More Induction & Non-Regular Languages

Monday, February 22, 2021
Logistics

• New TA: Welcome Nick!
 • See course site for additional office hours

• HW3 in

• HW 4 out
 • Due Sunday 2/28 11:59pm
 • Create a regexp matcher! Practically interesting!

• HW4 is the last one with coding (based on your feedback)
 • And HW4 coding part is only a fraction of the points
 • Early assignments weighted less
Last Time: Regular Language \iff Regular Expression

• \Rightarrow If a language is regular, it is described by a regular expression
 • We know a regular lang has an NFA recognizing it (Thm 1.40)
 • Use GNFA-\rightarrowRegexp function to convert NFA to equiv regular expression
• \Leftarrow If a language is described by a regular expression, it is regular
 • Convert the regular expression to an NFA (Thm 1.55)

So a regular language has these equivalent representations:
- DFA
- NFA
- Regular Expression
Last time: GNFA->Regexp “Rip/Repair” Step

Before: two paths from q_i to q_j:
1. Not through q_{rip}
2. Through q_{rip}

After: two regexp “paths” from q_i to q_j
1. Not through q_{rip}
2. Through q_{rip}

Question: What if q_{rip} is an accept state?
Answer: q_{rip} cannot be a start or accept state
Update: GNFA->Regexpr

- First modifies input machine to have:
 - New start state
 - With no incoming transitions
 - And epsilon transition to old start state
 - New, single accept state
 - With epsilon transitions from old accept states
Last time: GNFA->Regexp function

• On GNFA input G:
 • If G has 2 states, return the regular expression transition, e.g.:

 \[
 (R_1) (R_2)^* (R_3) \cup (R_4)
 \]

 Base case

 Inductive case

 • Else:
 • “Rip out” one state and “repair” to get G' (has one less state than G)
 • **Recursively** call GNFA->Regexp(G')

This is a recursive (inductive) definition!
Last time: Kinds of Mathematical Proof

• Proof by construction

• Proof by contradiction

• Proof by induction
 • Use to prove properties of recursive (inductive) defs or functions
 • Proof steps follow the inductive definition
Last time: Proof by Induction

To prove that a property P is true for a thing x:

1. Prove that P is true for the base case of x (usually easy) G has two states

2. Prove the induction step:
 - Assume the induction hypothesis (IH):
 - $P(x)$ is true, for some x_{smaller} that is smaller than x
 - and use it to prove $P(x)$

 ![Diagram showing the "rip/repair" step converts G to smaller, equiv G']

 Example of a "P":
 $\text{LANGOF}(G) = \text{LANGOF}(\text{GNFA->Regexp}(G))$
Definition 1.52

Say that \(R \) is a *regular expression* if \(R \) is

1. \(a \) for some \(a \) in the alphabet \(\Sigma \),
2. \(\varepsilon \),
3. \(\emptyset \),
4. \((R_1 \cup R_2) \), where \(R_1 \) and \(R_2 \) are regular expressions,
5. \((R_1 \circ R_2) \), where \(R_1 \) and \(R_2 \) are regular expressions, or
6. \((R_1^*) \), where \(R_1 \) is a regular expression.
It's a Recursive Definition!

Definition 1.52

Say that R is a _regular expression_ if R is

1. a for some a in the alphabet Σ,
2. ε, _3 base cases_
3. \emptyset,
4. $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions,
5. $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions, or
6. (R_1^*), where R_1 is a regular expression.

“smaller” self-references

3 inductive cases
How to prove a theorem about Reg Exp?

- Proof by construction
- Proof by contradiction
- Proof by induction
 - On Regular Expressions!
How to prove a theorem about Reg Exprs?

We now have 2 proof techniques! You choose

• **Proof by construction** (can still prove things this way)
 • Construct DFA or NFA

• Proof by contradiction

• Proof by induction
 • On Regular Expressions!
Homomorphism: Closed under Reg Langs

A homomorphism is a function $f: \Sigma \rightarrow \Gamma$ from one alphabet to another.

