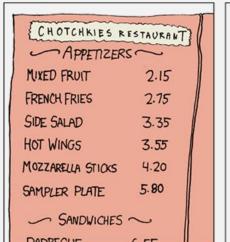
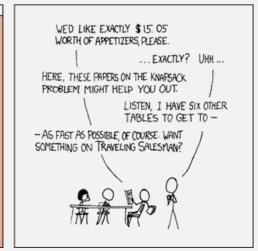
CS 420 / CS 620 NP-Completeness

Monday, December 8, 2025

UMass Boston Computer Science Embedding NP-complete problems in restaurant orders





Announcements

- HW 12
 - Out: Mon 11/24 12pm (noon)
 - Thanksgiving: 11/26-11/30
 - Due: Fri 12/5 12pm (noon)

Last HW

- HW 13
 - Out: Fri 12/5 12pm (noon)
 - Due: Fri 12/12 12pm (noon) (classes end)
 - Late due: Mon 12/15 12pm (noon) (exams start)
 - Nothing accepted after this (please don't ask)

MY HOBBY: EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS



In-class question (in Gradescope)

Q1 NP-Completeness 1 Point	
Which of following is required for a la	nguage L to be NP-complete
(select all that apply)	
\square $L \in \mathbf{NP}$	
$\square L \in \mathbf{P}$	
$\ \ \square$ for all $A\in \mathbf{NP}, A\leq_{\mathbf{P}} L$	
$\ \ \square$ for all $A\in \mathbf{NP}, L\leq_{\mathbf{P}} A$	

One of the Greatest unsolved

Question: Does P = NP?

... need to find a language in NP but not in P! To prove P ≠ NP ... (you know how to do it!) PATH??? Maybe will be iscovered tomorrow ??? CLIQUE (recently discovered) HAMPATH COMPOSITES

P=NP

To prove P = NP ... (you also know how to do it!)

... need to show P oval overlaps with NP oval ... and vice versa!

... need need to show every **language in NP** is also **in P**, and vice versa!

BUT ... How to prove an algorithm <u>doesn't</u> have poly time algorithm? (in general it's hard to prove that something <u>doesn't</u> exist)

Not this course, see Sipser Ch8-9

Last Time: P vs NP

- P = class of languages that can be decided "quickly"
 - i.e., "solvable" with a deterministic TM
- NP = class of languages that can be verified "quickly"
 - or, "solvable" with a nondeterministic TM
- Does **P** = **NP** ?
 - Problem first posed by John Nash

• It's a difficult problem because how do you prove: "we'll never find a poly time algorithm for X"?

Progress on whether P = NP?

Some, but still not close

$$P \stackrel{?}{=} NP$$
Scott Aaronson*

By Lance Fortnow

Communications of the ACM, September 2009, Vol. 52 No. 9, Pages 78-86
10.1145/1562164.1562186

- One important concept discovered:
 - NP-Completeness

NP-Completeness

Must prove for all langs, not just a single lang

DEFINITION

A language B is NP-complete if it satisfies two conditions:

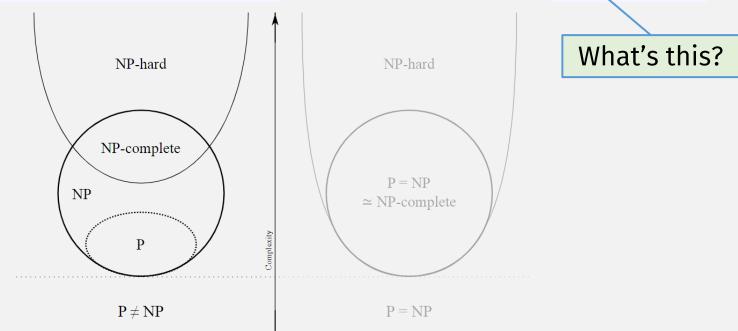
 \mathbf{L} B is in NP, and

easy

hard????

2. every A in NP is polynomial time reducible to B.

"NP-hard"



Flashback: Mapping Reducibility

Language A is *mapping reducible* to language B, written $A \leq_m B$, if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B.$$

IMPORTANT: "if and only if" ...

The function f is called the **reduction** from A to B.

To show <u>mapping reducibility</u>:

- 1. create computable fn
- 2. and then show forward direction
- 3. and reverse direction (or contrapositive of reverse direction)

 $A_{\mathsf{TM}} = \{ \langle M, w \rangle | \ M \text{ is a TM and } M \text{ accepts } w \} \bullet \\ HALT_{\mathsf{TM}} = \{ \langle M, w \rangle | \ M \text{ is a TM and } M \text{ halts on input } w \}$

... means $\overline{A} \leq_{\mathrm{m}} \overline{B}$

A function $f: \Sigma^* \longrightarrow \Sigma^*$ is a **computable function** if some Turing machine M, on every input w, halts with just f(w) on its tape.

Polynomial Time Mapping Reducibility

Language A is *mapping reducible* to language if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$,

$$w \in A \iff f(w) \in B$$
.

The function f is called the **reduction** from A

To show poly time mapping reducibility:

- 1. create computable fn
- 2. show computable fn runs in poly time
- 3. then show forward direction
- 4. and show reverse direction(or contrapositive of reverse direction)

Language A is **polynomial time mapping reducible**, or simply **polynomial time reducible**, to language B, written $A \leq_P B$, if a polynomial time computable function $f: \Sigma^* \longrightarrow \Sigma^*$ exists, where for every w,

$$w \in A \iff f(w) \in B$$
.

Don't forget: "if and only if" ...

The function f is called the **polynomial time reduction** of A to B.

A function $f: \Sigma^* \longrightarrow \Sigma^*$ is a *computable function* if some Turing machine M, on every input w, halts with just f(w) on its tape.

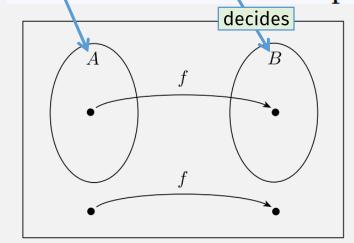
Flashback: If $A \leq_{\mathrm{m}} B$ and B is decidable, then A is decidable.

Has a decider

PROOF We let M be the decider for B and f be the reduction from A to B. We describe a decider N for A as follows.

N = "On input w:

- **1.** Compute f(w).
- decides 2. Run M on input f(w) and output whatever M outputs."



This proof only works because of the if-and-only-if requirement

Language A is *mapping reducible* to language B, written $A \leq_m B$, if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
.

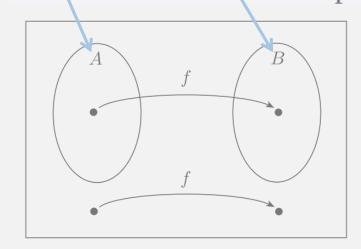
The function f is called the **reduction** from A to B.

Thm: If $A \leq_{\frac{m}{P}} B$ and $B \stackrel{\in}{\text{is decidable}}$, then $A \stackrel{\in}{\text{is decidable}}$.

PROOF We let M be the decider for B and f be the reduction from A to B. We describe a decider N for A as follows.

N = "On input w:

- 1. Compute f(w).
- 2. Run M on input f(w) and output whatever M outputs."



Language A is *mapping reducible* to language B, written $A \leq_m B$, if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
.

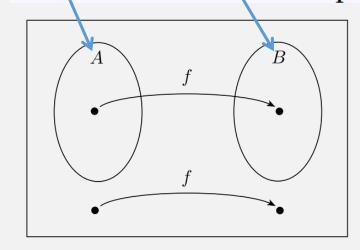
The function f is called the **reduction** from A to B.

Thm: If $A \leq_{\underline{m}} B$ and $B \stackrel{\in Y}{\text{is decidable}}$, then $A \stackrel{\in Y}{\text{is decidable}}$

PROOF We let M be the decider for B and f be the reduction from A to B. We describe a decider N for A as follows.

N = "On input w:

- **1.** Compute f(w).
- Run M on input f(w) and output whatever M outputs."



poly time Language A is mapping reducible to language B, written $A \leq_m B$, if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
.

The function f is called the **reduction** from A to B.

NP-Completeness

DEFINITION

A language B is NP-complete if it satisfies two conditions:

- **1.** B is in NP, and
- **2.** every A in NP is polynomial time reducible to B.
- How does this help the P = NP problem?

THEOREM

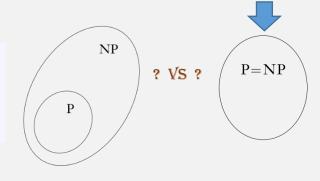
If B is NP-complete and $B \in P$, then P = NP.

THEOREM

Proof:

If B is NP-complete and $B \in P$, then P = NP.

assume



DEFINITION

A language B is NP-complete if it satisfies two conditions:

1. *B* is in NP, and

- $A \leq_{\mathbf{P}} B$
- 2. every A in NP is polynomial time reducible to B.

 $rA \rightarrow verifier for A$ that ignores its certificate

- 2. If a language $A \in \mathbf{NP}$, then $A \in \mathbf{P}$
 - Given a language $A \in NP \dots$
 - ... can poly time mapping reduce A to B --- why?
 - because *B* is NP-Complete (assumption)
 - Then A also $\in \mathbf{P}$...
 - Because if $A \leq_{\mathbf{P}} B$ and $B \in \mathbf{P}$, then $A \in \mathbf{P}$ (prev slide)

So to prove **P** = **NP**, we only need to find a poly-time algorithm for one **NP-Complete problem**!

Thus, if a language B is NP-complete and in P, then P = NP

An NP-Complete Language?

 $SAT = \{ \langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula} \}$

DEFINITION

A language B is NP-complete if it satisfies two conditions:

- **1.** B is in NP, and
- **2.** every A in NP is polynomial time reducible to B.

So to prove **P** = **NP**, we only need to find a poly-time algorithm for one **NP-Complete problem**!

