lecture24

CS 420 / CS 620

Time Complexity
Wednesday, November 26, 2025
UMass Boston Computer Science

ALGORITHMS
BY COMPLEXITY
LEFTPAD QUCKSORT GIF SELF GOOGLE SPRALING EXCEL SPREADSHEET
MERGE DRVNG SEARCH BULT UP OVER 2D YEARS BY
(R BACKEND CHURCH GROUP IN NEBRASKA TO

COORDINATE THEIR SCHEDULING

ﬁ/{/{ﬂ«/{&@/f{@/{f&

e HW 12
 Out: Mon 11/24 12pm (noon)
« Thanksgiving: -11/30

 Due: Fri 12/5 12pm (noon)

Last HW

e« HW 13
 Out: Fri 12/5 12pm (noon)

lecture24

 Due: Fri 12/12 12pm (noon) (classes end)

* Late due: Mon 12/15 12pm (noon) (exams start)
« Nothing accepted after this (please don't ask)

CAR

MERGE DRMNG SEARCH

BACKEND

ALGORITHMS
BY (OMPLEXIFY
LEFTPAD QUCKSORT G SELF GOOGLE SPRALILING EXCEL SPREADSHEET
BUILT UP ONER 2D YEARS BY' A

CHURCH GROUP IN NEBRASKA TO
COORDINATE THEIR SCHEDULING

Class participation guestion (in Gradescope)

Q1 What is the worst case number of steps of a

deterministic single-tape Turing machine called?
1 Point

(select the one best answer)

Flastback NOndet. TM = Deterministic TM

Nondeterministic
e To simulate NTM with Det. TM: computation
 Number the nodes at each step 1]
« Deterministically check every tree path, [l
in breadth-first order / j\
« Root node: 1 11>

. 1-1 ; (l
oo (3

accept

Flastback NOndet. TM = Deterministic TM

Nondeterministic
e To simulate NTM with Det. TM: computation
 Number the nodes at each step 1
« Deterministically check every tree path, f \.
in breadth-first order v/;\v 2
« Root node: 1 1 2 3 4

12 Y
reject '/ \'
R

* accept

Flastback NOndet. TM = Deterministic TM

Nondetermi.nistic
e To simulate NTM with Det. TM: computation ,
Checking each
 Number the nodes at each step 1R path starts over
- Deterministically check every tree path, f\) at the top
in breadth-first order v/1 \ 2*
 Root node: 1 14 3 4
° 1-1 . l
e 1-2 “ . . { °
. 1121 |ATM and an NTM are “equivalent” ... (\’
.. but NOT If we take Into account the # of steps!
So how inefficient is it? .\'
* accept

First, we need: a formal way to count “# of steps” ...

A Simpler Example: A4 = {0*1%|k > 0}

M = “On input string w:
1. Scan across the tape and reject if a 0 is found to the right of a 1.
2. Repeatif both 0s and 1s remain on the tape:
3. Scan across the tape, crossing off a single 0 and a single 1.
4. If Os still remain after all the 1s have been crossed off, or if 1s
still remain after all the Os have been crossed off, reject. Other-
wise, if neither Os nor 1s remain on the tape, accept.”

of steps (worst case), n = length of w input:

>TM Line 1:
« n steps to scan + n steps to return to beginning = 2n steps

A Simpler Example: A4 = {0*1%|k > 0}

M = “On input string w:
1. Scan across the tape and reject if a 0 is found to the right of a 1.
2. Repeatif both Os and 1s remain on the tape:
3. Scan across the tape, crossing off a single 0 and a single 1.
4. If Os still remain after all the 1s have been crossed off, or if 1s
still remain after all the Os have been crossed off, reject. Other-
wise, if neither Os nor 1s remain on the tape, accept.”

of steps (worst case), n = length of w input:

e TM Line 1:
* n steps to scan + n steps to return to beginning = 2n steps

>Lines 2-3 (loop):
- steps/iteration (line 3): n steps to find “1” + n steps to return = 2n steps
- # iterations (line 2): Each scan crosses off 2 chars, so at most n/2 scans
 Total = steps/iteration * # iterations = 2n (n/2) = n2 steps

