if and only If 2. Output [M'] w).” (and halts)

M’ halts on w

This step requires an Examples Table (for output-producing TMs)!

Check that: You can write this proof as
Statements / Justifications ...

& If M" halts on w, then M accepts W | asslime

Expected output

Z

< (Alternatively) IT M doesn’t accept ﬁz, then M’ doesn’t halt on w (contrapositive)

« Two possibilities for “doesn’t accept”:

1. M loops: M’ loops and doesn’t halt |

2. Mrejects: M’ loops and doesn’t halt |

The following machine F' computes a reduction f.

F = “On input (M, w):
1. Construct the following machine M’.
M'" = “On input z:
1. Run M on z. If M loops ...
2. If M accepts, accept.
3. It M rejects, enter a loop.”

... then

M’ loops!

2. Output (M’ w).”

If M rejects ...

... then M’ loops

This step requires an Examples Table (for output-producing TMs)!

/D/‘w/'aa@@

Hint: This is an IF-THEN Statement ...

A function f: ¥*— ¥* is a computable function it some Turing
machine M, on every input w, halts with just f(w) on its tape.

Language A is mapping reducible to language B, written A <., B,
if “here is a computable function f: ¥*— ¥* where for every w,

we A< f(w) € B.

The function f is called the reduction from A to B.

v ﬁ Definition of mapping reducible
Definition of computable function IF there is a computable function f,
IF a TM M computes f, where we A & flw) € B,
THEN fis a computable function THEN A<_B

Now we know what mapping reducibility is, and how to
prove it for two languages; but what is it used for?

Thm: Atm 1S mapping reducible to HALTtwm

Statements Justifications
TODO
1. TM F computes a function f 1. Definition of (output-producing) TM
2. fisacomputable function 2. Definition of computable function
f:lﬁ w) € Ay = fl{ Mw)) € HALT;, 3. Examples Table, row1 .
4. (Mw)'¢ Ary = {Mw)) € HALT,, 4 Examples Table, row 2-3
5. (Mw) €Ay © f({Mw)) € HALT;,, | 5. Stmts 4 and 5
6. |Ary<,, HALTy| (Statement to Prove) 6. Definition of mapping reducible
Definition of mapping reducible
Definition of computable function [F there is a computable function f,
IF a[TM M computes f, wherelw € A & f{w) € B,

THEN fis a computable function THEN|A < B

Uses of Mapping Reducibility

« To prove Decidability

« To prove Undecidability

Thm: If A <, B and B is decidable, then A is decidable.

Has a decider Must create decider

PROOF We let M be the decider for B and f be the reduction from A to B.

We describe a decider NV for A as follows. fconverts:
- w€eAto f[w) eB, and
N = “On input w: - wegAtofilw)eB

1. Compute f(w):

decides| 2. Run M on input f(w) and output whatever M outputs.”
We know decides

Why is it true that:

this is true

be of the iff If M accepts fiw) then N should accept w ??

(specifically l.e., f{lw) in B guarantees that w in A???

the reverse | . | |

direction) Language A is mapping reducible to language B, written A <., B,

if there is a computable function f: ¥* — 3%, where for every w,

we A<= f(w) € B,

The function f is called the reduction from A to B.

Uses of Mapping Reducibility

V] « To prove Decidability

??? « To prove Undecidability

Corollary:If A <,, B and A is undecidable, then B is undecidable.

* Proof by contradiction.

« Assume B Is decidable.

« Then A4 is decidable (by the previous thm).

« Contradiction: we already said 4 is undecidable

If A <,, B and B is decidable, then A is decidable.

Uses of Mapping Reducibility

V] « To prove Decidability

V] « To prove Undecidability

Summary: ShOWING Mapping Reducibility

Step 1:
Show there is computable
_ . ‘ . fn f... by creating a TM
Language A is mapping reducible to language B, written A <., B,

if there is a computable function f: ¥* — ¥* where for every w,
Step 2:
w e A< f(w) € B. “if and only if” | Prove the iff is true

The function f is called the reduction from A to B.
Step 2a: “f d” directi cifweAth €B .
ep 2a: “forward” direction (=): if w enjw) (using an Examples Table, for
output-producing TMs)

f
— T

Step 2b: “reverse” direction (<): if fiw) € Bthen we A

A function f: X*—3* is a computable function if some Turing
machine M, on every input w, halts with just f(w) on its tape.

Step 2b. alternate (contrapositive): if w & A then flw) ¢ B

Summary: USINg Mapping Reducibility

To prove decidability ...

« If A <,, B and B is decidable, then A is decidable.