Thus, if a language B is NP-complete and in P, then P = NP

Theorem: SAT NP-complete

 $SAT = \{ \langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula} \}$

A Boolean	ls	Example:
Value	TRUE or FALSE (or 1 or 0)	TRUE, FALSE

A Boolean	Is	Example:
Value	TRUE or FALSE (or 1 or 0)	TRUE, FALSE
Variable	Represents a Boolean value	x, y, z

A Boolean	ls	Example:
Value	TRUE or FALSE (or 1 or 0)	TRUE, FALSE
Variable	Represents a Boolean value	x, y, z
Operation	Combines Boolean variables	AND, OR, NOT $(\land, \lor, and \neg)$

A Boolean	Is	Example:
Value	TRUE or FALSE (or 1 or 0)	TRUE, FALSE
Variable	Represents a Boolean value	x, y, z
Operation	Combines Boolean variables	AND, OR, NOT $(\land, \lor, and \neg)$
Formula ϕ	Combines vars and operations	$(\overline{x} \wedge y) \vee (x \wedge \overline{z})$

Boolean Satisfiability

• A Boolean formula is satisfiable if ...

• ... there is **some assignment** of **TRUE** or **FALSE** (1 or **0**) to its **variables** that **makes the entire formula TRUE**

- Is $(\overline{x} \wedge y) \vee (x \wedge \overline{z})$ satisfiable?
 - Yes
 - x = FALSE,
 y = TRUE,
 z = FALSE

 $SAT = \{ \langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula} \}$

Theorem: SAT is NP-complete

DEFINITION

A language B is **NP-complete** if it satisfies two conditions:

- \longrightarrow 1. B is in NP, and
 - **2.** every A in NP is polynomial time reducible to B.

 $SAT = \{ \langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula} \}$

Theorem: SAT is in NP:

Let n = the number of variables in the formula

Verifier:

On input $\langle \phi, c \rangle$, where c is a possible assignment of variables in ϕ to values:

• Plug values from c into ϕ , Accept if result is TRUE

Running Time: O(n)

| Non-deterministic Decider:

On input $\langle \phi \rangle$, where ϕ is a boolean formula:

- Non-deterministically try all possible assignments in parallel
- Accept if any satisfy ϕ

Running Time: Checking each assignment takes time O(n)

 $SAT = \{ \langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula} \}$

Theorem: SAT NP-complete

DEFINITION

A language B is NP-complete if it satisfies two conditions:

 \checkmark 1. B is in NP, and

 \rightarrow 2. every A in NP is polynomial time reducible to B.

the first!

problem

Proving NP-Completeness is hard!

But after we find one, then we can use that problem to prove other problems **NP**-Complete!

(Just like figuring out the **first** undecidable problem was hard!)

THEOREM

If B is NP-complete and $B \leq_{\rm P} C$ for C in NP, then C is NP-complete.

Theorem: SAT NP-complete

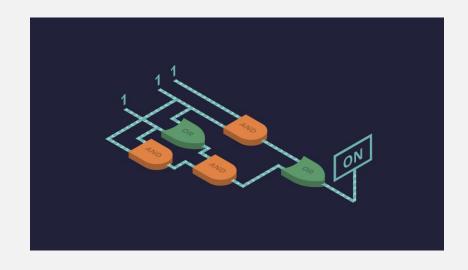
The first NP-Complete problem

PROOF: The Cook-Levin Theorem

Will prove on Wed! (today: assume it's true)

 $SAT = \{ \langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula} \}$

It sort of makes sense that every problem can be reduced to it ...



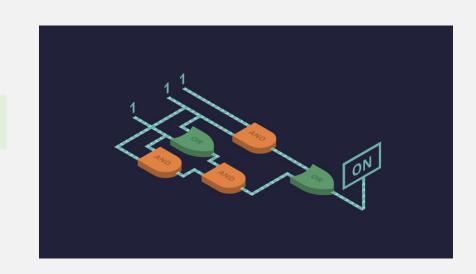
 $SAT = \{ \langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula} \}$

Theorem: SAT NP-complete

PROOF: The Cook-Levin Theorem

Will prove on Wed! (today: assume it's true)

Then we can use SAT to prove other problems NP-Complete!



THEOREM

If B is NP-complete and $B \leq_{\mathrm{P}} C$ for C in NP, then C is NP-complete.

The 3SAT Problem

 $3SAT = \{\langle \phi \rangle | \phi \text{ is a satisfiable 3cnf-formula}\}$

Theorem: 3SAT is NP-complete

A Boolean	ls	Example:
Value	TRUE or FALSE (or 1 or 0)	TRUE, FALSE
Variable	Represents a Boolean value	x, y, z
Operation	Combines Boolean variables	AND, OR, NOT $(\land, \lor, and \neg)$
Formula ϕ	Combines vars and operations	$(\overline{x} \wedge y) \vee (x \wedge \overline{z})$

A Boolean	Is	Example:
Value	TRUE or FALSE (or 1 or 0)	TRUE, FALSE
Variable	Represents a Boolean value	x, y, z
Operation	Combines Boolean variables	AND, OR, NOT $(\land, \lor, and \neg)$
Formula ϕ	Combines vars and operations	$(\overline{x} \wedge y) \vee (x \wedge \overline{z})$
Literal	A var or a negated var	$x \text{ or } \overline{x}$

A Boolean	ls	Example:
Value	TRUE or FALSE (or 1 or 0)	TRUE, FALSE
Variable	Represents a Boolean value	x, y, z
Operation	Combines Boolean variables	AND, OR, NOT $(\land, \lor, and \neg)$
Formula ϕ	Combines vars and operations	$(\overline{x} \wedge y) \vee (x \wedge \overline{z})$
Literal	A var or a negated var	$x \text{ or } \overline{x}$.
Clause	Literals ORed together	$(x_1 \vee \overline{x_2} \vee \overline{x_3} \vee x_4)$

A Boolean	ls	Example:
Value	TRUE or FALSE (or 1 or 0)	TRUE, FALSE
Variable	Represents a Boolean value	x, y, z
Operation	Combines Boolean variables	AND, OR, NOT $(\land, \lor, and \lnot)$
Formula ϕ	Combines vars and operations	$(\overline{x} \wedge y) \vee (x \wedge \overline{z})$
Literal	A var or a negated var	$x \text{ or } \overline{x}$
Clause	Literals ORed together	$(x_1 \vee \overline{x_2} \vee \overline{x_3} \vee x_4)$
Conjunctive Normal Form (CNF)	Clauses ANDed together	$(x_1 \vee \overline{x_2} \vee \overline{x_3} \vee x_4) \wedge (x_3 \vee \overline{x_5} \vee x_6)$

∧ = AND = "Conjunction"
∨ = OR = "Disjunction"
¬ = NOT = "Negation"

A Boolean	ls	Example:
Value	TRUE or FALSE (or 1 or 0)	TRUE, FALSE
Variable	Represents a Boolean value	x, y, z
Operation	Combines Boolean variables	AND, OR, NOT $(\land, \lor, and \neg)$
Formula ϕ	Combines vars and operations	$(\overline{x} \wedge y) \vee (x \wedge \overline{z})$
Literal	A var or a negated var	$x \text{ or } \overline{x}$.
Clause	Literals ORed together	$(x_1 \vee \overline{x_2} \vee \overline{x_3} \vee x_4)$
Conjunctive Normal Form (CNF)	Clauses ANDed together	$(x_1 \vee \overline{x_2} \vee \overline{x_3} \vee x_4) \wedge (x_3 \vee \overline{x_5} \vee x_6)$
3CNF Formula	Three literals in each clause	$(x_1 \vee \overline{x_2} \vee \overline{x_3}) \wedge (x_3 \vee \overline{x_5} \vee x_6) \wedge (x_3 \vee \overline{x_6} \vee x_4)$

∧ = AND = "Conjunction"
∨ = OR = "Disjunction"
¬ = NOT = "Negation"

Key thm: THEOREMknown unknown unknown

Let's prove it so we can use it

If B is NP-complete and $B \leq_{\mathrm{P}} C$ for C in NP, then C is NP-complete.

Proof:

- Need to show: C is NP-complete:
 - it's in NP (given), and
 - every lang A in NP reduces to C in poly time (must show)
- For every language A in NP, reduce $A \rightarrow C$ by:
 - First reduce $A \rightarrow B$ in poly time
 - Can do this because: *B* is **NP-Complete** (given)
 - Then reduce $B \xrightarrow{\bullet} C$ in poly time
 - This is also given
- <u>Total run time</u>: Poly time + poly time = poly time

To use this theorem, C must be in **NP**

DEFINITION

A language B is NP-complete if it satisfies two conditions:

- \blacksquare 1. B is in NP, and
- \mathbf{V} 2. every A in NP is polynomial time reducible to B.

THEOREM

<u>Using</u>: If B is NP-complete and $B \leq_{\mathbf{P}} C$ for C in NP, then C is NP-complete.

3 steps to prove a language C is NP-complete:

- 1. Show *C* is in **NP**
- 2. Choose *B,* the **NP**-complete problem to reduce from
- 3. Show a poly time mapping reduction from B to C

To show poly time <u>mapping reducibility</u>:

- 1. create computable fn,
- 2. show that it runs in poly time,
- 3. then show forward direction of mapping red.,
- 4. and reverse direction (or contrapositive of reverse direction)

<u>Using</u>: If B is NP-complete and $B \leq_{\mathbf{P}} C$ for C in NP, then C is NP-complete.

