Examples with the Pumping Lemma

Wed Feb 24, 2021
Logistics

• HW3 solutions posted (soon)

• HW4 due Sunday 2/28 11:59pm EST

• Questions?
Last time: The Pumping Lemma says:

Pumping Lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, $s = xyz$, satisfying the following conditions:

1. for each $i \geq 0$, $xy^i z \in A$,
2. $|y| > 0$, and
3. $|xy| \leq p$.

...these strings must be divisible into three pieces (call them x, y, and z) ...

...where repeating the middle piece y results in a “pumped” string is also in the language

Also, repeating part:
- can’t be empty string
- must be in the first p characters

tl;dr: Long enough strings means repeated states
Last time: Equivalence of Contrapositive

• “If X then Y” is equivalent to ... ?

 • “If Y then X” (converse)
 • No!

 • “If not X then not Y” (inverse)
 • No!

✓“If not Y then not X” (contrapositive)
 • Yes!
 • Proof by contradiction uses this equivalence
The Pumping Lemma is an If-Then Stmt

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, $s = xyz$, satisfying the following conditions:

1. for each $i \geq 0$, $xy^iz \in A$,
2. $|y| > 0$, and
3. $|xy| \leq p$.

Just need one counterexample!

Contrapositive: If (any of) these are not true ...
Pumping Lemma: Non-Regularity Example

Let B be the language $\{0^n1^n | n \geq 0\}$. We use the pumping lemma to prove that B is not regular. The proof is by contradiction.

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, $s = xyz$, satisfying the following conditions:

1. for each $i \geq 0$, $xy^iz \in A$,
2. $|y| > 0$, and
3. $|xy| \leq p$.
Theorem
The language \(B = \{0^n1^n \mid n \geq 0\} \) is not regular.

Proof.
This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)

1. State the kind of proof: The proof is by contradiction.
Theorem
The language $B = \{0^n1^n \mid n \geq 0\}$ is not regular.

Proof.
This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)

1. State the kind of proof: The proof is by contradiction.

2. State assumptions: Assume that B is a regular language.
 Then it must satisfy the pumping lemma where p is the pumping length.
Theorem
The language $B = \{0^n1^n \mid n \geq 0\}$ is not regular.

Proof.
This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)

1. State the kind of proof: The proof is by contradiction.
2. State assumptions: Assume that B is a regular language.
 Then it must satisfy the pumping lemma where p is the pumping length.
3. Present counterexample: Choose s to be the string 0^p1^p.

5. The contradiction step typically requires detailed case analysis of scenarios.
 There are three possible cases:
 5.1 y is all 0s: Pumped strings, e.g., $xyyz$, are not in B because they have more 0s than 1s, breaking condition 1 of the pumping lemma. So we have a contradiction.
 5.2 y is all 1s: Same as above.
 5.3 y has both 0s and 1s: Pumped strings preserve equal counts, but is out of order and therefore not in B, breaking condition 1.

6. Conclusion: Since all cases result in contradiction, B must not be regular.
Theorem

The language $B = \{0^n1^n \mid n \geq 0\}$ is not regular.

Proof.

This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)

1. State the kind of proof: The proof is by contradiction.

2. State assumptions: Assume that B is a regular language.
 Then it must satisfy the pumping lemma where p is the pumping length.

3. Present counterexample: Choose s to be the string 0^p1^p.

4. Show contradiction of assumption: Because $s \in B$ and has length $> p$, the
 pumping lemma guarantees that s can be split into three pieces $s = xyz$ where
 $xy^iz \in B$ for $i \geq 0$. But we will show this is impossible ...
Theorem

The language \(B = \{0^n1^n \mid n \geq 0\} \) is not regular.

Proof.

This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)

1. **State the kind of proof:** The proof is by contradiction.

2. **State assumptions:** Assume that \(B \) is a regular language.

 Then it must satisfy the pumping lemma where \(p \) is the pumping length.

3. **Present counterexample:** Choose \(s \) to be the string \(0^p1^p \).

4. **Show contradiction of assumption:** Because \(s \in B \) and has length \(> p \), the pumping lemma guarantees that \(s \) can be split into three pieces \(s = xyz \) where \(xy^iz \in B \) for \(i \geq 0 \). But we will show this is impossible ...