A Simpler Example: A4 = {0*1%|k > 0}

M, = “On input string w:
1. Scan across the tape and reject if a 0 is found to the right of a 1.
2. Repeatif both 0s and 1s remain on the tape:
3. Scan across the tape, crossing off a single 0 and a single 1.
4. If Os still remain after all the 1s have been crossed off, or if 1s
still remain after all the Os have been crossed off, reject. Other-
wise, if neither Os nor 1s remain on the tape, accept.”

of steps (worst case), n = length of w input:

e TM Line 1:
 n steps to scan + n steps to return to beginning = 2n steps

e Lines 2-3 (loop):
- steps/iteration (line 3): n steps to find “1” + n steps to return = 2n steps
- # iterations (line 2): Each scan crosses off 2 chars, so at most n/2 scans
 Total = steps/iteration * # iterations = 2n (n/2) =|n2 steps

>Line 4
 n steps to scan input one more time

» Total: 2n + n? + n=|n? + 3n steps

n? + 3n

Interlude: Polynomials

order/degree coefficients

Highest order term —>6_7’L3 -+ 2_?’),2 —+ 2()_7’L -+ 4_5

A =

terms

Definition: Time Complexity

i.e., a decider (algorithm)

Let M be a deterministic Turing machine that halts on all in-
puts. The running time or time complexity of M is the function
f: N— N, where f(n) is the maximum number of steps that M
uses on any input of length n. If f(n) is the running time ot M,
we say that M runs in time f(n) and that M is an f(n) time Tur-
ing machine. Customarily we use n to represent the length of the
input.

Running Time or Time Complexity
is a property of a (Turing) Machine

Where Are We Now?

We are back in here now:

deterministic, single-tape deciders
(unless otherwise indicated)

Turing-recognizable

decidable

context-free

Definition: Time Complexity

NOTE: n has no units, it's only We can use any un’it for n
roughly “length” of the input that is “constant” size

1 oLl e Let M be a deterministic Turing machine that halts on all in-
characters,

states puts. The running time or time complexity of M is the function

" nodes: f: N— N, where f(n) is the maximum number of steps that M
uses,on any input of length n. If f(n) is|the running time ot M,
we say that M runs in time f(n) and that\M is an f(n) time Tur-
ing machine. Customarily we use n to represent the length of the
input.

Depends on size of input

- Machine M, that decides A = {0"1%| k > 0}

Worst case

« Running time or Time Complexity: n?+3n i i

Scan across the tape and reject if a 0 is found to the right of a 1.
Repeat if both 0s and 1s remain on the tape:

Scan across the tape, crossing off a single 0 and a single 1.
If Os still remain after all the 1s have been crossed off, or if 1s
still remain after all the 0s have been crossed off, reject. Other-
wise, if neither 0s nor 1s remain on the tape, accept.”

[N SO ST (S

Interlude: Asymptotic Analysis

Total: n2 +3n
e Ifn=1

e n?2=1
* 3n=3
« Total=4
e Ifn=10 . .
. n2=100 asymptotic analysis only cares about large n
e 3n=30
« Total=130
* Ifn=100
« n?=10,000
* 3n=300
« Total=10,300
* Ifn=1,000
 n?2=1,000,000
* 3n=3,000
» Total=1,003,000

n? +3n = n?*as n gets large

Definition: Big-0 Notation

notation

Let f and g be functions f, g: N— R ™. Say that f(n) = O(g(n))

if positive integers c and ng exist such that for every integer n > ny,

f(n) < cgn). “only care about large n“
When f(n) = O(g(n)), we say that g(n) is an upper bound tor
f(n), or more precisely, that g(n) is an asymptotic upper bound for
f(n), to emphasize that we are suppressing constant factors.

In other words: Keep only highest order term, drop all coefficients

» Machine M, that decides A = {0*1*| k& > 0}
* IS an n? +3n time Turing machine
* IS an O(n?) time Turing machine, i.e., n? +3n = 0(n?)
« has asymptotic upper bound 0(n?)