3 steps to prove a language C is NP-complete:

- 1. Show C is in NP
- 2. Choose B, the NP-complete problem to reduce from
- 3. Show a poly time mapping reduction from B to C

Example:

Let *C* = *3SAT*, to prove *3SAT* is **NP**-Complete:

1. Show *3SAT* is in **NP**

Flashback, 3SAT is in NP

 $3SAT = \{\langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula}\}$

Let n =the number of variables in the formula

Verifier:

On input $\langle \phi, c \rangle$, where c is a possible assignment of variables in ϕ to values:

• Accept if c satisfies ϕ

Running Time: O(n)

Non-deterministic Decider:

On input $\langle \phi \rangle$, where ϕ is a boolean formula:

- Non-deterministically try all possible assignments in parallel
- Accept if any satisfy ϕ

Running Time: Checking each assignment takes time O(n)

THEOREM

Using: If B is NP-complete and $B \leq_{\mathbf{P}} C$ for C in NP, then C is NP-complete.

3 steps to prove a language is NP-complete:

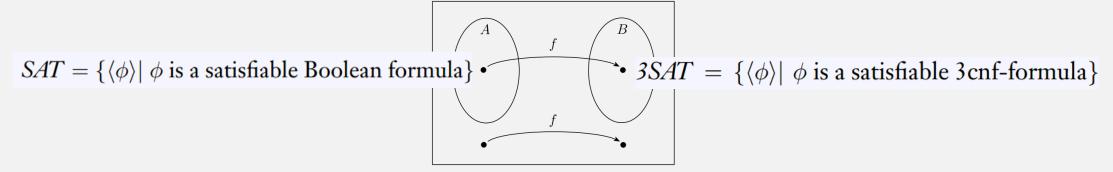
- 1. Show C is in NP
- 2. Choose B, the NP-complete problem to reduce from
- 3. Show a poly time mapping reduction from B to C

Example:

Let C = 3SAT, to prove 3SAT is **NP-Complete**:

- ✓ 1. Show *3SAT* is in **NP**
- oxdot 2. Choose B, the NP-complete problem to reduce from: SAT (the only possibility, so far)
 - 3. Show a poly time mapping reduction from *SAT* to *3SAT*

Theorem: SAT is Poly Time Reducible to 3SAT



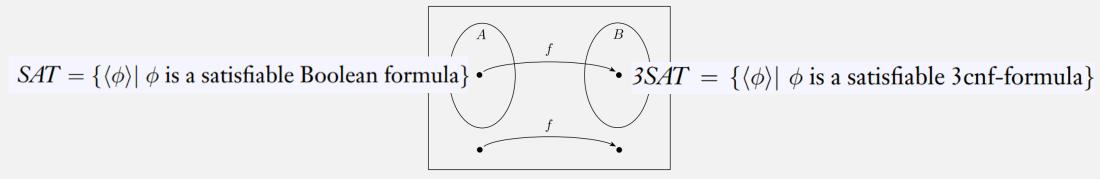
To show poly time <u>mapping reducibility</u>:

- 1. create **computable fn** *f*,
- 2. show that it runs in poly time,
- 3. then show **forward direction** of mapping red., \Rightarrow if $\phi \in SAT$, then $f(\phi) \in 3SAT$
- 4. and reverse direction

 \Leftarrow if $f(\phi) \in 3SAT$, then $\phi \in SAT$ (or contrapositive of reverse direction)

 \Leftarrow (alternative) if $\phi \notin SAT$, then $f(\phi) \notin 3SAT$

Theorem: SAT is Poly Time Reducible to 3SAT



<u>Want</u>: poly time <u>computable fn</u> converting a Boolean formula ϕ to 3CNF:

- 1. Convert ϕ to CNF (an AND of OR clauses)
 - a) Use DeMorgan's Law to push negations onto literals

$$\neg (P \lor Q) \iff (\neg P) \land (\neg Q) \qquad \neg (P \land Q) \iff (\neg P) \lor (\neg Q) \qquad O(\mathbf{n})$$

- b) Distribute ORs to get ANDs outside of parens $(P \lor (Q \land R)) \Leftrightarrow ((P \lor Q) \land (P \lor R))$ O(n)
- 2. Convert to 3CNF by adding new variables

$$(a_1 \lor a_2 \lor a_3 \lor a_4) \Leftrightarrow (a_1 \lor a_2 \lor z) \land (\overline{z} \lor a_3 \lor a_4) \bigcirc (n)$$

Remaining step: show iff relation holds ...

... this thm is a special case, don't need to separate forward/reverse dir bc each step is already a known "law"

THEOREM

<u>Using</u>: If B is NP-complete and $B \leq_{\mathbf{P}} C$ for C in NP, then C is NP-complete.

3 steps to prove a language is NP-complete:

- 1. Show *C* is in **NP**
- 2. Choose B, the NP-complete problem to reduce from
- 3. Show a poly time mapping reduction from *B* to *C*

Example:

Let C = 3SAT, to prove 3SAT is **NP-Complete**:

- ✓ 1. Show 3SAT is in NP
- \square 2. Choose B, the NP-complete problem to reduce from: SAT
- ☑3. Show a poly time mapping reduction from SAT to 3SAT

NP-Complete problems, so far

- $SAT = \{ \langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula} \}$ (assumed true, but havent proven yet)
- $3SAT = \{\langle \phi \rangle | \phi \text{ is a satisfiable 3cnf-formula} \}$ (reduced *SAT* to *3SAT*)

• $CLIQUE = \{\langle G, k \rangle | G \text{ is an undirected graph with a } k\text{-clique} \}$ (reduce ??? to CLIQUE)?

THEOREM

<u>Using</u>: If B is NP-complete and $B \leq_{\mathbf{P}} C$ for C in NP, then C is NP-complete.

3 steps to prove a language is NP-complete:

- 1. Show *C* is in **NP**
- 2. Choose B, the NP-complete problem to reduce from
- 3. Show a poly time mapping reduction from *B* to *C*

Example:

Let C = 3SAT, to prove 3SAT is **NP-Complete**:

- ✓ 1. Show 3SAT is in NP
- \square 2. Choose B, the NP-complete problem to reduce from: SAT
- ☑3. Show a poly time mapping reduction from SAT to 3SAT

THEOREM

<u>USing</u>: If B is NP-complete and $B \leq_{\mathbf{P}} C$ for C in NP, then C is NP-complete.

3 steps to prove a language is NP-complete:

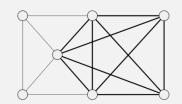
- 1. Show *C* is in **NP**
- 2. Choose B, the NP-complete problem to reduce from
- 3. Show a poly time mapping reduction from B to C

Example:

Let C = 3SAT CLIQUE, to prove 3SAT CLIQUE is NP-Complete:

- ?1. Show 3SAT CLIQUE is in NP
- ?2. Choose B, the NP-complete problem to reduce from: SAT 3SAT
- ?3. Show a poly time mapping reduction from 3SAT to 3SAT CLIQUE

CLIQUE is in NP



 $CLIQUE = \{\langle G, k \rangle | G \text{ is an undirected graph with a } k\text{-clique}\}$

PROOF IDEA The clique is the certificate.

Let n = # nodes in G

c is at most n

PROOF The following is a verifier V for CLIQUE.

V = "On input $\langle \langle G, k \rangle, c \rangle$:

- **1.** Test whether c is a subgraph with k nodes in G.
- 2. Test whether G contains all edges connecting nodes in c.
- 3. If both pass, accept; otherwise, reject."

For each node in c, check whether it's in G: O(n)

For each pair of nodes in c, check whether there's an edge in G: $O(n^2)$

THEOREM

<u>Using</u>: If B is NP-complete and $B \leq_{\mathbf{P}} C$ for C in NP, then C is NP-complete.

3 steps to prove a language is NP-complete:

- 1. Show *C* is in **NP**
- 2. Choose B, the NP-complete problem to reduce from
- 3. Show a poly time mapping reduction from B to C

Example:

Let $C = \frac{3SAT}{CLIQUE}$, to prove $\frac{3SAT}{CLIQUE}$ is NP-Complete:

- **☑**1. Show *3SAT-CLIQUE* is in **NP**
- \square 2. Choose B, the NP-complete problem to reduce from: SAT3SAT
- ?3. Show a poly time mapping reduction from 3SAT to 3SAT CLIQUE

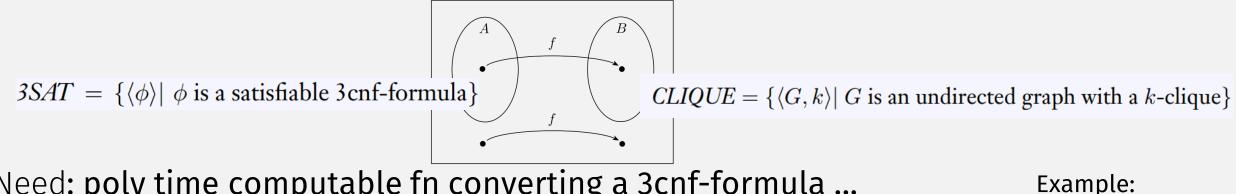
Theorem: 3SAT is polynomial time reducible to CLIQUE.

 $3SAT = \{\langle \phi \rangle | \ \phi \text{ is a satisfiable 3cnf-formula}\}$ $CLIQUE = \{\langle G, k \rangle | \ G \text{ is an undirected graph with a k-clique}\}$

To show poly time <u>mapping reducibility</u>:

- 1. create computable fn,
- 2. show that it runs in poly time,
- 3. then show forward direction of mapping red.,
- 4. and reverse direction(or contrapositive of reverse direction)

Theorem: 3SAT is polynomial time reducible to CLIQUE.



Need: poly time computable fn converting a 3cnf-formula ...

 $\phi = (x_1 \vee x_1 \vee x_2) \wedge (\overline{x_1} \vee \overline{x_2} \vee \overline{x_2}) \wedge (\overline{x_1} \vee x_2 \vee \overline{x_2})$

• ... to a graph containing a clique:

Each clause maps to a group of 3 nodes

Connect all nodes <u>except</u>:

 Contradictory nodes Nodes in the same group Don't forget iff

 \Rightarrow If $\phi \in 3SAT$

- Then each clause has a TRUE literal
 - Those are <u>nodes in the 3-clique!</u>
 - E.g., $x_1 = 0$, $x_2 = 1$

 $\Leftarrow \mathsf{lf} \, \phi \notin \mathit{3SAT}$

• Then in the graph, some clause's group of nodes won't be connected to another group, preventing the clique

- # literals = O(n)# nodes
- # edges poly in # nodes

 $O(n^2)$

THEOREM

<u>Using</u>: If B is NP-complete and $B \leq_{\mathbf{P}} C$ for C in NP, then C is NP-complete.