\

Unknown

(want to prove)
To prove undecidability ... \

Known

(Sipser 5.22)

Undecidability Proof
Technique #4:
Mapping Reducibility
+ this theorem

« If A <., B and A is undecidable, then B is undecidable. (sipser5.23)

Be careful with: the direction of the reduction,

l.e. what is known and what is unknown!

| As S/)?
Alternate Froof- The Halting Problem

HALTt\ 1s undecidable

« If A<, Band A isundecidable, then B is undecidable.

Must be known

o ATM <im HALTtm Undecidability Proof

Technique #4:
Mapping Reducibility
+ this theorem

* Since Ay 1S undecidable,
» ... and we showed mapping reducibility from Ay, to HALT;y,

 then HALT, I1s undecidable n

® N oUW N

| As S/
Alternate Froof- The Halting Problem

. . HALT+\ 1s undecidable
Statements Justifications
Previous proof of: Ay <., HALT;y,

TM F computes a function f 1. Definition of (output-producing) TM
fis a computable function 2. Definition of computable function
(M\w) € Ay = fl{ M,w)) € HALT;, 3. Examples Table, row 1

(Mw) & Ay = fl{ Mw)) € HALT;,, 4. Examples Table, row 2-3

(M\w) € Ay © f{ Mw)) € HALT;,, 5. Stmts 4 and5

Ay <, HALT 6. Definition of mapping reducible
A;q 1S undecidable 7. Sipser4.11

HALT;, is undecidable 8. Sipser5.23

If A <., B and A is undecidable, then B is undecidable. (Sipser5.23)

Flashback: EQ+y 1s undecidable

EQ+y = {(My, My)| My and My are TMs and L(M;) = L(M,)}

Proof by contradiction:

 Assume EQq.y has decider R; use it to create Erym decider:
={(M)| MisaTMand L(M) = (0}

S = “On input (M), where M is a TM:
1. Run R on input (M, M;), where M; is a TM that rejects all
inputs.
2. If R accepts, accept; if R rejects, reject.”

Alternate Froof: EQ\ is undecidable

EQ+y = {{(My, Ms)| My and M5 are TMs and L(M;) = L(M>)}

Show mapping reducibility: Ery <m EQtm
Step 1: create computable fn £ <M> > <M, M,>, computed by S

S = “On input (M), where M is a TM:
1. Construct: (M, M), where M; is a TM that rejects all
inputs.
2. output: (M, M)

Step 2: show iff requirements of mapping reducibility

Alternate Froof: EQ\ is undecidable

EQ+y = {{(My, Ms)| My and M5 are TMs and L(M;) = L(M>)}

Show mapping reducibility: Ery <m EQtm
Step 1: create computable fn i <M> > <M,, M,>, computed by S

S = “On input (M), where M is a TM:
1. Construct: (M, M), where M; is a TM that rejects all
inputs.
2. output: (M, M)

Step 2: show iff requirements of mapping reducibility
= If <M> € E;y, then <M, M;> € EQ:y
& If <M> & Eqy, then <M, M;> & EQqy,

Flashback, E+m 1s undecidable

Erm = {(M)| M isaTM and L(M) = 0}

Proof, by contradiction:
« Assume FEtm has decider R; use it to create Aty decider:

S = “On input (M, w), an encoding of a TM M and a string w:

1. Use the description of M and w to construct the TM M,
M, = “On input z:

) 1. Ifx # w, reject.

2. Run Ron mput <M1> 2. Ifz = w, run M on input w and accept if M does.”

3. If R accepts, reject; if R rejects, accept.” !

T If M acceptsw,
then M, accepts w,
meaning M, is not in Eq,!

Abternate /D/Wf' Frwm 1s undecidable

Erm = {(M)| M isaTM and L(M) = 0}
Show mapping reducibility??: Atm <m E1m

Step 1: create computable fn i <M, w> 2> <M”>, computed by S

S = “On input (M, w), an encoding of a TM M and a string w:
1. Use the description of M and w to construct the TM M,
M, = “On input z:
1. Ifx # w, reject.
P Output: < Il) 2. Ifz = w, run M on input w and accept if M does.”
3. It Raccepts; reject; it R rejects; accept.” |
1 If M acceptsw,
. — then M, accepts w,
» So this only reduces Aty to Fry e

meaning M, is|not in E;,!
« Maybe ok? Can still prove: Erw is undecidable Sten 2 <how if

« If ... undecidable langs are closed under complement requirements of

mapping reducibility
(hw exercise?)