Definition: Small-o Notation (less used)

Let f and g be functions f, g: N— R ™. Say that f(n) = o(g(n))
if
(n)

lim —— = 0.
n—so0 g(n)

In other words, f(n) = o(g(n)) means that for any real number
¢ > 0, a number ng exists, where f(n) < cg(n) for all n > ny.

Analogy: Big-0: <::small-o: <

Let f and g be functions f, g: N— R™. Say that f(n) = O(g(n))
if positive integers c and ng exist such that for every integer n > ny,
f(n) < cg(n).

When f(n) = O(g(n)), we say that g(n) is an upper bound for
f(n), or more precisely, that g(n) is an asymptotic upper bound for
f(n), to emphasize that we are suppressing constant factors.

Other “Oh”s (not used in this course)
* “Big Theta” ©

* “Small Omega” w

« “Big Omega” Q)

Don’t use these by mistake!
Pay attention to our exact definitions!

Blg_O ar|th met|C NOTE: Other courses

might use Big-@ notation
(which is a tighter bound)
where some of these

* 0(’12) T 0(’72) *2n = 0(") 7 equalities won't be true,
— 0(112) e TRUE e.g., 2n # O(n?)
* 0(n?) + O(n) *2n =0(n?*)? |NOTE: In this course, we
_ O(HZ) e TRUE use Big-0 only, not Big-0
(so do not confuse the two)
e 1= O(HZ) ?
« TRUE
o« 2N = 0(112) ?

* FALSE

Definition: Time Complexity Classes

Let t: N—R™ be a function. Define the time complexity class,
TIME(t(n)), to be the collection of all languages that are decid-
able by an O(t¢(n)) time Turing machine.

Remember: TMs: have a time complexity (i.e,, a running time);
languages: are in a time complexity class

complexity class of a language is determined by the
time complexity (running time) of its decider TM

- Machine M, decides language A = {0¥1*|k > 0}
* M, has time complexity (running time) of 0(n?) [, language can be in more than
« Alis in time complexity class TIME(n?) one time complexity class

A Faster Machine? A = {0*1%|k > 0}

Previously:
— 1 1 °
Mj = “On input string w: - . - M = “On input string w:

1. Scan across the tape and reject if a 0 is found to the right of a 1. 1. Scan across the tape and reject if a 0 is found to the right of a 1.
2. Repeat as long as some 0s and some 1s remain on the tape: 2. Repeat if both 0s and 1s remain on the tane:
3. Scan across the tape, checking whether the total number of 3. Scan across the tape, crossing off a single 0 and a single 1.

0s and 1s remaining is even or odd. Ifit is odd, reject. 4. If.Os still remain after all the 1s have been crossed pff, orif 1s

) . . still remain after all the Os have been crossed off, reject. Other-

4. Scan again across the tape, crossing off every other 0 starting L P S

with the first 0, and then crossing off every other 1 starting

with the first 1.
5. If no 0s and no 1s remain on the tape, accept. Otherwise,

reject.”

A Faster Machine? A = {0*1%|k > 0}

My = “On input string w:
1. Scan across the tape and reject if a 0 is found to the right of a 1.
2. Repeat as long as some 0s and some 1s remain on the tape:

3. Scan across the tape, checking whether the total number of
0Os and 1s remaining is even or odd. If it is odd, reject.
4. Scan again across the tape, crossing off every other 0 starting

with the first 0, and then crossing off every other 1 starting
with the first 1.
5. If no 0s and no 1s remain on the tape, accept. Otherwise,
reject.”

Number of steps (worst case), n = length of input:

>Line 1
 n steps to scan + n steps to return to beginning = O(n) steps

A Faster Machine? A = {0*1%|k > 0}

My = “On input string w:
1. Scan across the tape and reject if a 0 is found to the right of a 1.
2. Repeat as long as some 0s and some 1s remain on the tape:

3. Scan across the tape, checking whether the total number of
0Os and 1s remaining is even or odd. If it is odd, reject.
4. Scan again across the tape, crossing off every other 0 starting

with the first 0, and then crossing off every other 1 starting
with the first 1.
5. If no 0s and no 1s remain on the tape, accept. Otherwise,
reject.”