3 steps to prove a language is NP-complete:

- 1. Show *C* is in **NP**
- 2. Choose B, the NP-complete problem to reduce from
- 3. Show a poly time mapping reduction from B to C

Example:

Let $C = \frac{3SAT}{CLIQUE}$, to prove $\frac{3SAT}{CLIQUE}$ is NP-Complete:

- **☑**1. Show *3SAT-CLIQUE* is in **NP**
- \square 2. Choose B, the NP-complete problem to reduce from: SAT3SAT
- $\overline{\mathbf{V}}$ 3. Show a poly time mapping reduction from $\mathbf{3}\mathbf{S}\mathbf{A}\mathbf{T}$ to $\mathbf{3}\mathbf{S}\mathbf{A}\mathbf{T}$ **CLIQUE**

NP-Complete problems, so far

- $SAT = \{ \langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula} \}$ (havent proven yet)
- $3SAT = \{\langle \phi \rangle | \phi \text{ is a satisfiable 3cnf-formula} \}$ (reduced *SAT* to *3SAT*)

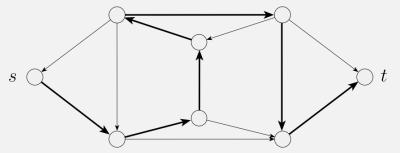
• $CLIQUE = \{\langle G, k \rangle | G \text{ is an undirected graph with a } k\text{-clique}\}$ (reduced 3SAT to CLIQUE)

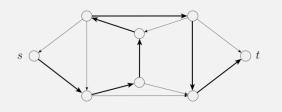
Flashback: The HAMPATH Problem

 $\begin{array}{ll} \textit{HAMPATH} &= \{\langle G, s, t \rangle | \ G \ \text{is a directed graph} \\ & \text{with a Hamiltonian path from} \ s \ \text{to} \ t \} \\ \end{array}$

• A Hamiltonian path goes through every node in the graph

- Exponential time (brute force) algorithm:
 - Check all possible paths of length n
 - See if any connects s and t: $O(n!) = O(2^n)$
- Polynomial time algorithm:
 - Unknown!!!
- The Verification problem:
 - Still $O(n^2)$, just like *PATH*!
- So HAMPATH is in NP but not known to be in P





 $HAMPATH = \{\langle G, s, t \rangle | G \text{ is a directed graph}$ with a Hamiltonian path from s to $t\}$

THEOREM -----

<u>USing</u>: If B is NP-complete and $B \leq_{\mathbf{P}} C$ for C in NP, then C is NP-complete.

3 steps to prove a language is NP-complete:

- 1. Show *C* is in **NP**
- 2. Choose B, the known NP-complete problem to reduce from
- 3. Show a poly time mapping reduction from B to C

 $HAMPATH = \{\langle G, s, t \rangle | G \text{ is a directed graph}$ with a Hamiltonian path from s to $t\}$

To prove *HAMPATH* is **NP**-complete:

- ☑1. Show HAMPATH is in NP (same verifier as PATH)
- \square 2. Choose *B*, the **NP**-complete problem to reduce from *3SAT*
 - 3. Show a poly time mapping reduction from B to HAMPATH

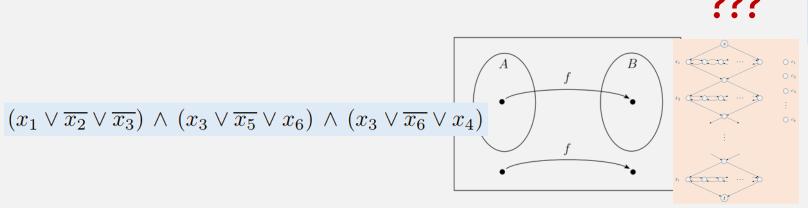
 $HAMPATH = \{\langle G, s, t \rangle | G \text{ is a directed graph}$ with a Hamiltonian path from s to $t\}$

To prove *HAMPATH* is **NP**-complete:

- ☑ 1. Show HAMPATH is in NP (left as exercise)
- \square 2. Choose *B*, the **NP**-complete problem to reduce from *3SAT*
- ? 3. Show a poly time mapping reduction from 3SAT to HAMPATH

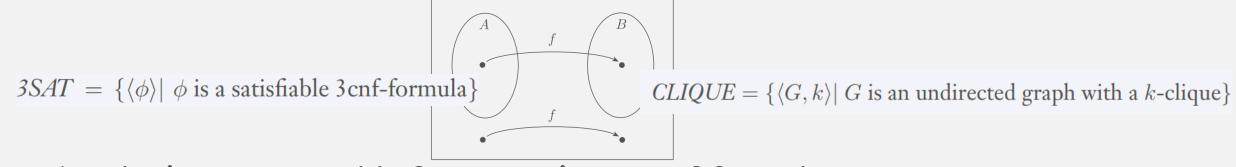
To show poly time <u>mapping reducibility</u>: 1. create **computable fn**,

- create computable in,
 show that it runs in poly time,
- 3. then show **forward direction** of mapping red.,
- 4. and reverse direction
 - (or contrapositive of reverse direction)



Flashback:

3SAT is polynomial time reducible to CLIQUE.



Need: poly time computable fn converting a 3cnf-formula ...

Example:

$$\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$$

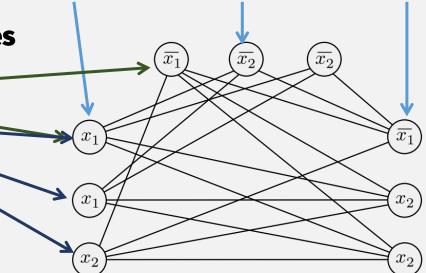
• ... to a graph containing a clique:

• Each clause maps to a group of 3 nodes

Connect all nodes except:

- Contradictory nodes
- Nodes in the same group

Do conversion piece by piece ...



General Strategy: Reducing from 3SAT

Create a computable function mapping formula to "gadgets":

- Variable → "gadget", e.g.,
- Clause \rightarrow "gadget", e.g., $\overline{x_1}$ $\overline{x_2}$ $\overline{x_2}$ Gadget is typically "used" in two "opposite" ways:
 - 1. "something" when var is assigned TRUE, or
 - 2. "something else" when var is assigned FALSE

NOTE: "gadgets" are not always graphs; depends on the problem

Then connect variable and clause "gadgets" together:

- Literal x_i in clause $c_j \rightarrow \text{gadget } x_i$ "connects to" gadget c_j
- Literal $\overline{x_i}$ in clause $c_i \rightarrow \text{gadget } x_i$ "connects to" gadget c_i
- E.g., connect each node to node not in clause

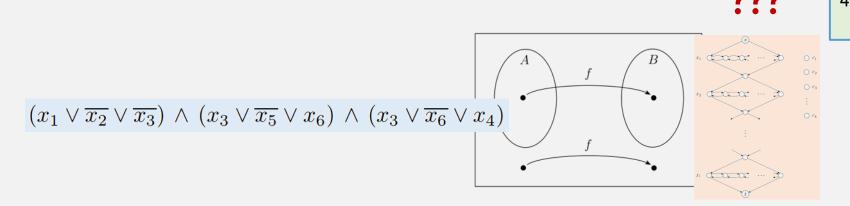
 $HAMPATH = \{\langle G, s, t \rangle | G \text{ is a directed graph } \}$ with a Hamiltonian path from s to t}

To prove *HAMPATH* is **NP**-complete:

- **☑1.** Show *HAMPATH* is in **NP** (in HW9)
- \square 2. Choose B, the NP-complete problem to reduce from 3SAT
- ? 3. Show a poly time mapping reduction from 3SAT to HAMPATH

To show poly time <u>mapping reducibility</u>: 1. create computable fn,

- 2. show that it runs in poly time,
- 3. then show forward direction of mapping red.,
- 4. and reverse direction (or contrapositive of reverse direction)



Computable Fn: Formula (blue) → Graph (orange)

clause

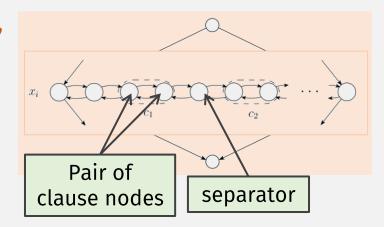
Example input: $\phi = (a_1 \lor b_1 \lor c_1) \land (a_2 \lor b_2 \lor c_2) \land \cdots \land (a_k \lor b_k \lor c_k)$

k = # clauses

• Clause \rightarrow (extra) single nodes, Total = k

variable

- Variable → diamond-shaped graph "gadget"
 - Clause → 2 "connector" nodes + separator
 - Total = 3k+1 "connector" nodes per "gadget"



(extra)

Computable Fn: Formula (blue) → Graph (orange)

Example input: $\phi = (a_1 \lor b_1 \lor c_1) \land (a_2 \lor b_2 \lor c_2) \land \cdots \land (a_k \lor b_k \lor c_k)$ k = # clauses

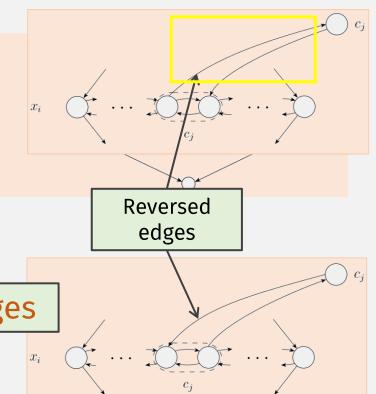
- Clause \rightarrow (extra) single nodes, Total = k
- Variable → diamond-shaped graph "gadget"
 - Clause → 2 "connector" nodes + separator
 - Total = 3k+1 "connector" nodes per "gadget"