Language Complement

Complement (COP from hw9) of a language A, written 4 ...
... Is the set of all strings not in set A

Example:
Eqm={(M)| MisaTM and L(M) =@ }

Emn={(M)|MisaTMand L(M) # @ }

U {w | wis a string that is not a TM description }

Undecidable Langs Closed under Complement

Proof by contradiction

 Assume some lang L is undecidable and L is decidable ...
« Then L has a decider

Contradiction!

. ... then we can create decider for L from decider for L ...
 Because decidable languages are closed under complement (hw?)!

Mest: TUTING UNnrecognizable?

Is there anything out here?

Atwm

' Turing-recognizable

decidable

context-free

Where do these
undecidable languages go?

Erv = {{M)| M isaTMand L(M) = (0}
EQcrc = {(G,H)| G and H are CFGs and L(G) = L(H)}
EQ+y = {(My, My)| My and M, are TMs and L(M;) = L(M>)}

Co-Turing-Recognizability

* A language is co-Turing-recognizable if ...
e .. it is the complement of a Turing-recognizable language.

Thm: Decidable <& Recognizable & co-Recognizable

(complement)

A Turing-unrecognizable language

« We've proved:

Atwm is Turing-recognizable

A+m 1s undecidable

e So:

Unrecognizability

A1m 1s not Turing-recognizable S —

« We know: recognizable & co-recognizable = decidable

Contrapositive: undecidable = can’t be both recognizable & co-recognizable

Is there anything out here?

ATm Atm

context-free

Where do these
undecidable languages go?

regular

Erm = {{M)| M isaTM and L(M) = 0}
EQcrc = {(G,H)| G and H are CFGs and L(G) = L(H)}
EQ+y = {(My, My)| My and M, are TMs and L(M;) = L(M>)}

Thm: EQ.¢; IS not Turing-recognizable

Unrecognizability
Recognizable & co-recognizable = decidable Proof Technique #1

Contrapositive: undecidable = can’t be both recognizable & co-recognizable
« We didn’t prove this yet (but it is true and we will assume it here):

FQ cgc 1s undecidable

m=) « \\e now prove:
EQc 1s co-Turing recognizable

« And conclude that:
* EQ. Is not Turing recognizable

Thm: EQ.¢: 1S co-Turing-recognizable

EQcrc = {(G, H)| G and H are CFGs and L(G) = L(H)}

Recognizer for EQ :

M = On Input (G, H), where G and H are CFGs:
« For every possible string w:

Accept if How to compute this?

« weL(G)and w & L(H),or

« w¢L(G) and w € L(G) Use decider for: | Acec = {(G,w)| G is a CFG that generates string w}
« Else reject

This is only a recognizer because
it loops forever when L(G) = L(H)

Is there anything out here?

ATm Atm

context-free

Where do these
undecidable languages go?

regular

Erm = {{M)| M isaTM and L(M) = 0}
EQcrc = {(G,H)| G and H are CFGs and L(G) = L(H)}
EQ+y = {(My, My)| My and M, are TMs and L(M;) = L(M>)}

Is there anything out here?

ATm Arm

' Turing-recognizable

decidable
EQcrq

context-free

regular

Erm = {{M)| M isaTM and L(M) = 0}

EQ+y = {(My, My)| My and M, are TMs and L(M;) = L(M>)}

Thm: E;, Is not Turing-recognizable

Unrecognizability
Recognizable & co-recognizable = decidable Proof Technique #1

Contrapositive: undecidable = can’t be both recognizable & co-recognizable

« We've proved:
« E- I1s undecidable

== « \We now prove:
E;y 1S co-Turing recognizable

* And then conclude that:
« E;y IS not Turing recognizable

Thm: E;,, IS co-Turing-recognizable

Erm ={(M)| MisaTMand L(M) = 0}

ReCOgn izer fOI’ ETM: Let s1, s2, ... be a list of all strings in ¥*

“On input (M), where M is a TM:
1. Repeat the following for|i|=1,2,3,....
2. Run M for|i|steps on each input, s1, S2, . . . ,\Sik
3. If M has accepted any of these, accept. Otherwise, continue.”

This is only a recognizer because it
loops forever when L(M) is empty

Unrecognizable Languages

ATm Arm

' Turing-recognizable

decidable
EQ kg

context-free

regular
Where do these go?

Erm = {{M)| M isaTM and L(M) = 0}

EQ+y = {(My, My)| My and M, are TMs and L(M;) = L(M>)}

Unrecognizable Languages

context-free

regular

EQ+y = {(My, My)| My and M, are TMs and L(M;) = L(M>)}

Mapping Reducibility Can be Used to Prove ..
- Decidability
+ Undecidability
+ Recognizability

« Unrecognizability

More Helpful Theorems

It A <, Band B is Turing-recognizable, then A is Turing-recognizable.