Number of steps (worst case), n = length of input:

e Line 1
« n steps to scan + n steps to return to beginning = 0(n) steps
>Lines 2-4 (loop):
- steps/iteration (lines 3-4): a scan takes O(n) steps
- #iters (line 2): Each iter crosses off half the chars, so at most O(log n) scans
« Total: O(n) * O(log n) =|O(n log n) steps

Interlude: Logarith MS (“opposite” of exponentiation)

o | 2X=y ..
e ...thenlog,y = x

* log, n = O(log n)
» “divide and conquer” algorithms = O(log n)
- E.g, binary search

e (In computer science, base-2 is the only base! So 2 is dropped)

A Faster Machine? A = {0*1%|k > 0}

Mj = “On input string w:
1. Scan across the tape and reject if a 0 is found to the right of a 1.
2. Repeat as long as some 0s and some 1s remain on the tape:

3. Scan across the tape, checking whether the total number of
Os and 1s remaining is even or odd. If it is odd, reject.
4. Scan again across the tape, crossing off every other 0 starting

with the first 0, and then crossing off every other 1 starting
with the first 1.
5. If no 0s and no 1s remain on the tape, accept. Otherwise,
reject.”

Number of steps (worst case), n = length of input:

e Line 1
« n steps to scan + n steps to return to beginning = 0(n) steps
» Lines 2-4 (loop):
- steps/iteration (lines 3-4): a scan takes O(n) steps
- #iters (line 2): Each iter crosses off half the chars, so at most O(log n) scans
« Total: O(n) * O(log n) = O(n log n) steps
»Line 5:
« O(n) steps to scan input one more time

A Faster Machine? A = {0*1%|k > 0}

Mj = “On input string w:
1. Scan across the tape and reject if a 0 is found to the right of a 1.
2. Repeat as long as some 0s and some 1s remain on the tape:

3. Scan across the tape, checking whether the total number of
0Os and 1s remaining is even or odd. If it is odd, reject. 0(" log n)
4. Scan again across the tape, crossing off every other 0 starting

with the first 0, and then crossing off every other 1 starting
with the first 1.
5. If no 0s and no 1s remain on the tape, accept. Otherwise,
reject.”

Number of steps (worst case), n = length of input:

e Line 1
 n steps to scan + n steps to return to beginning = O(n) steps

» Lines 2-4 (loop):
- steps/iteration (lines 3-4): a scan takes O(n) steps
- #iters (line 2): Each iter crosses off half the chars, so at most O(log n) scans

 Total: O(n) *0O(log n) = O(n log n) steps

e Line 5:
* 0(n) steps to scan input one more time

» Total: O(n) + O(nlog n) + O(n) =

Prev: n? + 3n = O(n?)

Termivotipy: Caltegories of Bounds

« Exponential time
e 0(2m"9), for ¢> 0, or 291 (always base 2)

« Polynomial time
e 0(n°), forc>0
* Quad ratic time (special case of polynomial time)
« 0(n?)
* Linear time (special case of polynomial time)
* O(n)
* Log time
* O(log n)
« Constant time
* 0(1)

Multi-tape vs Single-tape TMs: # of Steps

e
i 0[1]{0[1]|0|ul...
t(’n) time | s | Worst case: M spends all t(n) steps
 — alajaul... expanding the tape (to the right)
o
bla|u

O (n))|time [g]

 For single-tape TM to simulate 1 step of multi-tape:
1. Scan to find all “heads” = O(length of all M's tapes) t(n)
2. “Execute” transition at all the heads = O(length of all M's tapes)

- # single-tape steps to simulate 1 multitape step (worst case)
e = O(length of all M’s tapes)
« = 0(t(n)), If M spends all its steps expanding its tapes

- Total steps (single tape): O(t(n)) per step x|t(n)|steps =

Flastback NOndet. TM = Deterministic TM

Nondeterministic
e Simulate NTM with Det. TM: computation
 Number the nodes at each step 1
« Deterministically check every tree path, f \.
1 1 1 2
in breadth-first order v/*\v \\x
* 1 1.2 3 4
¢ 1-1 ; }r
* 1_2 ' M ” { ®
. 119 |ATM and an NTM are “equivalent” ... (\'
: reject o
.. but NOT If we care about the # of steps!
So how inefficient is it? .\’