Literal = variable or negated variable

• Lit x_i in clause $c_j \rightarrow c_j$ node edges in gadget x_i

Each extra c_i node has 6 edges

• Lit $\overline{x_i}$ in clause $c_i \rightarrow c_i$ edges in gadget x_i (rev)



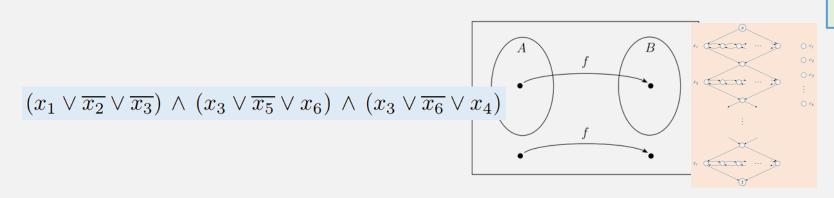
 $HAMPATH = \{\langle G, s, t \rangle | G \text{ is a directed graph}$ with a Hamiltonian path from s to $t\}$

To prove *HAMPATH* is **NP**-complete:

- ✓ 1. Show HAMPATH is in NP
- \square 2. Choose *B*, the **NP**-complete problem to reduce from *3SAT*
- ? 3. Show a poly time mapping reduction from 3SAT to HAMPATH

To show poly time <u>mapping reducibility</u>:

- 1. create computable fn,
- 2. show that it runs in poly time,
- 3. then show forward direction of mapping red.,
- 4. and reverse direction (or contrapositive of reverse direction)

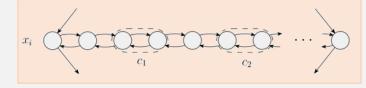


Polynomial Time?

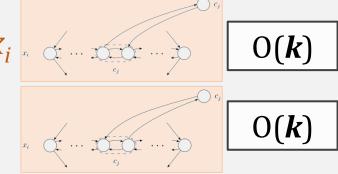
<u>ΓΟΤΑL</u>: Ο(**k**²)

Example input: $\phi = (a_1 \lor b_1 \lor c_1) \land (a_2 \lor b_2 \lor c_2) \land \cdots \land (a_k \lor b_k \lor c_k)$ k = # clauses = at most 3k variables

- Clause \rightarrow (extra) single nodes \bigcirc \circ_i O(k)
- Variable \rightarrow diamond-shaped graph "gadget" $O(k^2)$
 - Clause → 2 "connector" nodes + separator
 - Total = 3k+1 "connector" nodes per "gadget"



- Lit x_i in clause $c_j \rightarrow c_j$ node edges in gadget x_i
- Lit $\overline{x_i}$ in clause $c_j \rightarrow c_j$ edges in gadget x_i (rev)



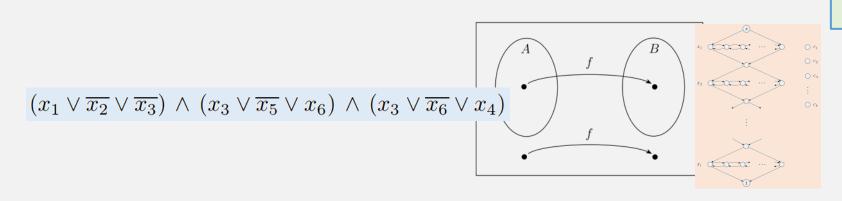
 $HAMPATH = \{\langle G, s, t \rangle | G \text{ is a directed graph}$ with a Hamiltonian path from s to $t\}$

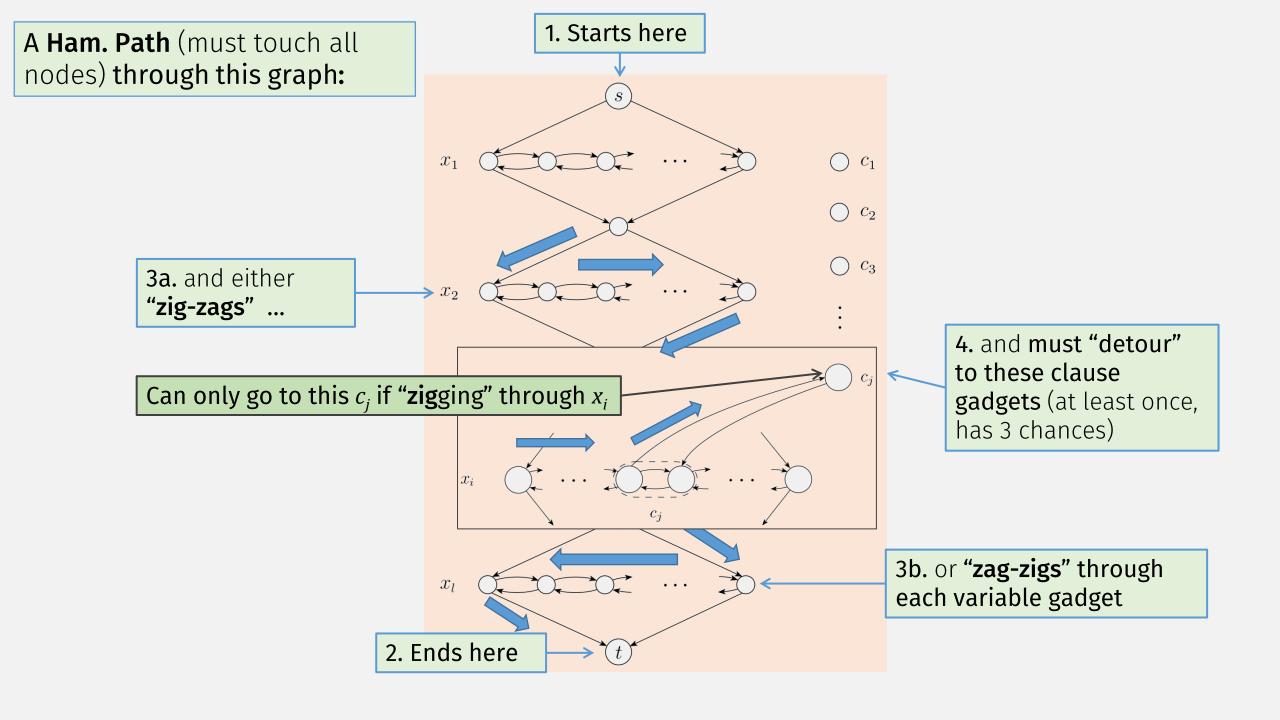
To prove *HAMPATH* is **NP**-complete:

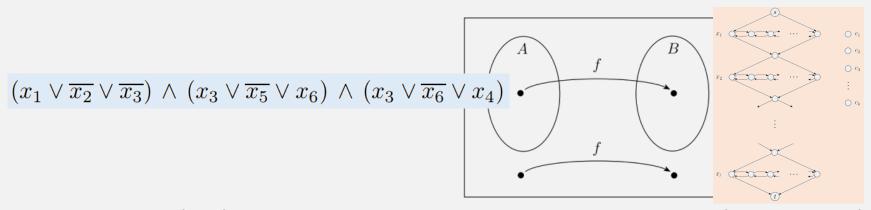
- ✓ 1. Show HAMPATH is in NP
- ? 3. Show a poly time mapping reduction from 3SAT to HAMPATH

To show poly time <u>mapping reducibility</u>:

- 1. create computable fn,
- 2. show that it runs in poly time,
- 3. then show forward direction of mapping red.,
- 4. and reverse direction(or contrapositive of reverse direction)







Want: Satisfiable 3cnf formula \Leftrightarrow graph with Hamiltonian path

⇒ If there is satisfying assignment, then Hamiltonian path exists

These hit all nodes except extra c_j s

 $x_i = \text{TRUE} \rightarrow \text{Hampath "zig-zags" gadget } x_i$

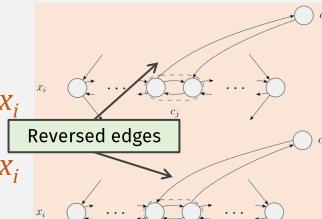
 $x_i = \text{FALSE} \rightarrow \text{Hampath "zag-zigs" gadget } x_i$

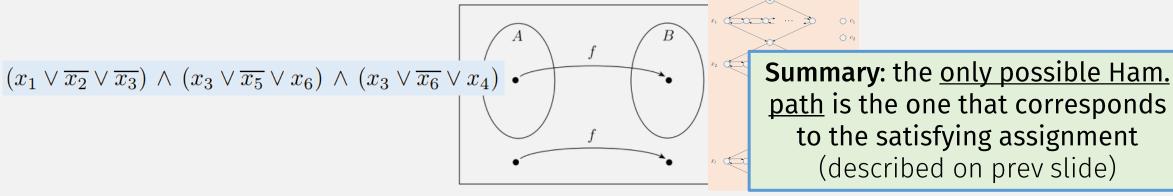
- Lit x_i makes clause c_i TRUE \rightarrow "detour" to c_i in gadget x_i
- Lit $\overline{x_i}$ makes clause c_i TRUE \rightarrow "detour" to c_i in gadget x_i

Now path goes through every node

Every clause must be TRUE so path hits all c_i nodes

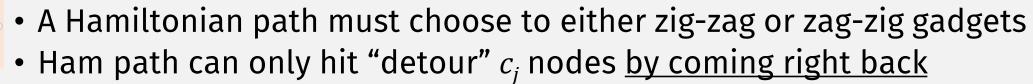
• And edge directions align with TRUE/FALSE assignments

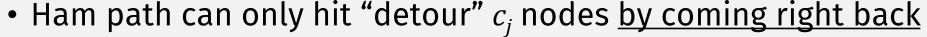




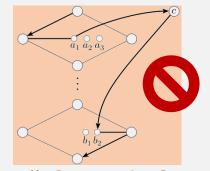
Want: Satisfiable 3cnf formula ⇔ graph with Hamiltonian path