• Assume f can be used on both strings and characters

• E.g., like a secret decoder!
 • $f(\text{“x”}) \rightarrow \text{“c”}$
 • $f(\text{“y”}) \rightarrow \text{“a”}$
 • $f(\text{“z”}) \rightarrow \text{“t”}$
 • $f(\text{“xyz”}) \rightarrow \text{“cat”}$

• Prove: homomorphisms are **closed** under regular languages
 • E.g., if lang A is regular, then $f(A)$ is regular
How to prove a theorem about Reg Exprs? Languages!

We now have 2 proof techniques! You choose

- **Proof by construction**
 - Construct DFA or NFA

- **Proof by contradiction**

- **Proof by induction**
 - On Regular Expressions!
Thm: Homomorphism Closed for Reg Langs

• Proof by construction
 • If a lang A is regular, then we know DFA M recognizes it.
 • So modify M such that transitions use the new alphabet
 • (Details left to you to work out)

• Proof by induction:
 • If a lang A is regular, then some reg expression R describes it.

A homomorphism is a function $f : \Sigma \rightarrow \Gamma$ from one alphabet to another.
Definition 1.52

Say that \(R \) is a regular expression if \(R \) is:

1. \(a \) for some \(a \) in the alphabet \(\Sigma \),
2. \(\varepsilon \),
3. \(\emptyset \),
4. \(R_1 \cup R_2 \), where \(R_1 \) and \(R_2 \) are regular expressions,
5. \(R_1 \circ R_2 \), where \(R_1 \) and \(R_2 \) are regular expressions, or
6. \(R_1^* \), where \(R_1 \) is a regular expression.

Inductive proof must handle all cases, e.g.,
- If: reexpr “a” describes a reg lang,
- then: \(f(“a”) \) is describes a reg lang
- because: it’s still a single-char reexpr,
- so: homomorphism closed under reg langs (for this case)

IH: assume applying homomorphism \(f \) to smaller \(R_1 \) (and \(R_2 \)) produces a regular lang, i.e., \(f(R_1) \) and \(f(R_2) \) are regular langs

To finish proof: need to show \(f(R_1) \cup f(R_2) \) is a reg lang

(If only union operation were closed for reg langs 😊)

A homomorphism is a function \(f : \Sigma \rightarrow \Gamma \) from one alphabet to another.
Non-Regular Languages
Non-Regular Languages

• We now have many ways to prove that a language is regular:
 • Construct a DFA or NFA (or GNFA)
 • Come up with a regular expression describing the language

• But how to show that a language is **not regular**?

• E.g., HTML / XML is not a regular language
 • But how can we prove it

• Preview: The Pumping Lemma!
Flashback: Designing DFAs or NFAs

• States = the machine’s memory!
 • Each state “stores” some information
 • Finite states = finite amount of memory
 • And must be allocated in advance

• This means DFAs can’t keep track of an arbitrary count!
 • would require infinite states
A Non-Regular Language

• $L = \{ 0^n1^n \mid n \geq 0 \}$

• A DFA recognizing L would require infinite states! (impossible)

• This language is the essence of XML!
 • To better see this replace:
 • “0” -> “<tag>“
 • “1” -> “</tag>”

• The problem is tracking the **nestedness**
 • Regular languages cannot count arbitrary nesting depths
 • So most programming languages are also not regular!
The Pumping Lemma

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, $s = xyz$, satisfying the following conditions:

1. for each $i \geq 0$, $xy^iz \in A$,
2. $|y| > 0$, and
3. $|xy| \leq p$.

Pumping lemma specifies three conditions that a regular language must satisfy

Specifically, strings in the language longer than some length p must satisfy the conditions

But it doesn’t tell you an exact p! You have to find it.
The Pumping Lemma

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, $s = xyz$, satisfying the following conditions:

1. for each $i \geq 0$, $xy^i z \in A$,
2. $|y| > 0$, and
3. $|xy| \leq p$.

