What’s the **Best** Programming Language?

- Trick question! *Answer*: It depends on the application, obvi
- E.g., writing a …
 - … **Web App**? Use HTML + CSS + JS?
 - Or maybe TypeScript? And React? Or Angular?
 - … **Machine Learning Model**? Use R? or Python?
 - And NumPy? And Pandas? And PyTorch?
 - … **Video Game**? Use C++?
 - And Unity? Or Unreal engine?
- So a **second best** language should help programmers …
 - … Create new languages
 - … Tailor existing ones to fit a specific domain
 - … Use multiple languages together
HW Questions?
Last Time: In-class exercise

• Prove that this language is a regular language:
 • \(\{w \mid w \text{ has exactly three 1's}\}\)
 • i.e., design a finite automata that recognizes it!

• Where \(\Sigma = \{0, 1\}\),

• Remember:

Definition 1.5

A finite automaton is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set called the **states**,
2. \(\Sigma\) is a finite set called the **alphabet**,
3. \(\delta: Q \times \Sigma \rightarrow Q\) is the **transition function**,
4. \(q_0 \in Q\) is the **start state**, and
5. \(F \subseteq Q\) is the **set of accept states**.
Last Time: In-class exercise

- Design finite automata recognizing:
 - $\{w \mid w \text{ has exactly three 1's}\$

- States:
 - Need one state to represent how many 1's seen so far
 - $Q = \{q_0, q_1, q_2, q_3, q_{4+}\}$

- Alphabet: $\Sigma = \{0, 1\}$

- Transitions:

- Start state:
 - q_0

- Accept states:
 - $\{q_3\}$

So finite automata are used to recognize dumb patterns in strings???

Yes!
Password Requirements

» Passwords must have a minimum length of ten (10) characters - but more is better!
» Passwords **must include at least 3** different types of characters:
 » upper-case letters (A-Z)
 » lower-case letters (a-z)
 » symbols or special characters (%, &, *, $, etc.)
 » numbers (0-9)
» Passwords cannot contain all or part of your email address
» Passwords cannot be re-used

How to combine them together?
Password checker

M5: AND

M3: OR

M1: Check special chars
M2: Check uppercase
M4: Check length

Want to be able to easily combine finite automata machines

To keep combining, operations must be closed!
“Closed” Operations

• Natural numbers = \{0, 1, 2, \ldots\}
 • Closed under addition: if x and y are Natural, then \(z = x + y \) is a Nat
 • Closed under multiplication?
 • yes
 • Closed under subtraction?
 • no

• Integers = \{..., -2, -1, 0, 1, 2, \ldots\}
 • Closed under addition and multiplication
 • Closed under subtraction?
 • yes
 • Closed under division?
 • no

• Rational numbers = \{x \mid x = y/z, y and z are ints\}
 • Closed under division?
 • No?
 • Yes if \(z \neq 0 \)

Any set is \textbf{closed} under some operation if applying that operation to members of the set returns an object still in the set.
Why Care About Closed Ops on Reg Langs?

• Closed operations preserves “regularness”

• I.e., it preserves the same computation model

• So result of combining machines can be combined again
Password checker: “Or” = “Union”

M3: OR

A: Check special chars
B: Check uppercase

(a)

(b)
Password checker: “Or” = “Union”
A Closed Operation: Union

Theorem 1.25
The class of regular languages is closed under the union operation.
In other words, if \(A_1 \) and \(A_2 \) are regular languages, so is \(A_1 \cup A_2 \).

- How do we prove that a language is regular?
 - Create a FSM recognizing it!
- Create machine combining machines recognizing \(A_1 \) and \(A_2 \).
Kinds of Mathematical Proof

• Proof by construction
 • Construct the mathematical object in question

• Proof by contradiction

• Proof by induction
Union Closed?

Theorem 1.25
The class of regular languages is closed under the union operation.

In other words, if \(A_1 \) and \(A_2 \) are regular languages, so is \(A_1 \cup A_2 \).

Proof (implement for hw2)
- Given: \(M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1) \), recognize \(A_1 \),
 \(M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2) \), recognize \(A_2 \),
- Construct a new machine \(M = (Q, \Sigma, \delta, q_0, F) \) using \(M_1 \) and \(M_2 \)

- states of \(M \): \(Q = \{ (r_1, r_2) \mid r_1 \in Q_1 \text{ and } r_2 \in Q_2 \} \).
 This set is the *Cartesian product* of sets \(Q_1 \) and \(Q_2 \)
- \(M \)'s transition fn: \(\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a)) \)
- \(M \) start state: \((q_1, q_2)\)
- \(M \) accept states: \(F = \{ (r_1, r_2) \mid r_1 \in F_1 \text{ or } r_2 \in F_2 \} \)
Another operation: Concatenation

- **Example:** Matching street addresses

212 Beacon Street

M3: CONCAT

M1: recognize numbers

M2: recognize words
Is Concatenation Closed?

Theorem 1.26

The class of regular languages is closed under the concatenation operation.

In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$.

- Construct a **new** machine M? (like union)
 - From DFA M_1 (which recognizes A_1),
 - and DFA M_2 (which recognizes A_2)
Is Concatenation Closed?

Theorem 1.26

The class of regular languages is closed under the concatenation operation.

In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$.

- Can’t directly combine A_1 and A_2
 - don’t know when to switch from A_1 to A_2 (can only read input once)
- Need a new kind of machine!
- So is concatenation not closed for reg langs???
Let N_1 recognize A_1, and N_2 recognize A_2.

Want: Construction of N to recognize $A_1 \circ A_2$.

$\epsilon = \text{empty string} = \text{no input}$

So N can:
- stay in current state **and**
- move to next state
Check-in Quiz 2/3

On gradescope