CS420
Chapter 4: Decidability
Wed March 24, 2021
Announcements

• HW 6 due Sun 3/28 11:59pm EST

• HW 7 due Sun 4/4 11:59pm EST
 • Covers Ch 4 material (starting today)
Turing Machines and Algorithms

• Turing Machines can express any “computation”
 • I.e., a Turing Machine is just a (Python, Java, Racket, ...) program!

• 2 classes of Turing Machines
 • Recognizers may loop forever
 • Deciders always halt

• Algorithms are an important class of programs
 • In this class, an algorithm is any program that always halts

• So deciders model algorithms!
Algorithms (i.e., Decidable Problems) about Regular Languages
Flashback: HW2, Problem 1: The “run” fn

1. Simulating Computation for DFAs

Recall the formal definition of computation from page 40 of the textbook:

A finite automata $M = (Q, \Sigma, \delta, q_0, F)$ accepts a string $w = w_1, \ldots, w_n$, where each character $w_i \in \Sigma$, if there exists a sequence of states r_0, \ldots, r_n, where $r_i \in Q$, and:

1. $r_0 = q_0$
2. $\delta(r_i, w_{i+1}) = r_{i+1}$, for $i = 0, \ldots, n - 1$
3. $r_n \in F$

This problem asks you to demonstrate, with code, that you understand this concept.

Your Tasks

1. Write a "run" predicate (a function or method that returns true or false) that takes two arguments, an instance of your DFA representation (as defined in A Data Representation for DFAs) and a string, and "runs" the string on the DFA.
The “run” algorithm as a Turing Machine

- HW2’s “run” function is a Turing Machine.
 - Remember: (Python) programs = Turing Machines

- What is the language recognized by this Turing Machine?
 - I.e., what are the inputs?
Flashback: HW2, Problem 1: The “run” fn

1 Simulating Computation for DFAs

Recall the formal definition of computation from page 40 of the textbook:

A finite automata $M = (Q, \Sigma, \delta, q_0, F)$ accepts a string $w = w_1, \ldots, w_n$, where each character $w_i \in \Sigma$, if there exists a sequence of states r_0, \ldots, r_n, where $r_i \in Q$, and:

1. $r_0 = q_0$
2. $\delta(r_i, w_{i+1}) = r_{i+1}$, for $i = 0, \ldots, n - 1$
3. $r_n \in F$

This problem asks you to demonstrate, with code, that you understand this concept.

Your Tasks

1. Write a "run" predicate (a function or method that returns true or false) that takes two arguments, an instance of your DFA representation (as defined in A Data Representation for DFAs) and a string, and "runs" the string on the DFA.
The language of the “run” function

\[A_{DFA} = \{ \langle B, w \rangle | B \text{ is a DFA that accepts input string } w \} \]
Interlude: Encoding Things into Strings

- A Turing machine’s input is always a string

- So anything we want to give to TM must be **encoded** as string

- **Notation**: \(<\text{Something}\> = \text{encoding for Something, as a string}\)
 - E.g., Something might be a DFA
 - Can you think of a string “encoding” for DFAs????
 - Used in HW1, HW2, ...

- Use a tuple to combine multiple encodings, e.g., \(<B,w>\) (from prev slide)
Interlude: Informal TMs and Encodings

• An informal TM description:
 • Doesn’t need to describe exactly how input string is encoded
 • Assumes input is a “valid” encoding
 • Invalid encodings are automatically rejected
The language of the “run” function

\[A_{\text{DFA}} = \{ \langle B, w \rangle | B \text{ is a DFA that accepts input string } w \} \]

• “run” program is a Turing machine
• But is it a decider or recognizer?
 • I.e., is it an algorithm?
• To show it’s an algo, need to prove: \(A_{\text{DFA}} \) is a decidable language
How to prove that a language is decidable?

• Create a Turing machine that decides that language!

Remember:

• A decider is Turing Machine that always halts, and, for any input, either accepts or rejects it.
How to Design Deciders

• If TMs = Programs ...
• ... then Creating a TM = Programming

• E.g., if HW asks “Show that lang L is decidable” ...
 • .. you must create a TM that decides L; to do this ...
 • ... think of how to write a (halting) program that does what you want
Thm: A_{DFA} is a decidable language

$$A_{DFA} = \{ \langle B, w \rangle \mid B \text{ is a DFA that accepts input string } w \}$$

Decider for A_{DFA}:

$$M = \text{"On input } \langle B, w \rangle, \text{ where } B \text{ is a DFA and } w \text{ is a string:}\)
1. Simulate B on input w.
2. If the simulation ends in an accept state, accept. If it ends in a nonaccepting state, reject.”

Where “Simulate” =
- Start in the starting state “q0” ...
- For each input char x ...
 - Call delta fn with current state and x to compute “next state”

- This is a decider (i.e., it always halts) because the input is always finite

- This is just the answer to HW2’s “run” function!
 - I.e., you already “proved” this!
Thm: A_{NFA} is a decidable language

$A_{NFA} = \{ \langle B, w \rangle | B \text{ is an NFA that accepts input string } w \}$

Decider for A_{NFA}:

$N = "On \ input \ \langle B, w \rangle, \ where \ B \ is \ an \ NFA \ and \ w \ is \ a \ string:\"
1. Convert NFA B to an equivalent DFA C, using the procedure for this conversion given in Theorem 1.39.
2. Run TM M on input $\langle C, w \rangle$. (from prev slide)
3. If M accepts, accept; otherwise, reject."