Because a finite lang is regular, then these conditions must be true for all strings in the lang “of length at least p”

• Example: a finite-sized language, e.g., \{“ab”, “cd”\}
 • All finite langs are regular bc we can easily construct DFA/NFA recognizing them
 • One possible $p = \text{length of longest string in the language, plus 1}$
 • In a finite lang, # strings “of length at least p” = 0
 • Therefore “all” strings “of length at least p” satisfy the pumping lemma criteria!
The Pumping Lemma

Pumping lemma If \(A \) is a regular language, then there is a number \(p \) (the pumping length) where if \(s \) is any string in \(A \) of length at least \(p \), then \(s \) may be divided into three pieces, \(s = xyz \), satisfying the following conditions:

1. for each \(i \geq 0 \), \(xy^i z \in A \),
2. \(|y| > 0 \), and
3. \(|xy| \leq p \).

In an infinite regular lang, these conditions must be true for all strings in the lang “of length at least \(p \)”

• Example: a infinite language, e.g., \{“00”, “010” , “0110” , “01110”, ...\}
 • This language is regular bc it’s described by regular expression \(01^*0 \)
 • E.g., “010” is in the lang, and we can split into three parts: \(x = 0, y = 1, z = 0 \)
 • And any pumping (ie, repeating) of \(y \) creates a string that is still in the language
 • E.g., \(i = 1 \rightarrow “010”, i = 2 \rightarrow “0110”, i = 3 \rightarrow “01110” \)
 • This is what the pumping lemma requires

195
The Pumping Lemma

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, $s = xyz$, satisfying the following conditions:

1. for each $i \geq 0$, $xy^i z \in A$,
2. $|y| > 0$, and
3. $|xy| \leq p$.

In an infinite regular lang, these conditions must be true for all strings in the lang “of length at least p”

- **Example:** a infinite language, e.g., \{"00", "010", "0110", "01110", ...\}
 - This language is regular bc it’s described by regular expression 01^*0
 - $p = ???? $
The Pumping Lemma, a Closer Look

Pumping lemma If A is a regular language, then there exists a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, $s = xyz$, satisfying:

1. for each $i \geq 0$, $xy^iz \in A$,
2. $|y| > 0$, and
3. $|xy| \leq p$.

Pumping lemma says that for “long enough” strings, you should be able to repeat a part of it, and that “pumped” string will still be in the language.

Strings that have a **repeatable** part can be split into:
- $x =$ the part before any repeating
- $y =$ the repeated part
- $z =$ the part after any repeating

This makes sense because DFAs have a finite number of states, so for “long enough” inputs, some state must repeat.

The Pigeonhole Principle!
The Pigeonhole Principle
The Pumping Lemma

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, $s = xyz$, satisfying the following conditions:

1. for each $i \geq 0$, $xy^iz \in A$,
2. $|y| > 0$, and
3. $|xy| \leq p$.

Example: a *infinite* language, e.g., \{“00”, “010”, “0110”, “01110”, …\}

- This language is regular bc it’s described by regular expression 0^*
- $p = ????
The Pumping Lemma

Pumping lemma If A is a regular language, then there exists a pumping length p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, $s = xyz$, satisfying:

1. for each $i \geq 0$, $xy^iz \in A$,
2. $|y| > 0$, and
3. $|xy| \leq p$.

Example: a *infinite* language, e.g., \{“00”, “010” , “0110” , “01110” , …\}

- This language is regular bc it’s described by regular expression
- $p = \text{number of states, plus 1}$
 - When running an input longer than p, one state is guaranteed to be visited twice
 - That state represents the “pumpable” part of the string

But how does this prove that a language is NOT regular??
Poll: Conditional Statements
Equivalence of Conditional Statements

• Yes or No? “If X then Y” is equivalent to:

 • “If Y then X” (converse)
 • No!

 • “If not X then not Y” (inverse)
 • No!