If A <, Band Aisnot Turing-recognizable, then B is not Turing-recognizable.

Unrecognizability

Proof Technique #2:
« Same proofs as: Mapping reducibility

If A <,, B and B is decidable. then A is decidable. + this theorem
If A <,, B and A is undecidable, then B is undecidable.

Thm:EQsy is neither Turing-recognizable nor co-Turing-recognizable.
EQ+y = {(Mu1, Ms)| My and M; are TMs and L(M;) = L(M2)}

1. EQ+1p\ 1s not Turing-recognizable

Atm ./
Turi ng—recogmzable

dec1dable

context- free
Now just have to show this

: Cp e A E EQ
mapping reducibility P s g uiid A is not Turing-recognizable, then 15 15 not Turing-recognizable.

Atm

Mapping Reducibility implies Mapping Red. of Complements

Language A is mapping reducible to language B, written A <., B,
if there is a computable function f: ¥* — ¥* where for every w,

w e A<= f(w) € B.

The function f is called the reduction from A to B.

A<y, B

implies

A<, B

Thm:EQsy is neither Turing-recognizable nor co-Turing-recognizable.
EQ+y = { (M1, Mz)| My and M> are TMs and L(M;) = L(M2)}

1. EQ1\ 1s not Turing-recognizable
Two Choices:
 Create Computable fn: Atm 2 EQ+y

Because mapping reducibility implies
° Or Computable fn: ATIVI - EQ+m mapping reducibility of complements

And use theorem ...

If A <, B and A is not Turing-recognizable, then B is not Turing-recognizable.

Thm: EQ+y, is not ‘Turing-recognizable

Step 1 EQ+y = {{(M1, Ms)| My and Ms are TMs and L(My) = L(Ma)}

Computable fn

* Create Computable fn: Aty 2 EQ+y,
o UM"I ’LU) > <M1j M2> M, and M, are TMs and L(M,) & L(M>)

F' = “On input (M, w), where M is a TM and w a string:
1. Construct the following two machines, M; and M>.
M; = “On any mput: <— Accepts nothing
1. Reject.”

M, = “On any input: ' Accepts nothing or everything |
1 e S s v A i sy ”
Step 2, iff: . Run M :)n w. It 1t accepts, accept.
= If M accepts w, then M, # M, (M, My).

- because M, accepts nothing

but M, accepts everything | e s a
f

—
L []

$

Thm:EQ+y is neither Turing-recognizable nor co-Turing-recognizable.
EQTM — {<M1?ﬂ/f2)| My and M are TMs and L(Ml) — L(ﬂ/fz)}

1. EQt)y 1s not Turing-recognizable

. Or Computable fn: Atm = EQmy

And use theorem ...

e DONE! If A <,, B and A is not Turing-recognizable, then B is not Turing-recognizable.

(Definition of co-Turing-recognizable)
2. EQ+p is not ¢d-Turing-recognizable
* (A lang is co-Turing-recog. if it is complement of Turing-recog. lang)

Frevions:EQ+y is not Turing-recognizable
EQ+y = {{(My, M2)| My and Ms are TMs and L(M;) = L(M2)}

* Create Computable fn: Atm =2 EQ+y,
Step 1 ® (M,w) = (M, M) M and M; are TMs and L(M;) % L(M,)

F' = “On input (M, w), where M is a TM and w a string:
1. Construct the following two machines, M; and M>.
M; = “On any mput: <— Accepts nothing
1. Reject.”
M, = “On any input: < | Accepts nothing or everything
1. Run M on w. If it accepts, accept.”
2. Output (M, Ms).”

NOW: EQ+y is not Turing-recognizable
EQty = {(M1, Ma)| My and Ms are TMs and L(M;) = L(Ma>)}

- Create Computable fn: Aty = B0y,

Step 1 ® (M,w) =2 (M, M) M and M; are TMs and L(M;) % L(M)

F' = “On input (M, w), where M is a TM and w a string:
1. Construct the following two machines, M; and M>.
M = “On any input: <— Accepts nething everything
1. Accept.”
M, = “On any input: < Accepts nothing or everything

1. Run M on w. If it accepts, accept.”
2. Output (M;, My).”

Step 2, iff: e : a
= If M accepts w, then M,|=IM, ;

DONE! | < f M does not accept w, then M,[# M, S

Unrecognizable Languages

decidable

context-free

Where does this go?

EQ+y = {(My, My)| My and M, are TMs and L(M;) = L(M>)}

Unrecognizable Languages