5. **The contradiction step typically requires detailed case analysis of scenarios.**

 There are three possible cases:

 5.1. **\(y \) is all 0s:** Pumped strings, e.g., \(xy^yz \), are not in \(B \) because they have more 0s than 1s, breaking condition 1 of the pumping lemma. So we have a contradiction.

 5.2. **\(y \) is all 1s:** Same as above.

 5.3. **\(y \) has both 0s and 1s:** Pumped strings preserve equal counts, but is out of order and therefore not in \(B \), breaking condition 1.

6. **Conclusion:** Since all cases result in contradiction, \(B \) must not be regular.
Theorem
The language \(B = \{0^n1^n \mid n \geq 0\} \) is not regular.

Proof.
This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)

1. **State the kind of proof**: The proof is by contradiction.

2. **State assumptions**: Assume that \(B \) is a regular language.
 Then it must satisfy the pumping lemma where \(p \) is the pumping length.

3. **Present counterexample**: Choose \(s \) to be the string \(0^p1^p \).

4. **Show contradiction of assumption**: Because \(s \in B \) and has length \(> p \), the pumping lemma guarantees that \(s \) can be split into three pieces \(s = xyz \) where \(xy^iz \in B \) for \(i \geq 0 \). But we will show this is impossible ...

5. **The contradiction step typically requires detailed case analysis of scenarios**.
 There are three possible cases:

 5.1 **\(y \) is all 0s**: Pumped strings, e.g., \(xyyz \), are not in \(B \) because they have more 0s than 1s, breaking condition 1 of the pumping lemma. So we have a contradiction.
Theorem
The language $B = \{0^n1^n \mid n \geq 0\}$ is not regular.

Proof.
This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)

1. State the kind of proof: The proof is by contradiction.
2. State assumptions: Assume that B is a regular language.
 Then it must satisfy the pumping lemma where p is the pumping length.
3. Present counterexample: Choose s to be the string 0^p1^p.
4. Show contradiction of assumption: Because $s \in B$ and has length $> p$, the
 pumping lemma guarantees that s can be split into three pieces $s = xyz$ where
 $xy^iz \in B$ for $i \geq 0$. But we will show this is impossible ...
5. The contradiction step typically requires detailed case analysis of scenarios.
 There are three possible cases:
 5.1 y is all 0s: Pumped strings, e.g., $xyyz$, are not in B because they have more 0s than
 1s, breaking condition 1 of the pumping lemma. So we have a contradiction.
 5.2 y is all 1s: Same as above.
 5.3 y has both 0s and 1s: Pumped strings preserve equal counts, but is out of order and
 therefore not in B, breaking condition 1.
6. Conclusion: Since all cases result in contradiction, B must not be regular.
Theorem
The language $B = \{0^n1^n \mid n \geq 0\}$ is not regular.

Proof.
This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)

1. State the kind of proof: The proof is by contradiction.

2. State assumptions: Assume that B is a regular language.
 Then it must satisfy the pumping lemma where p is the pumping length.

3. Present counterexample: Choose s to be the string 0^p1^p.

4. Show contradiction of assumption: Because $s \in B$ and has length $> p$, the pumping lemma guarantees that s can be split into three pieces $s = xyz$ where $xy^iz \in B$ for $i \geq 0$. But we will show this is impossible ...

5. The contradiction step typically requires detailed case analysis of scenarios.
 There are three possible cases:
 5.1 y is all 0s: Pumped strings, e.g., $xyyz$, are not in B because they have more 0s than 1s, breaking condition 1 of the pumping lemma. So we have a contradiction.
 5.2 y is all 1s: Same as above.
 5.3 y has both 0s and 1s: Pumped strings preserve equal counts, but is out of order and therefore not in B, breaking condition 1.

6. Conclusion: Since all cases result in contradiction, B must not be regular.
Theorem

The language $B = \{0^n1^n \mid n \geq 0\}$ is not regular.

Proof.

This proof is annotated with *commentary in blue.* (Commentary not needed for hw proofs.)

1. **State the kind of proof:** The proof is by contradiction.

2. **State assumptions:** Assume that B is a regular language.

 Then it must satisfy the pumping lemma where p is the pumping length.

3. **Present counterexample:** Choose s to be the string 0^p1^p.

