Decidable Problems (i.e., Algorithms) about Context-Free Languages (CFLs)

Monday March 29, 2021
Announcements

• HW 6 due date past

• HW 7 due Sun 4/4 11:59pm EST
 • Remember to use your “library” of theorems

• HW 8 out soon
 • due Sun 4/11 11:59pm EST
 • Covers Ch 4-5 material (starting Wed)
Last time: Decidable DFA Langs (i.e., algorithms)

- $A_{DFA} = \{ \langle B, w \rangle | B \text{ is a DFA that accepts input string } w \}$

- $A_{NFA} = \{ \langle B, w \rangle | B \text{ is an NFA that accepts input string } w \}$

- $A_{REX} = \{ \langle R, w \rangle | R \text{ is a regular expression that generates string } w \}$

- $E_{DFA} = \{ \langle A \rangle | A \text{ is a DFA and } L(A) = \emptyset \}$

- $EQ_{DFA} = \{ \langle A, B \rangle | A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$

Remember:
- TMs = programs
- Creating TM = programming
- Previous theorems = library
Thm: A_{CFG} is a decidable language

$$A_{\text{CFG}} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates string } w \}$$

- This is a very practically important problem ...
- ... equivalent to:
 - Is there an algorithm to parse a programming language with grammar G?

- A Decider for this problem could ... ?
 - Try every possible derivation of G, and check if it’s equal to w?
 - But this might never halt
 - e.g., if there is a rule like: $S \rightarrow 0S$ or $S \rightarrow S$
 - This TM would be a recognizer but not a decider

- Idea: can the TM stop checking after some length?
 - i.e., Is there an upper bound on the number of derivation steps?
Chomsky Normal Form
Noam Chomsky
A context-free grammar is in \textit{Chomsky normal form} if every rule is of the form
\[A \rightarrow BC, \quad A \rightarrow \alpha \]
where \(\alpha \) is any terminal and \(A, B, \) and \(C \) are any variables—except that \(B \) and \(C \) may not be the start variable. In addition, we permit the rule \(S \rightarrow \varepsilon \), where \(S \) is the start variable.
Chomsky Normal Form: Number of Steps

- To generate a string of length n:
 - $n - 1$ steps: to generate n variables
 - $+n$ steps: to turn each variable into a terminal
 - **Total**: $2n - 1$ steps

\[
\begin{align*}
A & \rightarrow BC \\
A & \rightarrow a
\end{align*}
\]
Thm: Every CFG has a Chomsky Normal Form

1. Add new start variable S_0 that does not appear on any RHS
 - I.e., add rule $S_0 \rightarrow S$, where S is old start var

\[
\begin{align*}
S & \rightarrow ASA | aB \\
A & \rightarrow B | S \\
B & \rightarrow b | \varepsilon
\end{align*}
\]

\[
\begin{align*}
S_0 & \rightarrow S \\
S & \rightarrow ASA | aB \\
A & \rightarrow B | S \\
B & \rightarrow b | \varepsilon
\end{align*}
\]
Thm: Every CFG has a Chomsky Normal Form

1. Add new start variable S_0 that does not appear on any RHS
 - i.e., add rule $S_0 \rightarrow S$, where S is old start var
2. Remove all “empty” rules of the form $A \rightarrow \epsilon$
 - A must not be the start variable
 - Then for every rule with A on RHS, add new rule with A deleted
 - E.g., if $R \rightarrow uAv$ is a rule, add $R \rightarrow uv$
 - Must cover all combinations if A appears more than once in a RHS
 - E.g., if $R \rightarrow uAvAw$ is a rule, add 3 rules: $R \rightarrow uvAw$, $R \rightarrow uAvw$, $R \rightarrow uvw$
Thm: Every CFG has a Chomsky Normal Form

1. Add new start variable S_0 that does not appear on any RHS
 - i.e., add rule $S_0 \rightarrow S$, where S is old start var
2. Remove all “empty” rules of the form $A \rightarrow \varepsilon$
 - A must not be the start variable
 - Then for every rule with A on RHS, add new rule with A deleted
 - E.g., if $R \rightarrow uAv$ is a rule, add $R \rightarrow uv$
 - Must cover all combinations if A appears more than once in a RHS
 - E.g., if $R \rightarrow uAvAw$ is a rule, add 3 rules: $R \rightarrow uvAw, R \rightarrow uAvw, R \rightarrow uvw$
3. Remove all “unit” rules of the form $A \rightarrow B$
 - Then, for every rule $B \rightarrow u$, add rule $A \rightarrow u$
Thm: Every CFG has a Chomsky Normal Form