 • “If not Y then not X” (contrapositive)
 • Yes!
 • Proof by contradiction relies on this equivalence
Kinds of Mathematical Proof

• Proof by construction
 • Construct the object in question

• Proof by contradiction
 • Proving the contrapositive

• Proof by induction
 • Use to prove properties of recursive definitions or functions
Pumping Lemma: Proving Non-Regularity

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, $s = xyz$, satisfying the following:

1. for each $i \geq 0$, $xy^iz \in A$,
2. $|y| > 0$, and
3. $|xy| \leq p$.

... then the language is **not** regular

IMPORTANT NOTE: The pumping lemma **cannot** prove that a language is regular

If any of these are **not** true ...

Contrapositive:
“If X then Y” is equivalent to “If not Y then not X
Pumping Lemma: Non-Regularity Example

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, $s = xyz$, satisfying the following conditions:

1. for each $i \geq 0$, $xy^i z \in A$,
2. $|y| > 0$, and
3. $|xy| \leq p$.

Let B be the language $\{0^n 1^n \mid n \geq 0\}$. We use the pumping lemma to prove that B is not regular. The proof is by contradiction.
Check-in Quiz 2/22

On gradescope
Theorem
The language \(B = \{0^n1^n \mid n \geq 0\} \) is not regular.

Proof.
This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)

1. **State the kind of proof:** The proof is by contradiction.
Theorem
The language \(B = \{0^n 1^n \mid n \geq 0\} \) is not regular.

Proof.
This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)

1. State the kind of proof: The proof is by contradiction.

2. State assumptions: Assume that \(B \) is a regular language.
 Then it must satisfy the pumping lemma where \(p \) is the pumping length.

 There are three possible cases:
 5.1 \(y \) is all 0s: Pumped strings, e.g., \(xyyz \), are not in \(B \) because they have more 0s than 1s, breaking condition 1 of the pumping lemma. So we have a contradiction.
 5.2 \(y \) is all 1s: Same as above.
 5.3 \(y \) has both 0s and 1s: Pumped strings preserve equal counts, but is out of order and therefore not in \(B \), breaking condition 1.

6. Conclusion: Since all cases result in contradiction, \(B \) must not be regular.
Theorem
The language $B = \{0^n1^n \mid n \geq 0\}$ is not regular.

Proof.
This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)

1. **State the kind of proof:** The proof is by contradiction.

2. **State assumptions:** Assume that B is a regular language.
 Then it must satisfy the pumping lemma where p is the pumping length.

3. **Present counterexample:** Choose s to be the string 0^p1^p.

4. **Show contradiction of assumption:** Because $s \in B$ and has length $> p$, the pumping lemma guarantees that s can be split into three pieces $s = xyz$ where $xy^iz \in B$ for $i \geq 0$. But we show this is impossible:

5. **The contradiction step typically requires detailed case analysis of scenarios.**
 There are three possible cases:

 5.1. **y is all 0s:** Pumped strings, e.g., $xyyz$, are not in B because they have more 0s than 1s, breaking condition 1 of the pumping lemma. So we have a contradiction.

 5.2. **y is all 1s:** Same as above.

 5.3. **y has both 0s and 1s:** Pumped strings preserve equal counts, but is out of order and therefore not in B, breaking condition 1.

6. **Conclusion:** Since all cases result in contradiction, B must not be regular.
Theorem
The language $B = \{0^n1^n \mid n \geq 0\}$ is not regular.

Proof.
This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)

1. **State the kind of proof**: The proof is by contradiction.

2. **State assumptions**: Assume that B is a regular language.
 Then it must satisfy the pumping lemma where p is the pumping length.

3. **Present counterexample**: Choose s to be the string 0^p1^p.

4. **Show contradiction of assumption**: Because $s \in B$ and has length $> p$, the pumping lemma guarantees that s can be split into three pieces $s = xyz$ where $xy^i z \in B$ for $i \geq 0$. But we show this is impossible:

 - **5.1** y is all 0s: Pumped strings, e.g., $xyyz$, are not in B because they have more 0s than 1s, breaking condition 1 of the pumping lemma. So we have a contradiction.
 - **5.2** y is all 1s: Same as above.
 - **5.3** y has both 0s and 1s: Pumped strings preserve equal counts, but is out of order and therefore not in B, breaking condition 1.