4. **Show contradiction of assumption:** Because $s \in B$ and has length $> p$, the pumping lemma guarantees that s can be split into three pieces $s = xyz$ where $xy^iz \in B$ for $i \geq 0$. But we will show this is impossible ...

5. **The contradiction step typically requires detailed case analysis of scenarios.** There are three possible cases:

 5.1 *y* is all 0s: Pumped strings, e.g., $xyyz$, are not in B because they have more 0s than 1s, breaking condition 1 of the pumping lemma. So we have a contradiction.

 5.2 *y* is all 1s: Same as above.

 5.3 *y* has both 0s and 1s: Pumped strings preserve equal counts, but is out of order and therefore not in B, breaking condition 1.

6. **Conclusion:** Since all cases result in contradiction, B must not be regular.
Theorem

The language \(B = \{0^n1^n \mid n \geq 0\} \) is not regular.

Proof.

This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)

1. State the kind of proof: The proof is by contradiction.

2. State assumptions: Assume that \(B \) is a regular language.
 Then it must satisfy the pumping lemma where \(p \) is the pumping length.

3. Present counterexample: Choose \(s \) to be the string \(0^p1^p \).

4. Show contradiction of assumption: Because \(s \in B \) and has length \(> p \), the pumping lemma guarantees that \(s \) can be split into three pieces \(s = xyz \) where \(xy^iz \in B \) for \(i \geq 0 \). But we will show this is impossible ...

5. The contradiction step typically requires detailed case analysis of scenarios.
 There are three possible cases:

 5.1 \(y \) is all 0s: Pumped strings, e.g., \(xyyz \), are not in \(B \) because they have more 0s than 1s, breaking condition 1 of the pumping lemma. So we have a contradiction.

 5.2 \(y \) is all 1s: Same as above.

 5.3 \(y \) has both 0s and 1s: Pumped strings preserve equal counts, but is out of order and therefore not in \(B \), breaking condition 1.

6. Alternate Proof: Last 2 cases not needed; see pumping lemma, condition 3.
Possible Split: $y = \text{all 0s}$

- **Assumption**: 0^n1^n is a regular language (must satisfy pumping lemma)
- **Counterexample** = 0^p1^p

If xyz chosen so y contains
 - all 0s

```
  00 ... 011 ... 1
```

- **Pumping y**: produces a string with more 0s than 1s
 - This string is **not** in the language 0^n1^n
 - This means that 0^n1^n does **not** satisfy the pumping lemma
 - Which means that that 0^n1^n is a **not** regular lang
 - This is a **contradiction** of the assumption!

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, $s = xyz$, satisfying the following conditions:

1. for each $i \geq 0$, $xy^iz \in A$,
2. $|y| > 0$, and
3. $|xy| \leq p$.

But pumping lemma requires **only one** pumpable splitting

So we must show that every splitting produces a contradiction
Possible Split: $y = \text{all 1s}$

- **Assumption:** 0^n1^n is a regular language (must satisfy pumping lemma)
- **Counterexample** = 0^p1^p
- If xyz chosen so y contains
 - all 1s

```
  \[
  \begin{array}{c}
  p \ 0s \\
  \hline \\
  00 \ldots 011 \ldots 1 \\
  \hline \\
  x \quad y \quad z
  \end{array}
  \]
```

- Is this string pumpable?
 - No!
 - By the same reasoning as in the previous slide
Possible Split: $y = 0s$ and $1s$

- **Assumption:** 0^n1^n is a regular language (must satisfy pumping lemma)
- **Counterexample** = 0^p1^p

 $00 \ldots 011 \ldots 1$

- If xyz chosen so y contains
 - both $0s$ and $1s$

- Is this string pumpable?
 - No!
 - Pumped string will have equal $0s$ and $1s$
 - But they will be in the wrong order: so there is still a **contradiction**!
Last time: The Pumping Lemma says:

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, $s = xyz$, satisfying the following conditions:

1. for each $i \geq 0$, $xy^iz \in A$,
2. $|y| > 0$, and
3. $|xy| \leq p$.

Also, repeating party:
- can’t be empty string
- must be in the first p characters

\[00 \ldots 011 \ldots 1\]

y must be in here!
Pumping Lemma: How to use Condition 3

Let $F = \{ww | w \in \{0,1\}^*\}$. We show that F is nonregular.
Using Condition 3 of the Pumping Lemma

Theorem

The language \(F = \{ww \mid w \in \{0,1\}^*\} \) is not regular.