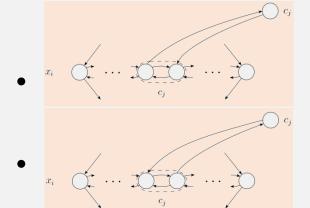
if output has Ham. path, then input had Satisfying assignment





• Otherwise, it will miss some nodes





gadget x_i "detours" from left to right $\rightarrow x_i = \text{TRUE}$

gadget x_i "detours" from right to left $\rightarrow x_i = \text{FALSE}$

 $HAMPATH = \{\langle G, s, t \rangle | G \text{ is a directed graph}$ with a Hamiltonian path from s to $t\}$

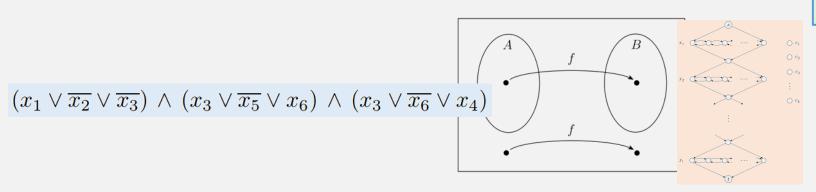
To prove *HAMPATH* is **NP**-complete:

- ✓ 1. Show HAMPATH is in NP
- \square 2. Choose *B*, the **NP**-complete problem to reduce from *3SAT*
- ☑3. Show a poly time mapping reduction from 3SAT to HAMPATH

To show poly time <u>mapping reducibility</u>:

- 1. create computable fn,
 - 2. show that it runs in poly time,
 - 3. then show forward direction of mapping red.,
 - 4. and reverse direction

(or contrapositive of reverse direction)



 $UHAMPATH = \{\langle G, s, t \rangle | G \text{ is a directed graph}$ with a Hamiltonian path from s to $t\}$

To prove *UHAMPATH* is **NP**-complete:

- ✓ 1. Show *UHAMPATH* is in **NP**
- 2. Choose the **NP**-complete problem to reduce from *HAMPATH*
 - 3. Show a poly time mapping reduction from ??? to UHAMPATH

To prove *UHAMPATH* is **NP**-complete:

- ✓ 1. Show UHAMPATH is in NP
- ☑ 2. Choose the NP-complete problem to reduce from HAMPATH
- → 3. Show a poly time mapping reduction from *HAMPATH* to *UHAMPATH*

 $UHAMPATH = \{\langle G, s, t \rangle | G \text{ is a directed graph } \}$

with a Hamiltonian path from s to t}

Need: Computable function from HAMPATH to UHAMPATH

Naïve Idea: Make all directed edges undirected?

• But we would create some paths that didn't exist before

Doesn't work!

 $UHAMPATH = \{\langle G, s, t \rangle | G \text{ is a directed graph } \}$

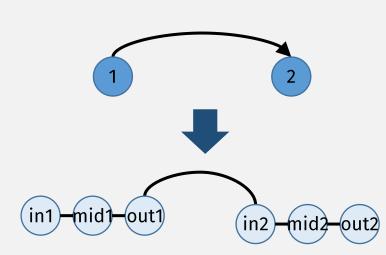
"out" edge

with a Hamiltonian path from s to t}

Need: Computable function from HAMPATH to UHAMPATH

Better Idea:

- Distinguish "in" vs "out" edges
- Nodes (directed) → 3 Nodes (undirected): in/mid/out
 - Connect in/mid/out with edges
 - Directed edge $(u, v) \rightarrow (u_{\text{out}}, v_{\text{in}})$
- Except: $s \rightarrow s_{\text{out}}$, $t \rightarrow t_{\text{in}}$ only!



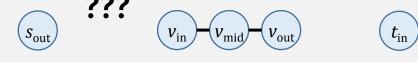
"in" edge

 $UHAMPATH = \{\langle G, s, t \rangle | G \text{ is a directed graph } \}$

with a Hamiltonian path from s to t}

Need: Computable function from HAMPATH to UHAMPATH

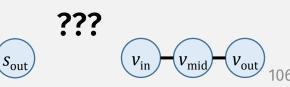
- \Rightarrow If there is a directed path from s to t ...
- ... then there must be an undirected path ...
- Because ...



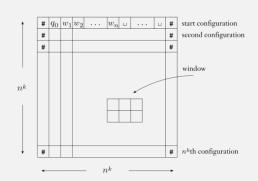
 \Leftarrow If there is <u>no</u> directed path from s to t ...

- ... then there is no undirected path ...
- Because ...

Left as exercise

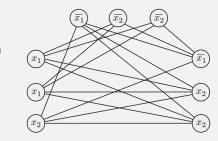


NP-Complete problems, so far



• $SAT = \{ \langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula} \}$ (Cook-Levin Theorem)

• $3SAT = \{\langle \phi \rangle | \phi \text{ is a satisfiable 3cnf-formula} \}$ (reduce from SAT)



- $CLIQUE = \{\langle G, k \rangle | G \text{ is an undirected graph with a } k\text{-clique}\}$ (reduce from 3SAT)
- $HAMPATH = \{\langle G, s, t \rangle | G \text{ is a directed graph}$ with a Hamiltonian path from s to $t\}$
- $UHAMPATH = \{\langle G, s, t \rangle | G \text{ is a directed graph }$ with a Hamiltonian path from s to $t\}$

(reduce from 3SAT)

(reduce from *HAMPATH*)

More NP-Complete problems

- $SUBSET ext{-}SUM = \{\langle S,t \rangle | \ S = \{x_1,\ldots,x_k\}, \ \text{and for some}$ $\{y_1,\ldots,y_l\} \subseteq \{x_1,\ldots,x_k\}, \ \text{we have} \ \Sigma y_i = t\}$
 - (reduce from 3SAT)
- $VERTEX-COVER = \{\langle G, k \rangle | G \text{ is an undirected graph that has a } k\text{-node vertex cover}\}$
 - (reduce from 3SAT)

Theorem: SUBSET-SUM is NP-complete

SUBSET-SUM = $\{\langle S, t \rangle | S = \{x_1, \dots, x_k\}$, and for some $\{y_1, \dots, y_l\} \subseteq \{x_1, \dots, x_k\}$, we have $\Sigma y_i = t\}$

5000 gold	2500 gold	10 gold	2500 gold	2500 gold
25 KG 200 gold	20 KG 3000 gold	20 KG 500 gold	12.5 KG 100 gold	10 KG 10 gold
1	0	A	<i>j</i>	
10 KG	7.5 KG	4 KG	1 KG	1 KG

THEOREM -----

<u>USing</u>: If B is NP-complete and $B \leq_{\mathbf{P}} C$ for C in NP, then C is NP-complete.

3 steps to prove a language is NP-complete:

- 1. Show *C* is in **NP**
- 2. Choose B, the known NP-complete problem to reduce from
- 3. Show a poly time mapping reduction from B to C

Theorem: SUBSET-SUM is NP-complete

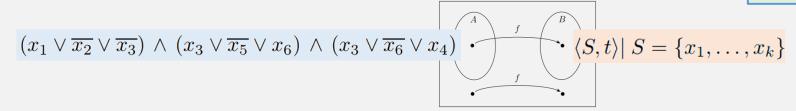
```
SUBSET-SUM = \{\langle S, t \rangle | S = \{x_1, \dots, x_k\}, and for some \{y_1, \dots, y_l\} \subseteq \{x_1, \dots, x_k\}, we have \Sigma y_i = t\}
```

3 steps to prove SUBSET-SUM is NP-complete:

- ☑ 1. Show SUBSET-SUM is in NP
- ☑ 2. Choose the NP-complete problem to reduce from: 3SAT
 - 3. Show a poly time mapping reduction from 3SAT to SUBSET-SUM

To show poly time <u>mapping reducibility</u>:

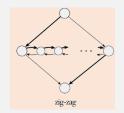
- 1. create computable fn,
- 2. show that it runs in poly time,
- 3. then show forward direction of mapping red.,
- 4. and reverse direction (or contrapositive of reverse direction)

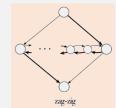


Review: Reducing from 3SAT

Create a computable function mapping formula to "gadgets":

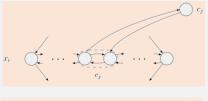
- Clause → some "gadget", e.g.,
- Variable → another "gadget", e.g.,
 Gadget is typically used in two "opposite" ways, e.g.:
 - ZIG when var is assigned TRUE, or
 - ZAG when var is assigned FALSE





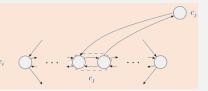
Then connect "gadgets" according to clause literals:

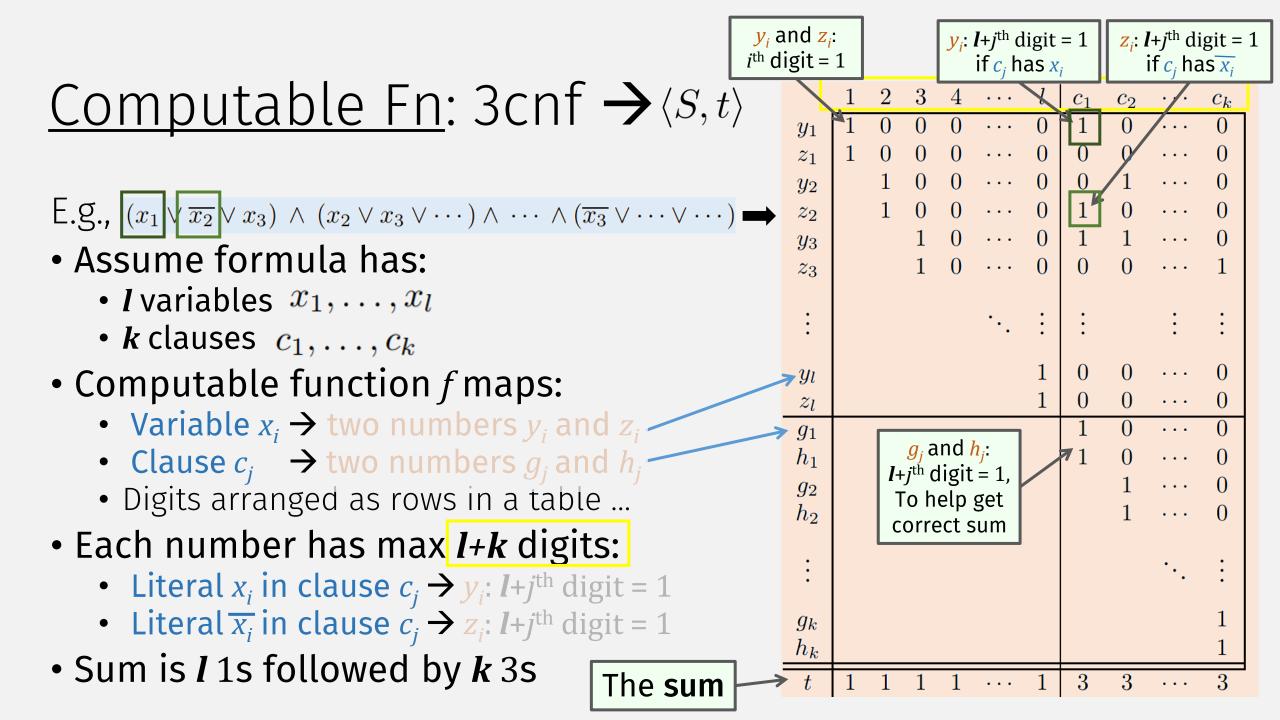
- Literal x_i in clause $c_j \rightarrow \text{gadget } x_i$ "detours" to c_j
- Literal $\overline{x_i}$ in clause $c_j \rightarrow \text{gadget } x_i$ "reverse detours" to c_j



NOTE: "gadgets" are

not always graphs



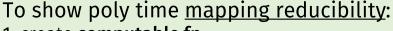


Theorem: SUBSET-SUM is NP-complete

```
SUBSET-SUM = \{\langle S, t \rangle | S = \{x_1, \dots, x_k\}, and for some \{y_1, \dots, y_l\} \subseteq \{x_1, \dots, x_k\}, we have \Sigma y_i = t\}
```

3 steps to prove SUBSET-SUM is NP-complete:

- ✓ 1. Show *SUBSET-SUM* is in **NP**
- ☑ 2. Choose the NP-complete problem to reduce from: 3SAT
 - 3. Show a poly time mapping reduction from 3SAT to SUBSET-SUM



- 1. create computable fn,
- show that it runs in poly time,
- 3. then show forward direction of mapping red.,
- 4. and reverse direction (or contrapositive of reverse direction)

$$(x_1 \vee \overline{x_2} \vee \overline{x_3}) \wedge (x_3 \vee \overline{x_5} \vee x_6) \wedge (x_3 \vee \overline{x_6} \vee x_4) \wedge (x_4 \vee \overline{x_6} \vee x_4) \wedge (x_5 \vee x_4) \wedge (x_5 \vee \overline{x_6} \vee x_5) \wedge (x_$$

Polynomial Time?

E.g.,
$$(x_1 \vee \overline{x_2} \vee x_3) \wedge (x_2 \vee x_3 \vee \cdots) \wedge \cdots \wedge (\overline{x_3} \vee \cdots \vee \cdots) \Longrightarrow$$

- Assume formula has:
 - I variables x_1, \ldots, x_l
 - k clauses c_1, \ldots, c_k
- Table size: (l + k) * (2l + 2k)
 - Creating it requires constant number of passes over the table
 - Num variables *I* = at most 3*k*
- Total: $O(k^2)$

	1	2	3	4		l	c_1	c_2		c_k
y_1	1	0	0	0		0	1	0		0
z_1	1	0	0	0	• • •	0	0	0	• • •	0
y_2		1	0	0	• • •	0	0	1	• • •	0
z_2		1	0	0	• • •	0	1	0	• • •	0
y_3			1	0	• • •	0	1	1	• • •	0
z_3			1	0	• • •	0	0	0	• • •	1
÷					٠	:	÷		:	i
y_l						1	0	0		0
z_l						1	0	0	• • •	0
g_1							1	0		0
h_1							1	0	• • •	0
g_2								1	• • •	0
h_2								1	• • •	0
÷									·	\vdots
$egin{array}{c} g_k \ h_k \end{array}$										1 1
$\frac{t}{t}$	1	1	1	1		1	3	3		3

Theorem: SUBSET-SUM is NP-complete

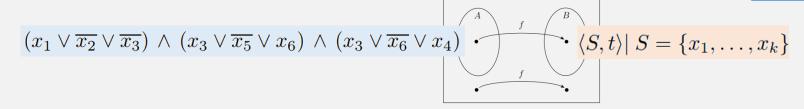
SUBSET-SUM = $\{\langle S, t \rangle | S = \{x_1, \dots, x_k\}$, and for some $\{y_1, \dots, y_l\} \subseteq \{x_1, \dots, x_k\}$, we have $\Sigma y_i = t\}$

3 steps to prove SUBSET-SUM is NP-complete:

- ✓ 1. Show *SUBSET-SUM* is in **NP**
- ☑ 2. Choose the NP-complete problem to reduce from: 3SAT
 - 3. Show a poly time mapping reduction from 3SAT to SUBSET-SUM

To show poly time <u>mapping reducibility</u>:

- 1. create computable fn,
- 2. show that it runs in poly time,
- 3. then show forward direction of mapping red.,
- 4. and reverse direction (or contrapositive of reverse direction)



Each column:

- At least one 1
- At most 3 1s

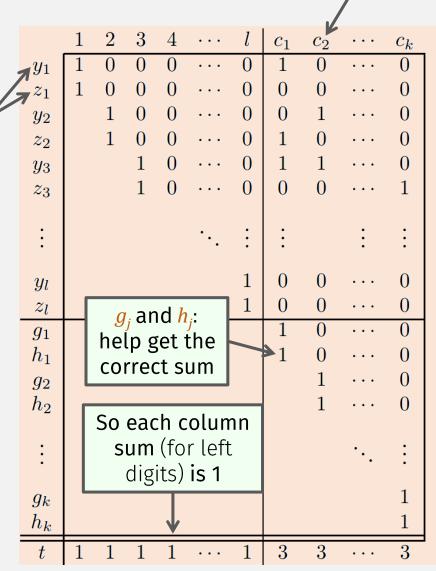
 ϕ is a satisfiable 3cnf-formula $\iff f(\langle \phi \rangle) = \langle S, t \rangle$ where some subset of S sums to t

S only

includes

one of these

- ⇒ If formula is satisfiable ...
- Sum t = 11 1s followed by k 3s
- Choose for the subset ...
 - y_i if x_i = TRUE
 - z_i if x_i = FALSE
 - and some of g_i and h_i to make the sum t
- ... Then this subset of S must sum to t bc:
 - Left digits:
 - only one of y_i or z_i is in S
 - Right digits:
 - Top right: Each column sums to 1, 2, or 3
 - Because each clause has 3 literals
 - Bottom right:
 - Can always use g_i and/or h_i to make column sum to 3



Subset must have some number with 1 in each right column

 ϕ is a satisfiable 3cnf-formula $\iff f(\langle \phi \rangle) = \langle S, t \rangle$ where some sult

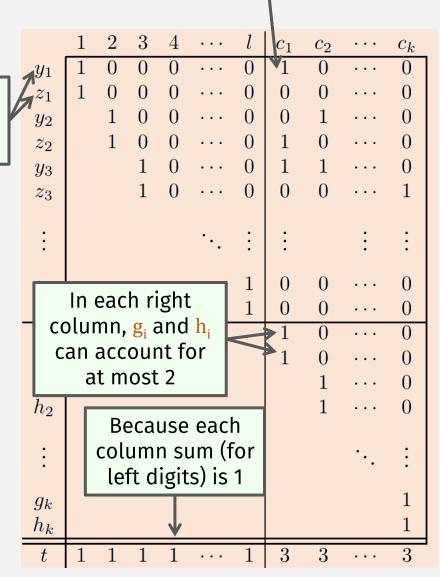
S only includes

 y_i or z_i

 \Leftarrow If a subset of S sums to t ...