First, we need: a formal way to count “# of steps” ... " accept

Flastback NOndet. TM = Deterministic TM

t(n) time 20(t(n))[time Nondeterministic
* Simulate NTM with Det. TM: ST bl
 Number the nodes at each step 1
« Deterministically check every tree path, f \
In breadth-first order v/*\v \
: 1 1 1123 4 <lMax hteightth)
S { l ongest pa

e 1-1-1 t(n)
reject o \'

Max # of paths?, |f: =
b = branching per level

pt(n) —|90(t(n))

*|accept

Summary: TM Variations

o If multi-tape TM: t(n) time

* Then equivalent single-tape TM: O(t*(n))
« Quadratically slower

* [f non-deterministic TM: ¢(n) time

« Then equivalent single-tape TM: 20(t(n))
« Exponentially slower

Polynomial Time (P)

Caveat:
This class: polynomial time = “good” (won't take forever)
Real programmers: polynomial time = “eh” (pretty slow)

Previnsty: TiIMe Complexity

Running Time or Time Complexity is a
property of decider TMs (algorithms)

Let M be a deterministic Turing machine that halts on all in-
puts. The running time or time complexity of M is the function
f: N— N, where f(n) is the, maximum number|of steps that M
uses;on any input of length n. If f(n) is the running time ot M,
we say that M runs in time f(n) and that\M is an f(n) time Tur-
ing machine. Customarily we use n to represent the length of the
input.

, : Worst case
Depends on size of input

last Tire: TIMe Complexity Classes

Big-0 = asymptotic upper bound,
l.e., “only care about large n*

Let tx\ N —R™ be a function. Define the time complexity class,
TIME(t(n)), to be the collection of all languages that are decid-
able by an'O(t(n)) time Turing machine.

Remember:
- TMs: have a time complexity (i.e.,, a running time),
- languages: are in a time complexity class

The time complexity class of a language is determined A language can have multiple
by the time complexity (running time) of its deciding TM deciding TMs, so could be in
multiple time complexity classes

The Polynomial Time Complexity Class (P)

P is the class of languages that are decidable in polynomial time on
a deterministic single-tape 'Turing machine. In other words,

P = | TIME(n").
k

 Corresponds to “realistically” solvable problems:
* ProblemsinP
« = “solvable” or “tractable”

* Problems outside P
« =“unsolvable” or “intractable”

“‘Unsolvable” Problems

- Unsolvable problems (those outside P):
« usually only have “brute force” solutions

e |.e., “try all possible inputs”

° UnSOlvable applles Only to large n Brute-force attack

91 year:

GREAT NEWS, EVERYONE/
(T TURNS QUT THE PROBLEM
WE SPENT QUR CAREERS
WORKING ON CAN'T

B8E sOLVED/

Mathematicians are weird.

From Wikipedia, the free encyclopedia

In cryptography, a brute-force attack consists of an attacker submitting many passwords or passphrases with the hope of
eventually guessing a combination correctly. The attacker systematically checks all possible passwords and passphrases until
the correct one is found. Alternatively, the attacker can attempt to guess the key which is typically created from the password
using a key derivation function. This is known as an exhaustive key search.

As usual, in this class we're interested in questions like:

today

How to prove something is “solvable” (in P)?

How to prove something is “unsolvable” (not in P)?

'''''

3 Problems in P

* A Graph Problem:
PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}

* A Number Problem:
RELPRIME = {{x,y)| = and y are relatively prime}

A CFL Problem:

Every context-free language is a member of P
A decider!

« To prove that a language is “solvable”, i.e, In P ...
e ... construct a polynomial time algorithm deciding the language

» (These may also have nonpolynomial, i.e., brute force, algorithms)
 Check all possible ... paths/numbers/strings ...