Proof.

This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)

1. **State the kind of proof:** The proof is by contradiction.

2. **State assumptions:** Assume that \(F \) is regular. Then it must satisfy the pumping lemma where \(p \) is the pumping length.

3. **Present counterexample:** Choose \(s \) to be the string \(0^p10^p1 \).

4. **Show contradiction of assumption:** Because \(s \in F \) and has length \(> p \), the pumping lemma guarantees that \(s \) can be split into three pieces \(s = xyz \) where \(xy^i z \in F \) for \(i \geq 0 \). But we will show this is impossible...

5. **This time there is only one possible case, but we must explain why.** According to condition 3 of the pumping lemma \(|xy| \leq p \). So \(y \) is all 0s. But then \(xyyz \not\in F \), breaking condition 1 of the pumping lemma. So we have a contradiction.

6. **Conclusion:** Since all cases result in contradiction, \(F \) must not be regular.
Theorem

The language $F = \{ww | w \in \{0,1\}^*\}$ is not regular.

Proof.

This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)

1. **State the kind of proof:** The proof is by contradiction.

2. **State assumptions:** Assume that F is regular. Then it must satisfy the pumping lemma where p is the pumping length.

3. **Present counterexample:** Choose s to be the string 0^p10^p1.

4. **Show contradiction of assumption:** Because $s \in F$ and has length $> p$, the pumping lemma guarantees that s can be split into three pieces $s = xyz$ where $xyi \in F$ for $i \geq 0$. But we will show this is impossible ...

5. **This time there is only one possible case, but we must explain why.** According to condition 3 of the pumping lemma $|xy| \leq p$. So y is all 0s. But then $xyyz \notin F$, breaking condition 1 of the pumping lemma. So we have a contradiction.

6. **Conclusion:** Since all cases result in contradiction, F must not be regular.
Using Condition 3 of the Pumping Lemma

Theorem

The language $F = \{ww \mid w \in \{0,1\}^*\}$ is not regular.

Proof.

This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)

1. State the kind of proof: The proof is by contradiction.
2. State assumptions: Assume that F is regular. Then it must satisfy the pumping lemma where p is the pumping length.
3. Present counterexample: Choose s to be the string 0^p10^p1.

Using Condition 3 of the Pumping Lemma

Theorem
The language $F = \{ww \mid w \in \{0,1\}^\}$ is not regular.*

Proof.
This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)

1. **State the kind of proof:** The proof is by contradiction.
2. **State assumptions:** Assume that F is regular. Then it must satisfy the pumping lemma where p is the pumping length.
3. **Present counterexample:** Choose s to be the string 0^p10^p1.
4. **Show contradiction of assumption:** Because $s \in F$ and has length $> p$, the pumping lemma guarantees that s can be split into three pieces $s = xyz$ where $xy^iz \in F$ for $i \geq 0$. But we will show this is impossible ...
Using Condition 3 of the Pumping Lemma

Theorem

The language \(F = \{ww \mid w \in \{0, 1\}^*\} \) is not regular.

Proof.

This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)

1. State the kind of proof: The proof is by contradiction.

2. State assumptions: Assume that \(F \) is regular. Then it must satisfy the pumping lemma where \(p \) is the pumping length.

3. Present counterexample: Choose \(s \) to be the string \(0^p10^p1 \).

4. Show contradiction of assumption: Because \(s \in F \) and has length \(> p \), the pumping lemma guarantees that \(s \) can be split into three pieces \(s = xyz \) where \(xy^iz \in F \) for \(i \geq 0 \). But we will show this is impossible ...

5. This time there is only one possible case, but we must explain why. According to condition 3 of the pumping lemma \(|xy| \leq p \). So \(y \) is all 0s. But then \(xyyz \notin F \), breaking condition 1 of the pumping lemma. So we have a contradiction.
Using Condition 3 of the Pumping Lemma

Theorem
The language $F = \{ww \mid w \in \{0, 1\}^*\}$ is not regular.