6. **Conclusion**: Since all cases result in contradiction, B must not be regular.
Theorem
The language $B = \{0^n1^n \mid n \geq 0\}$ is not regular.

Proof.
This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)

1. State the kind of proof: The proof is by contradiction.
2. State assumptions: Assume that B is a regular language.
 Then it must satisfy the pumping lemma where p is the pumping length.
3. Present counterexample: Choose s to be the string 0^p1^p.
4. Show contradiction of assumption: Because $s \in B$ and has length $> p$, the
 pumping lemma guarantees that s can be split into three pieces $s = xyz$ where
 $xy^iz \in B$ for $i \geq 0$. But we show this is impossible:
5. The contradiction step typically requires detailed case analysis of scenarios.
 There are three possible cases:
Theorem

The language $B = \{0^n1^n \mid n \geq 0\}$ is not regular.

Proof.

This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)

1. **State the kind of proof:** The proof is by contradiction.

2. **State assumptions:** Assume that B is a regular language.
 Then it must satisfy the pumping lemma where p is the pumping length.

3. **Present counterexample:** Choose s to be the string 0^p1^p.

4. **Show contradiction of assumption:** Because $s \in B$ and has length $> p$, the pumping lemma guarantees that s can be split into three pieces $s = xyz$ where $xy^i z \in B$ for $i \geq 0$. But we show this is impossible:

5. **The contradiction step typically requires detailed case analysis of scenarios.**
 There are three possible cases:

 5.1 y is all 0s: Pumped strings, e.g., xyz, are not in B because they have more 0s than 1s, breaking condition 1 of the pumping lemma. So we have a contradiction.
Theorem
The language $B = \{0^n1^n \mid n \geq 0\}$ *is not regular.*

Proof.
This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)

1. **State the kind of proof:** The proof is by contradiction.
2. **State assumptions:** Assume that B is a regular language.
 Then it must satisfy the pumping lemma where p is the pumping length.
3. **Present counterexample:** Choose s to be the string 0^p1^p.
4. **Show contradiction of assumption:** Because $s \in B$ and has length $> p$, the pumping lemma guarantees that s can be split into three pieces $s = xyz$ where $xy^iz \in B$ for $i \geq 0$. But we show this is impossible:
5. **The contradiction step typically requires detailed case analysis of scenarios.** There are three possible cases:
 5.1 *y* is all 0s: Pumped strings, e.g., $xyyz$, are not in B because they have more 0s than 1s, breaking condition 1 of the pumping lemma. So we have a contradiction.
 5.2 *y* is all 1s: Same as above.
 5.3 *y* has both 0s and 1s: Pumped strings preserve equal counts, but is out of order and therefore not in B, breaking condition 1.
6. **Conclusion:** Since all cases result in contradiction, B must not be regular.
Theorem

The language $B = \{0^n1^n \mid n \geq 0\}$ is not regular.

Proof.

This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)

1. **State the kind of proof:** The proof is by contradiction.

2. **State assumptions:** Assume that B is a regular language.
 Then it must satisfy the pumping lemma where p is the pumping length.

3. **Present counterexample:** Choose s to be the string 0^p1^p.

4. **Show contradiction of assumption:** Because $s \in B$ and has length $> p$, the pumping lemma guarantees that s can be split into three pieces $s = xyz$ where $xy^iz \in B$ for $i \geq 0$. But we show this is impossible:

5. **The contradiction step typically requires detailed case analysis of scenarios.**
 There are three possible cases:

 5.1 y is all 0s: Pumped strings, e.g., $xyyz$, are not in B because they have more 0s than 1s, breaking condition 1 of the pumping lemma. So we have a contradiction.

 5.2 y is all 1s: Same as above.

 5.3 y has both 0s and 1s: Pumped strings preserve equal counts, but is out of order and therefore not in B, breaking condition 1.