Interlude: Graphs (see Sipser Chapter 0)

edges

(undirected) w_ nodes / vertices

We assume we have some string encoding of a graph
(i.e., <G>), when they are args to TMs, e.g.:

({1,2,3,4,5}, {(1,2), (2,3), (3,4), (4,5), (5,1)})

(but we don't care about the actual details)

- Edge defined by two nodes (order doesn’'t matter)

« Formally, a graph = a pair (V, E)
 Where V = a set of nodes, E = a set of edges

Interlude: Weighted Graphs

Edge weights

Interlude: Subgraphs

Graph H

Subgraph G

shown darker

Interlude: Paths and other Graph Things

 Path
* A sequence of nodes connected by edges

* Cycle

* A path that starts/ends at the same node

» Connected graph
« Every two nodes has a path

* Tree
« A connected graph with no cycles

Interlude: Directed Graphs

()

Possible string encoding given to TMs:

(D

({1,2,3,4,5,6}, {(1,2),(1,5), (2,1), (2,4), (5,4), (5,6), (6,1), (6,3)})

* Directed graph = (V, E)
« I/ =set of nodes, E = set of edges

* An edge is a pair of nodes (u,v), order now matters | Each pair of nodes
e u="“from” node, v = “to” node Included twice

» “degree” of a node: number of edges connected to the node
* Nodes in a directed graph have both indegree and outdegree

Interlude: Graph Encodings

({1,2,3,4,5}, {(1,2), (2,3), (3,4), (4,5), (5,1)})

 For graph algorithms, “length of input” n usually = # of vertices
 (Not number of chars in the encoding)

« So given graph G=(V, E), n=|V]

« Max edges?
* =0(|V]*) =0(n?)

- So if a set of graphs (call it lang L) is decided by a TM where

* # steps of the TM = polynomial in the # of vertices
Or polynomial in the # of edges

e Then LisinP

3 Problems in P

* A Graph Problem:
PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}

* A Number Problem:
RELPRIME = {{x,y)| = and y are relatively prime}

A CFL Problem:

Every context-free language is a member of P

P is the class of languages that are decidable in polynomial time on
a deterministic single-tape Turing machine. In other words,

P = TIME(n*).

A Graph Theorem: PATH € P

PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}

(A path is a sequence of
nodes connected by edges)

* To prove that a language isin P ...

.. we must construct a polynomial time algorithm deciding the lang
A decider!

A non-polynomial (i.e., "brute force”) algorithm:
» check all possible combination (ordering) of all vertices,
« see if any connectstot
 |f n=#vertices, then # paths = n"or n! (worse than 29()

A Graph Theorem: PATH € P

PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}

PROOF A polynomial time algorithm M for PATH operates as follows.

M = “On input (G, s, t), where G is a directed graph with nodes s and ¢:
1. Place a mark on node s.
2. Repeat the following until no additional nodes are marked:

3. Scan all the edges of G. If an edge (a, b) is found going from
a marked node a to an unmarked node b, mark node b.

4. Iftis marked, accept. Otherwise, reject.”

of steps (worst case) (n = # nodes):
> Line 1: 1 step

A Graph Theorem: PATH € P

PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}

PROOF A polynomial time algorithm M for PATH operates as follows.

M = “On input (G, s, t), where G is a directed graph with nodes s and t:
1. Place a mark on node s.
2. Repeat the following until no additional nodes are marked:

3. Scan all the edges of G. If an edge (a, b) is found going from
a marked node a to an unmarked node b, mark node b.

4. Iftis marked, accept. Otherwise, reject.”

of steps (worst case) (n = # nodes):
e Line 1: 1 step

e Lines 2-3 (loop):
> Steps/iteration (line 3): max # steps = max # edges = 0(n?)

A Graph Theorem: PATH € P

PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}

PROOF A polynomial time algorithm M for PATH operates as follows.

M = “On input (G, s, t), where G is a directed graph with nodes s and t:
1. Place a mark on node s.
2. Repeat the following until no additional nodes are marked:

3. Scan all the edges of G. If an edge (a, b) is found going from
a marked node a to an unmarked node b, mark node b.

4. Iftis marked, accept. Otherwise, reject.”

of steps (worst case) (n = # nodes):
e Line 1: 1 step

e Lines 2-3 (loop):
- Steps/iteration (line 3): max # steps = max # edges = O(n?)
> tt iterations (line 2): loop runs at most n times

A Graph Theorem: PATH € P

PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}

PROOF A polynomial time algorithm M for PATH operates as follows.