The <u>only way</u> to do it is as prev described:

- It can only include either y_i or z_i
 - Because each left digit column must sum to 1
 - And no carrying is possible
- Also, since each right digit column must sum to 3:
 - And only 2 can come from g_i and h_i
 - Then for every right column, some y_i or z_i in the subset has a 1 in that column
- ... Then table must have been created from a sat. ϕ :
 - $x_i = \text{TRUE if } y_i \text{ in the subset}$
 - $x_i = \text{FALSE if } z_i \text{ in the subset}$
- This is satisfying because:
 - Table was constructed so 1 in column c_i for y_i or z_i means that variable x_i satisfies clause c_i
 - We already determined, for every right column, some number in the subset has a 1 in the column
 - So all clauses are satisfied



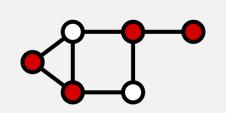
More NP-Complete problems

- SUBSET- $SUM = \{\langle S, t \rangle | S = \{x_1, \dots, x_k\}$, and for some $\{y_1, \dots, y_l\} \subseteq \{x_1, \dots, x_k\}$, we have $\Sigma y_i = t\}$
 - (reduce from 3SAT)
- $VERTEX-COVER = \{\langle G, k \rangle | G \text{ is an undirected graph that has a } k\text{-node vertex cover}\}$
 - (reduce from 3*SAT*)

Theorem: VERTEX-COVER is NP-complete

 $VERTEX-COVER = \{\langle G, k \rangle | G \text{ is an undirected graph that has a } k\text{-node vertex cover} \}$

- A vertex cover of a graph is ...
 - ... a subset of its nodes where every edge touches one of those nodes



Theorem: VERTEX-COVER is NP-complete

 $VERTEX-COVER = \{\langle G, k \rangle | G \text{ is an undirected graph that }$ has a k-node vertex cover $\}$

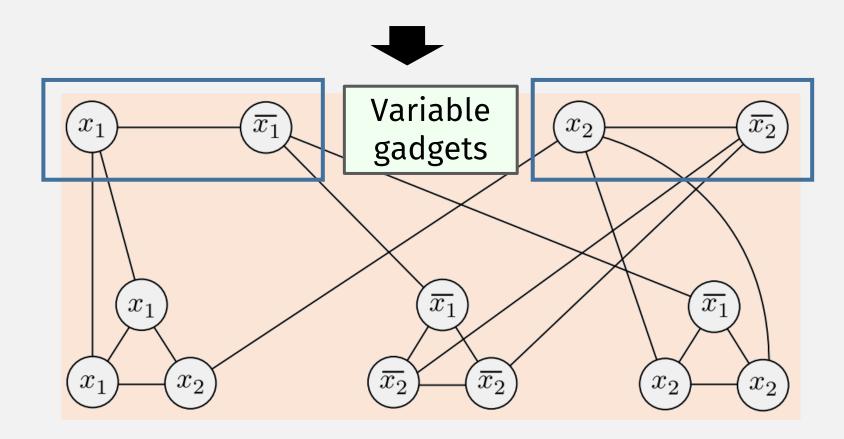
- A vertex cover of a graph is ...
 - ... a subset of its nodes where every edge touches one of those nodes

Proof Sketch: Reduce 3SAT to VERTEX-COVER

- The <u>reduction</u> maps:
- Variable $x_i \rightarrow 2$ connected nodes
 - corresponding to the var and its negation, e.g.,
- Clause → 3 connected nodes
 - corresponding to its literals, e.g.,
- Additionally,
 - connect var and clause gadgets by ...
 - ... connecting nodes that correspond to the same literal

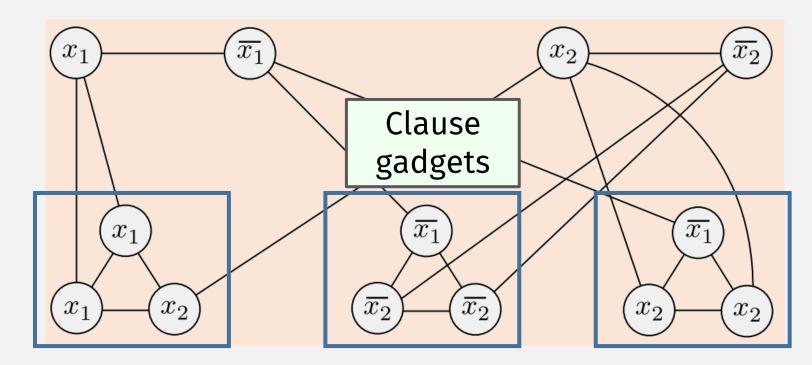
 $VERTEX-COVER = \{\langle G, k \rangle | G \text{ is an undirected graph that }$ has a k-node vertex cover $\}$

$$\phi = (x_1 \vee x_1 \vee x_2) \wedge (\overline{x_1} \vee \overline{x_2} \vee \overline{x_2}) \wedge (\overline{x_1} \vee x_2 \vee x_2)$$



 $VERTEX-COVER = \{\langle G, k \rangle | G \text{ is an undirected graph that }$ has a k-node vertex cover $\}$

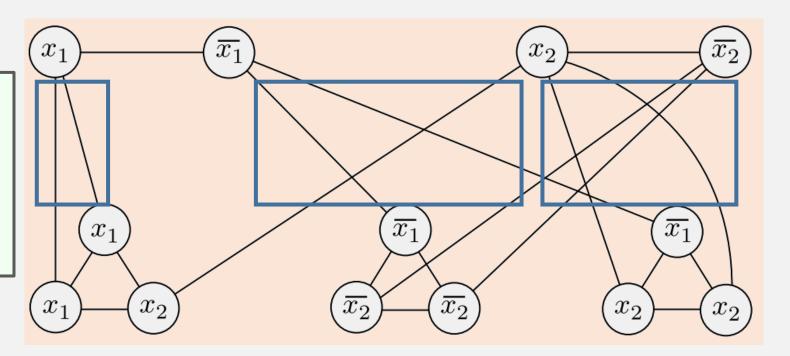
$$\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$$



 $VERTEX-COVER = \{\langle G, k \rangle | G \text{ is an undirected graph that }$ has a k-node vertex cover $\}$

$$\phi = (x_1 \vee x_1 \vee x_2) \wedge (\overline{x_1} \vee \overline{x_2} \vee \overline{x_2}) \wedge (\overline{x_1} \vee x_2 \vee x_2)$$

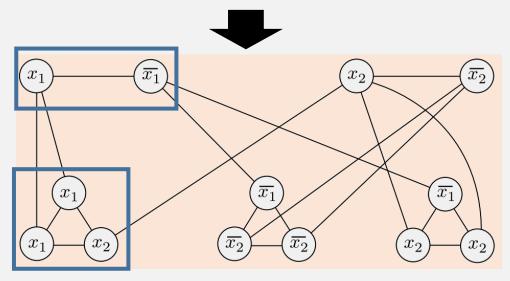
Extra edges connecting variable and clause gadgets together



- If formula has ...
 - *m* = # variables
 - *I* = # clauses
- Then graph has ...
 - # nodes = 2 × #vars + 3 × #clauses = 2m + 31



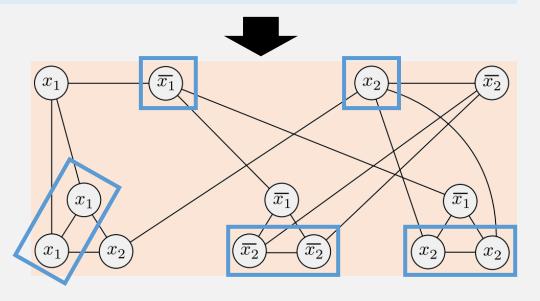
- Nodes in the cover are:
 - In each of m var gadgets, <u>choose 1</u> node corresponding to TRUE literal
 - For each of *I* clause gadgets, ignore 1 TRUE literal and <u>choose other 2</u>
 - Since there is satisfying assignment, each clause has a TRUE literal
 - Total nodes in cover = m + 21



- If formula has ...
 - *m* = # variables
 - *I* = # clauses
- Then graph has ...
 - # nodes = 2m + 3l

Example:

 $x_1 = \text{FALSE}$ $x_2 = \text{TRUE}$

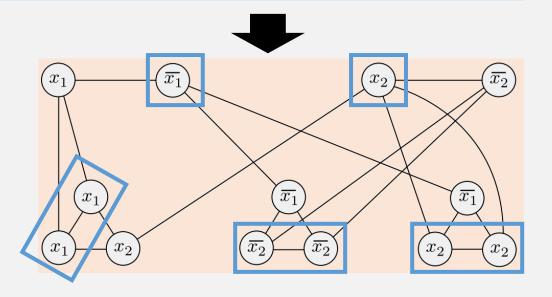


- \Rightarrow If satisfying assignment, then there is a k-cover, where k = m + 2l
- Nodes in the cover are:
 - In each of m var gadgets, <u>choose 1</u> node corresponding to TRUE literal
 - For each of *I* clause gadgets, ignore 1 TRUE literal and <u>choose other 2</u>
 - Since there is satisfying assignment, each clause has a TRUE literal
 - Total nodes in cover = m + 21

- If formula has ...
 - *m* = # variables
 - *I* = # clauses
- Then graph has ...
 - # nodes = 2m + 3l

Example:

 $x_1 = \text{FALSE}$ $x_2 = \text{TRUE}$



 $\Leftarrow \underline{\mathsf{lf}}$ there is a $k = m + 2l \mathsf{cover}$,

- Then it can only be a k-cover as described on the last slide ...
 - 1 node (and only 1) from each of "var" gadgets
 - 2 nodes (and only 2) from each "clause" gadget
 - Any other set of k nodes is not a cover
- Which means that input has satisfying assignment: $VERTEX-COVER = \{\langle G, k \rangle | G \text{ is an undirected graph that } \}$
 - x_i = TRUE if node x_i is in cover, else x_i = FALSE

has a k-node vertex cover}

More NP-Complete problems

- \checkmark
- SUBSET- $SUM = \{\langle S, t \rangle | S = \{x_1, \dots, x_k\}$, and for some $\{y_1, \dots, y_l\} \subseteq \{x_1, \dots, x_k\}$, we have $\Sigma y_i = t\}$
 - (reduce from 3*SAT*)

- \checkmark
- $VERTEX-COVER = \{\langle G, k \rangle | G \text{ is an undirected graph that has a } k\text{-node vertex cover}\}$
 - (reduce from 3SAT)

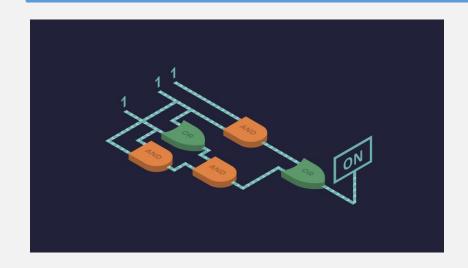
Next Time: The Cook-Levin Theorem

The first NP-Complete problem

THEOREM "

SAT is NP-complete.

It sort of makes sense that every problem can be reduced to it ...



After this, it'll be much easier to find other NP-Complete problems!

THEOREM

If B is NP-complete and $B \leq_{\mathrm{P}} C$ for C in NP, then C is NP-complete.