1. Add new start variable S_0 that does not appear on any RHS
 • I.e., add rule $S_0 \rightarrow S$, where S is old start var

2. Remove all “empty” rules of the form $A \rightarrow \varepsilon$
 • A must not be the start variable
 • Then for every rule with A on RHS, add new rule with A deleted
 • E.g., if $R \rightarrow uAv$ is a rule, add $R \rightarrow uv$
 • Must cover all combinations if A appears more than once in a RHS
 • E.g., if $R \rightarrow uAvAw$ is a rule, add 3 rules: $R \rightarrow uvAw$, $R \rightarrow uAvw$, $R \rightarrow uvw$

3. Remove all “unit” rules of the form $A \rightarrow B$
 • Then, for every rule $B \rightarrow u$, add rule $A \rightarrow u$

4. Split up rules with RHS longer than length 2
 • E.g., $A \rightarrow wxyz$ becomes $A \rightarrow wB$, $B \rightarrow xC$, $C \rightarrow yz$

5. Replace all terminals on RHS with new rule
 • E.g., for above, add $W \rightarrow w$, $X \rightarrow x$, $Y \rightarrow y$, $Z \rightarrow z$
Thm: A_{CFG} is a decidable language

$$A_{\text{CFG}} = \{\langle G, w \rangle \mid G \text{ is a CFG that generates string } w \}$$

Proof: create the decider:

\[S = \text{“On input } \langle G, w \rangle, \text{ where } G \text{ is a CFG and } w \text{ is a string:} \]

1. Convert G to an equivalent grammar in Chomsky normal form.
2. List all derivations with $2n - 1$ steps, where n is the length of w; except if $n = 0$, then instead list all derivations with one step.
3. If any of these derivations generate w, accept; if not, reject."
Thm: E_{CFG} is a decidable language.

$E_{CFG} = \{ \langle G \rangle \mid G \text{ is a CFG and } L(G) = \emptyset \}$

Recall:

$E_{DFA} = \{ \langle A \rangle \mid A \text{ is a DFA and } L(A) = \emptyset \}$

$T =$ “On input $\langle A \rangle$, where A is a DFA:
1. Mark the start state of A.
2. Repeat until no new states get marked:
3. Mark any state that has a transition coming into it from any state that is already marked.
4. If no accept state is marked, accept; otherwise, reject.”

“Reachability” (of accept state from start state) algorithm
Thm: E_{CFG} is a decidable language.

\[E_{\text{CFG}} = \{ \langle G \rangle \mid G \text{ is a CFG and } L(G) = \emptyset \} \]

- Create decider that calculates reachability for grammar G
 - Except go backwards, start from terminals, to avoid looping

$R = \text{“On input } \langle G \rangle, \text{ where } G \text{ is a CFG:} $

1. Mark all terminal symbols in G.

2. Repeat until no new variables get marked:
3. Mark any variable A where G has a rule $A \rightarrow U_1 U_2 \cdots U_k$ and each symbol U_1, \ldots, U_k has already been marked.
4. If the start variable is not marked, accept; otherwise, reject.”
Thm: E_{CFG} is a decidable language?

$E_{\text{CFG}} = \{ \langle G, H \rangle \mid G \text{ and } H \text{ are CFGs and } L(G) = L(H) \}$

Recall: $E_{\text{DFA}} = \{ \langle A, B \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$

- Used Symmetric Difference

\[L(C) = \emptyset \text{ iff } L(A) = L(B) \]

- where C = complement, union, intersection of machines A and B

- Can’t do this for CFLs!
 - Intersection and complement are not closed for CFLs!!!
Intersection of CFLs is **Not** Closed!

• If closed, then intersection of these CFLs should be a CFL:
 \[A = \{a^m b^n c^n | m, n \geq 0\} \]
 \[B = \{a^n b^n c^m | m, n \geq 0\} \]

• But \(A \cap B = \{a^n b^n c^n | n \geq 0\} \)

• Not a CFL!
 • See textbook example 2.36
Complement of a CFL is not Closed!