M = “On input (G, s, t), where G is a directed graph with nodes s and t:
1. Place a mark on node s.
2. Repeat the following until no additional nodes are marked:

3. Scan all the edges of G. If an edge (a, b) is found going from
a marked node a to an unmarked node b, mark node b. (Breadth-first search)
4. Iftis marked, accept. Otherwise, reject.”

of steps (worst case) (n = # nodes):
e Line 1: 1 step

e Lines 2-3 (loop):
- Steps/iteration (line 3): max # steps = max # edges = O(n?)
- f#iterations (line 2): loop runs at most n times
> Total: O(n3)

A Graph Theorem: PATH € P

PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}

PROOF A polynomial time algorithm M for PATH operates as follows.

M = “On input (G, s, t), where G is a directed graph with nodes s and t:
1. Place a mark on node s.
2. Repeat the following until no additional nodes are marked:

3. Scan all the edges of G. If an edge (a, b) is found going from
a marked node a to an unmarked node b, mark node b.

4. Iftis marked, accept. Otherwise, reject.”

of steps (worst case) (n = # nodes):
e Line 1: 1 step

e Lines 2-3 (loop):

- Steps/iteration (line 3): max # steps = max # edges = O(n?)
- f#iterations (line 2): loop runs at most n times
« Total: O(n3)

> Line 4: 1 step

P is the class of languages that are decidable in polynomial time on
a deterministic single-tape Turing machine. In other words,

P = | TIME(n*).

A Graph Theorem: PATH € P *

PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}

PATH € TIME(n3
PROOF A polynomial time algorithm M for PATH operates as follows. ()
M = “On input (G, s, t), where G is a directed graph with nodes s and t:
1. Place a mark on node s. 0(113)
2. Repeat the following until no additional nodes are marked:

3. Scan all the edges of G. If an edge (a, b) is found going from
a marked node a to an unmarked node b, mark node b.

4. Iftis marked, accept. Otherwise, reject.”

of steps (worst case) (n = # nodes):
e Line 1:/1 step

e Lines 2-3 (loop):

- Steps/iteration (line 3): max # steps = max # edges = O(n?)
- f#iterations (line 2): loop runs at most n times
« Total: O(n3)

* Line 4:1 step
»Total =1+ 1+ 0(n3)H40(n3)

(For practical purposes,
not a great algorithm, but
it'sin P!i.e, “solvable”)

3 Problems in P

V] + A Graph Problem:
PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}

* A Number Problem:
RELPRIME = {{x,y)| = and y are relatively prime}

A CFL Problem:

Every context-free language is a member of P

A Number Theorem: RELPRIME c P

RELPRIME = {{x,y)| = and y are relatively prime}

« Two numbers are relatively prime: if their gcd = 1
« gcd(x,y) = largest number that divides both x and y

- E.g,gcd(8,12)= 7?

- Brute force (exponential) algorithm deciding RELPRIME:
 Try all of numbers (up to x or y), see if it can divide both numbers
Q: Why is this exponential?
HINT: What is a typical “representation” of numbers?
A: binary numbers
(if x = 27, then trying x numbers is exponential in n = the number of digits)

* A gcd algorithm that runs in polynomial time:
 Euclid’s algorithm

A GCD Algorithm for: RELPRIME < P

RELPRIME = {{x,y)| = and y are relatively prime}

Modulo
(i.e., remainder) The Euclidean algorithm E'is as follows. 0(")
15 mod 8 = E =¥On input (x, y), where x and y are natural numbers in binary:
17 mod 8 = 1.~ Repeat until y = 0:
2 Assign x < x mod y. Each number is
cuts x (at least) in half 3. Exchange z and y. cut in half every
every loop, requires: 4. Output z.” other iteration

logx loops

Total run time (assume x> y): 2log x = 2log2" 4 0(n),
where n = number of binary digits in (ie length of) x