6. **Conclusion:** Since all cases result in contradiction, B must not be regular.
Theorem

The language \(B = \{0^n1^n \mid n \geq 0\} \) is not regular.

Proof.

This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)

1. **State the kind of proof**: The proof is by contradiction.

2. **State assumptions**: Assume that \(B \) is a regular language.
 Then it must satisfy the pumping lemma where \(p \) is the pumping length.

3. **Present counterexample**: Choose \(s \) to be the string \(0^p1^p \).

4. **Show contradiction of assumption**: Because \(s \in B \) and has length \(> p \), the pumping lemma guarantees that \(s \) can be split into three pieces \(s = xyz \) where \(xy^iz \in B \) for \(i \geq 0 \). But we show this is impossible:

5. **The contradiction step typically requires detailed case analysis of scenarios**.
 There are three possible cases:

 5.1 **y** is all 0s: Pumped strings, e.g., \(xyz \), are not in \(B \) because they have more 0s than 1s, breaking condition 1 of the pumping lemma. So we have a contradiction.

 5.2 **y** is all 1s: Same as above.

 5.3 **y** has both 0s and 1s: Pumped strings preserve equal counts, but is out of order and therefore not in \(B \), breaking condition 1.

6. **Conclusion**: Since all cases result in contradiction, \(B \) must not be regular.
Theorem

The language \(B = \{0^n1^n \mid n \geq 0\} \) is not regular.

Proof.

This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)

1. State the kind of proof: The proof is by contradiction.
2. State assumptions: Assume that \(B \) is a regular language. Then it must satisfy the pumping lemma where \(p \) is the pumping length.
3. Present counterexample: Choose \(s \) to be the string \(0^p1^p \).
4. Show contradiction of assumption: Because \(s \in B \) and has length \(> p \), the pumping lemma guarantees that \(s \) can be split into three pieces \(s = xyz \) where \(xy^iz \in B \) for \(i \geq 0 \). But we show this is impossible:

 5. The contradiction step typically requires detailed case analysis of scenarios. There are three possible cases:
 5.1 \(y \) is all 0s: Pumped strings, e.g., \(xyyz \), are not in \(B \) because they have more 0s than 1s, breaking condition 1 of the pumping lemma. So we have a contradiction.
 5.2 \(y \) is all 1s: Same as above.
 5.3 \(y \) has both 0s and 1s: Pumped strings preserve equal counts, but is out of order and therefore not in \(B \), breaking condition 1.

6. Alternate Proof: Last 2 cases not needed; see pumping lemma, condition 3.
Using Condition 3 of the Pumping Lemma

Theorem

The language $F = \{ww \mid w \in \{0, 1\}^*\}$ is not regular.

Proof.

This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)

1. **State the kind of proof:** The proof is by contradiction.

2. State assumptions: Assume that F is regular. Then it must satisfy the pumping lemma where p is the pumping length.

3. Present counterexample: Choose s to be the string 0^p10^p1.

4. Show contradiction of assumption: Because $s \in F$ and has length $> p$, the pumping lemma guarantees that s can be split into three pieces $s = xyz$ where $xyi \in F$ for $i \geq 0$. But this is impossible.

5. This time there is only one possible case, but we must explain why. According to condition 3 of the pumping lemma $|xy| \leq p$. So p is all 0s. But then $xyyz \not\in F$, breaking condition 1 of the pumping lemma. So we have a contradiction.

6. Conclusion: Since all cases result in contradiction, F must not be regular.
Using Condition 3 of the Pumping Lemma

Theorem

The language $F = \{ww \mid w \in \{0,1\}^*\}$ is not regular.

Proof.

This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)

1. State the kind of proof: The proof is by contradiction.

2. State assumptions: Assume that F is regular. Then it must satisfy the pumping lemma where p is the pumping length.

This time there is only one possible case, but we must explain why. According to condition 3 of the pumping lemma $|xy| \leq p$. So p is all 0s. But then $xyyz$ \notin F, breaking condition 1 of the pumping lemma. So we have a contradiction.