• If CFLs closed under complement:

 \[
 \text{if } G_1 \text{ and } G_2 \text{ context-free} \\
 \overline{L(G_1)} \text{ and } \overline{L(G_2)} \text{ context-free} \\
 \overline{L(G_1)} \cup \overline{L(G_1)} \text{ context-free} \\
 \overline{L(G_1)} \cap \overline{L(G_2)} \text{ context-free}
 \]

DeMorgan’s Law!
Thm: EQ_{CFG} is a decidable language?

$$EQ_{CFG} = \{(G, H) | G \text{ and } H \text{ are CFGs and } L(G) = L(H)\}$$

• No!
 • You cannot decide whether two grammars represent the same lang!

• It’s not recognizable either!
 • (But we won’t learn how to prove this until Chapter 5)
Decidability of CFGs Recap

- $A_{CFG} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates string } w \}$
 - Convert grammar to Chomsky Normal Form
 - Then check all possible derivations of length $2|w| - 1$ steps

- $E_{CFG} = \{ \langle G \rangle \mid G \text{ is a CFG and } L(G) = \emptyset \}$
 - Compute “reachability” of start variable from terminals

- $EQ_{CFG} = \{ \langle G, H \rangle \mid G \text{ and } H \text{ are CFGs and } L(G) = L(H) \}$
 - We couldn’t prove that this is decidable!
 - (So you can’t use this theorem when creating another decider)
The Limits of Turing Machines?

• So TMs can express any “computation”
 • I.e., any (Python, Java, Racket, ...) program you write is a Turing Machine

• So why do we focus on TMs that process other machines?

• Because in CS420, we also want to study the limits of computation
 • And a good way to test the limit of a computational model is to see what it can compute about other computational models ...

• So what are the limits of TMs? I.e., what’s here?
 • Or out here?
Next time: A_{TM} is undecidable

$A_{TM} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \}$

A_{TM} = the problem of computers simulating other computers, e.g.:

$U = \text{“On input } \langle M, w \rangle, \text{ where } M \text{ is a TM and } w \text{ is a string:}$$
\begin{enumerate}
 \item Simulate M on input w.
 \item If M ever enters its accept state, accept; if M ever enters its reject state, reject.”
\end{enumerate}$

I.e., will machines take over the world?
Kinds of Functions (a fn maps Domain -> Range)

- **Injective**
 - A.k.a., “one-to-one”
 - Every element in Domain has a unique mapping
 - How to remember:
 - Domain is mapped “in” to the Range

- **Surjective**
 - A.k.a., “onto”
 - Every element in Range is mapped to
 - How to remember:
 - “Sur” = “over” (eg, survey); Domain is mapped “over” the Range

- **Bijective**
 - A.k.a., “correspondence” or “one-to-one correspondence”
 - Is both injective and surjective
 - Unique pairing of every element in Domain and Range
Countability

• A set is “countable” if it is:
 • Finite
 • Or, there exists a bijection between the set and the natural numbers
 • This set is then considered to have the same size as the set of natural numbers
 • This is called “countably infinite”
Exercise: Which set is larger?

• The set of:
 • Natural numbers, or
 • Even numbers?

• They are the **same** size! Both are **countably infinite**
 • Bijection:

<table>
<thead>
<tr>
<th>n</th>
<th>$f(n) = 2n$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
</tr>
</tbody>
</table>
Exercise: Which set is larger?

• The set of:
 • Natural numbers \mathbb{N}, or
 • Positive rational numbers? $\mathbb{Q} = \{ \frac{m}{n} \mid m, n \in \mathbb{N} \}$
• They are the same size! Both are countably infinite
Exercise: Which set is larger?

• The set of:
 • Natural numbers \mathcal{N}, or
 • Positive rational numbers? $Q = \left\{ \frac{m}{n} \mid m, n \in \mathcal{N} \right\}$

• They are the same size! Both are countably infinite.
Exercise: Which set is larger?

• The set of: \[\mathbb{N}, \mathbb{R} \]
 • Natural numbers, or
 • Real numbers?

• There are **more** real numbers. It is **uncountably infinite**.

Proof: next time!
Check-in Quiz 3/29

On gradescope