This is a decider (i.e., it always halts) because:
- Step 1 always halts bc there’s a finite number of states in an NFA
- Step 2 always halts because M is a decider
How to Design Deciders, Part 2

• If TMs = Programs ...
• ... then **Creating** a TM = Programming

E.g., if HW asks “Show that lang L is decidable” ...
 • .. you must create a TM that decides L; to do this ...
 • ... think of how to write a (halting) program that does what you want

Hint:
• Previous (constructive) theorems are a “library” of reusable TMs
• When creating a TM, try to use these theorems to help you
 • Just like you use libraries when programming!
• E.g., “Library” for DFAs:
 • NFA->DFA, Regexp->NFA,
 • union, intersect, star, homomorphism, FLIP,
 • A_{DFA}, A_{NFA}, A_{REX}, ...
Thm: A_{REX} is a decidable language

\[A_{REX} = \{ \langle R, w \rangle | R \text{ is a regular expression that generates string } w \} \]

Decider:

\[P = \text{"On input } \langle R, w \rangle, \text{ where } R \text{ is a regular expression and } w \text{ is a string:}
\]

1. Convert regular expression R to an equivalent NFA A by using the procedure for this conversion given in Theorem 1.54.
2. Run TM N on input $\langle A, w \rangle$.
3. If N accepts, accept; if N rejects, reject."

This is a decider because:
- Step 1 always halts because converting reg expr to NFA is done recursively, where the reg expr gets smaller at each step, eventually reaching the base case
- Step 2 always halts because N is a decider
DFA TMs Recap (So Far)

• $A_{DFA} = \{ \langle B, w \rangle | B \text{ is a DFA that accepts input string } w \} \$
 • Deciding TM = program = HW2 “run” function

• $A_{NFA} = \{ \langle B, w \rangle | B \text{ is an NFA that accepts input string } w \} \$
 • Deciding TM = program = HW3 NFA->DFA + DFA “run”

• $A_{REX} = \{ \langle R, w \rangle | R \text{ is a regular expression that generates string } w \} \$
 • Deciding TM = program = HW4 Regexp->NFA + NFA->DFA + DFA “run”
Thm: E_{DFA} is a decidable language

$E_{DFA} = \{ \langle A \rangle \mid A \text{ is a DFA and } L(A) = \emptyset \}$

Decider:

$T =$ “On input $\langle A \rangle$, where A is a DFA:

1. Mark the start state of A.
2. Repeat until no new states get marked:
3. Mark any state that has a transition coming into it from any state that is already marked.”

I.e., this is a “reachability” algorithm
we check if accept states are “reachable” from start state
Thm: EQ_{DFA} is a decidable language

$$EQ_{DFA} = \{ \langle A, B \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$$

Trick: Use Symmetric Difference
Symmetric Difference

\[L(C') = (L(A) \cap \overline{L(B)}) \cup (\overline{L(A)} \cap L(B)) \]

\[L(C') = \emptyset \text{ iff } L(A) = L(B) \]
Thm: EQ_{DFA} is a decidable language

$$EQ_{DFA} = \{ \langle A, B \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$$

Construct decider using 2 ingredients:

- Symmetric Difference algo: $L(C) = \left(L(A) \cap \overline{L(B)} \right) \cup \left(\overline{L(A)} \cap L(B) \right)$
 - Construct $C = \text{Union, intersection, negation of machines } A \text{ and } B$

- decider (from “library”) for: $E_{DFA} = \{ \langle A \rangle \mid A \text{ is a DFA and } L(A) = \emptyset \}$
 - Because $L(C) = \emptyset$ iff $L(A) = L(B)$

$F =$ “On input $\langle A, B \rangle$, where A and B are DFAs:

1. Construct DFA C as described.
2. Run TM T deciding E_{DFA} on input $\langle C \rangle$.
3. If T accepts, accept. If T rejects, reject.”
Summary: Decidable DFA Langs (i.e., algorithms)

- \(A_{DFA} = \{\langle B, w \rangle \mid B \text{ is a DFA that accepts input string } w\}\)

- \(A_{NFA} = \{\langle B, w \rangle \mid B \text{ is an NFA that accepts input string } w\}\)

- \(A_{REX} = \{\langle R, w \rangle \mid R \text{ is a regular expression that generates string } w\}\)

- \(E_{DFA} = \{\langle A \rangle \mid A \text{ is a DFA and } L(A) = \emptyset\}\)

- \(EQ_{DFA} = \{\langle A, B \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B)\}\)

Remember:
- TMs = programs
- Creating TM = programming
- Previous theorems = library
Next time:

Decidable Problems (i.e., Algorithms) about Context-Free Languages (CFLs)
Next time: A_{CFG} is a decidable language

$A_{\text{CFG}} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates string } w \}$

• This a is very practically important problem ...

• ... equivalent to:
 • Is there an algorithm to parse programming lang with grammar G?

• A Decider for this problem could ... ?
 • Try all possible derivations of G?
 • But this might never halt
 • e.g., if there is a rule like: $S \rightarrow 0S$ or $S \rightarrow S$
 • This TM would be a recognizer but not a decider

• Idea: can the TM stop checking after some length?
 • i.e., Is there upper bound on the number of derivation steps?
Check-in Quiz 3/24

On gradescope