Conclusion: Since all cases result in contradiction, F must not be regular.
Using Condition 3 of the Pumping Lemma

Theorem

The language \(F = \{ww \mid w \in \{0,1\}^*\} \) is not regular.

Proof.

This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)

1. **State the kind of proof:** The proof is by contradiction.
2. **State assumptions:** Assume that \(F \) is regular. Then it must satisfy the pumping lemma where \(p \) is the pumping length.
3. **Present counterexample:** Choose \(s \) to be the string \(0^p10^p1 \).
4. **Show contradiction of assumption:** Because \(s \in F \) and has length \(> p \), the pumping lemma guarantees that \(s \) can be split into three pieces \(s = xyz \) where \(xy^iz \in F \) for \(i \geq 0 \). But this is impossible.
5. This time there is only one possible case, but we must explain why. According to condition 3 of the pumping lemma \(|xy| \leq p \). So \(p \) is all 0s. But then \(xy^iz \notin F \), breaking condition 1 of the pumping lemma. So we have a contradiction.
6. **Conclusion:** Since all cases result in contradiction, \(F \) must not be regular.
Using Condition 3 of the Pumping Lemma

Theorem

The language $F = \{ww \mid w \in \{0, 1\}^*\}$ *is not regular.*

Proof.

This proof is annotated with **commentary in blue.** (Commentary not needed for hw proofs.)

1. **State the kind of proof:** The proof is by contradiction.

2. **State assumptions:** Assume that F is regular. Then it must satisfy the pumping lemma where p is the pumping length.

3. **Present counterexample:** Choose s to be the string 0^p10^p1.

4. **Show contradiction of assumption:** Because $s \in F$ and has length $> p$, the pumping lemma guarantees that s can be split into three pieces $s = xyz$ where $xy^iz \in F$ for $i \geq 0$. But this is impossible.

5. This time there is only one possible case, but we must explain why. According to condition 3 of the pumping lemma $|xy| \leq p$. So p is all 0s. But then $xyyz \not\in F$, breaking condition 1 of the pumping lemma. So we have a contradiction.

6. **Conclusion:** Since all cases result in contradiction, F must not be regular.
Using Condition 3 of the Pumping Lemma

Theorem
The language $F = \{ww \mid w \in \{0, 1\}^*\}$ *is not regular.*

Proof.
This proof is annotated with **commentary in blue.** (Commentary not needed for hw proofs.)

1. **State the kind of proof:** The proof is by contradiction.

2. **State assumptions:** Assume that F is regular. Then it must satisfy the pumping lemma where p is the pumping length.

3. **Present counterexample:** Choose s to be the string 0^p10^p1.

4. **Show contradiction of assumption:** Because $s \in F$ and has length $> p$, the pumping lemma guarantees that s can be split into three pieces $s = xyz$ where $xy^i z \in F$ for $i \geq 0$. But this is impossible.

5. **This time there is only one possible case, but we must explain why.** According to condition 3 of the pumping lemma $|xy| \leq p$. So p is all 0s. But then $xyyz \notin F$, breaking condition 1 of the pumping lemma. So we have a contradiction.

6. **Conclusion:** Since all cases result in contradiction, F must not be regular.
Using Condition 3 of the Pumping Lemma

Theorem

The language $F = \{ww \mid w \in \{0, 1\}^*\}$ is not regular.

Proof.

This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)

1. State the kind of proof: The proof is by contradiction.

2. State assumptions: Assume that F is regular. Then it must satisfy the pumping lemma where p is the pumping length.

3. Present counterexample: Choose s to be the string 0^p10^p1.

4. Show contradiction of assumption: Because $s \in F$ and has length $> p$, the pumping lemma guarantees that s can be split into three pieces $s = xyz$ where $xy^iz \in F$ for $i \geq 0$. But this is impossible.