Proof.
This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)

1. State the kind of proof: The proof is by contradiction.
2. State assumptions: Assume that F is regular. Then it must satisfy the pumping lemma where p is the pumping length.
3. Present counterexample: Choose s to be the string 0^p10^p1.
4. Show contradiction of assumption: Because $s \in F$ and has length $> p$, the pumping lemma guarantees that s can be split into three pieces $s = xyz$ where $xy^iz \in F$ for $i \geq 0$. But we will show this is impossible ...
5. This time there is only one possible case, but we must explain why. According to condition 3 of the pumping lemma $|xy| \leq p$. So y is all 0s. But then $xyyz \not\in F$, breaking condition 1 of the pumping lemma. So we have a contradiction.
6. Conclusion: Since all cases result in contradiction, F must not be regular.
Pumping Lemma: Pumping Down

use the pumping lemma to show that \(E = \{0^i1^j | i > j \} \) is not regular.
Theorem

The language $E = \{0^i1^j \mid i > j\}$ is not regular.

Proof.

This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)

1. **State the kind of proof:** The proof is by contradiction.
Pumping Down

Theorem

The language \(E = \{0^i1^j \mid i > j\} \) is not regular.

Proof.

This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)

1. State the kind of proof: The proof is by contradiction.

2. State assumptions: Assume that \(E \) is regular. Then it must satisfy the pumping lemma where \(p \) is the pumping length.

\(\)
Theorem

The language $E = \{0^i1^j \mid i > j\}$ is not regular.

Proof.

This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)

1. State the kind of proof: The proof is by contradiction.

2. State assumptions: Assume that E is regular. Then it must satisfy the pumping lemma where p is the pumping length.

3. Present counterexample: Choose s to be the string $0^{p+1}1^p$.

4. Show contradiction of assumption: Because $s \in E$ and has length $> p$, the pumping lemma guarantees that s can be split into three pieces $s = xyz$ where $xy^iz \in E$ for $i \geq 0$. But we will show this is impossible ...

5. Again, one possible case. According to condition 3 of the pumping lemma $|xy| \leq p$. So y is all 0s. But then $xz/ \notin E$ ($i = 0$), breaking condition 1 of the pumping lemma. So we have a contradiction.

6. Conclusion: Since all cases result in contradiction, E must not be regular.
Theorem

The language $E = \{0^i1^j \mid i > j\}$ is not regular.

Proof.

This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)

1. State the kind of proof: The proof is by contradiction.

2. State assumptions: Assume that E is regular. Then it must satisfy the pumping lemma where p is the pumping length.

3. Present counterexample: Choose s to be the string $0^{p+1}1^p$.

4. Show contradiction of assumption: Because $s \in E$ and has length $> p$, the pumping lemma guarantees that s can be split into three pieces $s = xyz$ where $xy^iz \in E$ for $i \geq 0$. But we will show this is impossible ...
Theorem

The language $E = \{0^i1^j \mid i > j\}$ is not regular.

Proof.

This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)

1. **State the kind of proof:** The proof is by contradiction.

2. **State assumptions:** Assume that E is regular. Then it must satisfy the pumping lemma where p is the pumping length.

3. **Present counterexample:** Choose s to be the string 0^p+1^p.

4. **Show contradiction of assumption:** Because $s \in E$ and has length $> p$, the pumping lemma guarantees that s can be split into three pieces $s = xyz$ where $xy^iz \in E$ for $i \geq 0$. But we will show this is impossible ...

5. **Again, one possible case.** According to condition 3 of the pumping lemma $|xy| \leq p$. So y is all 0s. But then $xz \notin E$ ($i = 0$), breaking condition 1 of the pumping lemma. So we have a contradiction.
Theorem

The language $E = \{0^i1^j \mid i > j\}$ is not regular.

Proof.
This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)

1. State the kind of proof: The proof is by contradiction.

2. State assumptions: Assume that E is regular. Then it must satisfy the pumping lemma where p is the pumping length.

3. Present counterexample: Choose s to be the string $0^{p+1}1^p$.

4. Show contradiction of assumption: Because $s \in E$ and has length $> p$, the pumping lemma guarantees that s can be split into three pieces $s = xyz$ where $xy^iz \in E$ for $i \geq 0$. But we will show this is impossible ...

5. Again, one possible case. According to condition 3 of the pumping lemma $|xy| \leq p$. So y is all 0s. But then $xz \notin E$ ($i = 0$), breaking condition 1 of the pumping lemma. So we have a contradiction.

6. Conclusion: Since all cases result in contradiction, E must not be regular.
Check-in Quiz 2/24

On gradescope