5. This time there is only one possible case, but we must explain why. According to condition 3 of the pumping lemma $|xy| \leq p$. So p is all 0s. But then $xyyz \notin F$, breaking condition 1 of the pumping lemma. So we have a contradiction.

6. Conclusion: Since all cases result in contradiction, F must not be regular.
Theorem

The language $E = \{0^i1^j \mid i > j\}$ *is not regular.*

Proof.

This proof is annotated with **commentary in blue.** (Commentary not needed for hw proofs.)

1. **State the kind of proof:** The proof is by contradiction.
Theorem

The language $E = \{0^i1^j \mid i > j\}$ is not regular.

Proof.

This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)

1. **State the kind of proof:** The proof is by contradiction.

2. **State assumptions:** Assume that E is regular. Then it must satisfy the pumping lemma where p is the pumping length.

 Because s is in E and has length greater than p, the pumping lemma guarantees that s can be split into three pieces $s = xyz$ where xy is in E for $i \geq 0$. But this is impossible.

 According to condition 3 of the pumping lemma $|xy| \leq p$. So p is all 0s. But then xz is not in E ($i = 0$), breaking condition 1 of the pumping lemma. So we have a contradiction.

Conclusion: Since all cases result in contradiction, E must not be regular.
Theorem
The language $E = \{0^i1^j \mid i > j\}$ is not regular.

Proof.
This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)

1. **State the kind of proof:** The proof is by contradiction.
2. **State assumptions:** Assume that E is regular. Then it must satisfy the pumping lemma where p is the pumping length.
3. **Present counterexample:** Choose s to be the string $0^{p+1}1^p$.

...
Pumping Down

Theorem

The language \(E = \{0^i1^j \mid i > j\} \) is not regular.

Proof.

This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)

1. State the kind of proof: The proof is by contradiction.

2. State assumptions: Assume that \(E \) is regular. Then it must satisfy the pumping lemma where \(p \) is the pumping length.

3. Present counterexample: Choose \(s \) to be the string \(0^{p+1}1^p \).

4. Show contradiction of assumption: Because \(s \in E \) and has length \(> p \), the pumping lemma guarantees that \(s \) can be split into three pieces \(s = xyz \) where \(xy^i z \in E \) for \(i \geq 0 \). But this is impossible.
Pumping Down

Theorem

The language $E = \{0^i1^j \mid i > j\}$ is not regular.

Proof.

This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)

1. State the kind of proof: The proof is by contradiction.

2. State assumptions: Assume that E is regular. Then it must satisfy the pumping lemma where p is the pumping length.

3. Present counterexample: Choose s to be the string $0^{p+1}1^p$.

4. Show contradiction of assumption: Because $s \in E$ and has length $> p$, the pumping lemma guarantees that s can be split into three pieces $s = xyz$ where $xy^iz \in E$ for $i \geq 0$. But this is impossible.

5. Again, one possible case. According to condition 3 of the pumping lemma $|xy| \leq p$. So p is all 0s. But then $xz \notin E$ ($i = 0$), breaking condition 1 of the pumping lemma. So we have a contradiction.
Pumping Down

Theorem

The language $E = \{0^i1^j \mid i > j\}$ *is not regular.*

Proof.

This proof is annotated with **commentary in blue.** (Commentary not needed for hw proofs.)

1. **State the kind of proof:** The proof is by contradiction.

2. **State assumptions:** Assume that E is regular. Then it must satisfy the pumping lemma where p is the pumping length.

3. **Present counterexample:** Choose s to be the string $0^{p+1}1^p$.

4. **Show contradiction of assumption:** Because $s \in E$ and has length $> p$, the pumping lemma guarantees that s can be split into three pieces $s = xyz$ where $xy^iz \in E$ for $i \geq 0$. But this is impossible.

5. **Again, one possible case.** According to condition 3 of the pumping lemma $|xy| \leq p$. So p is all 0s. But then $xz \notin E$ ($i = 0$), breaking condition 1 of the pumping lemma. So we have a contradiction.

6. **Conclusion:** Since all cases result in contradiction, E must not be regular.