CS420
Chapter 5: Reducibility

Monday, April 5, 2021
Announcements

• HW 7 due date past

• HW 8 due Sun 4/11 11:59pm EST

• HW9 out soon
 • Due Sun 4/18 11:59pm EST
 • Ch5-6 material (starting Wed)

```c
#define DOESITHALT_program:
{
  return true;
}
```

The big picture solution to the halting problem.
Last time: Diagonalization of TMs

Diagonal: Result of giving a TM itself as input

M_1	M_2	M_3	M_4	...	D	...
accept	reject	accept	reject	...	accept	...
accept	accept	accept	accept	...	accept	...
reject	reject	reject	reject	...	reject	...
accept	accept	reject	reject	...	accept	...

All TMs

Opposite

"Opposite" machine

Contradiction: Needs to both reject and accept

TM D can’t exist!
Last time: \(A_{TM} \) is undecidable

\[
A_{TM} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \}
\]

Proof, by contradiction.

• Assume \(A_{TM} \) is decidable. Then there exists a decider:

\[
H(\langle M, w \rangle) = \begin{cases}
\text{accept} & \text{if } M \text{ accepts } w \\
\text{reject} & \text{if } M \text{ does not accept } w
\end{cases}
\]

• If \(H \) exists, then we can create \(D \):

\[
D = \text{“On input } \langle M \rangle, \text{ where } M \text{ is a TM:} \\
1. \text{ Run } H \text{ on input } \langle M, \langle M \rangle \rangle. \\
2. \text{ Output the opposite of what } H \text{ outputs. That is, if } H \text{ accepts, reject; and if } H \text{ rejects, accept.”}
\]

“Opposite” machine

Result of giving a TM itself as input
Last time: A_{TM} is undecidable

Proof, by contradiction.

• Assume A_{TM} is decidable. Then there exists a decider:

\[
H(\langle M, w \rangle) = \begin{cases}
accept & \text{if } M \text{ accepts } w \\
reject & \text{if } M \text{ does not accept } w
\end{cases}
\]

• If H exists, then we can create D:

\[
D = \text{“On input } \langle M \rangle, \text{ where } M \text{ is a TM:} \\
1. \text{ Run } H \text{ on input } \langle M, \langle M \rangle \rangle. \\
2. \text{ Output the opposite of what } H \text{ outputs. That is, if } H \text{ accepts, reject; and if } H \text{ rejects, accept.”}
\]

• But D does not exist! Therefore we have a contradiction!
Last time: Unrecognizability

• We’ve proved:
 \[A_{TM} \text{ is Turing-recognizable} \]
 \[A_{TM} \text{ is undecidable} \]

• And:
 Theorem 4.22
 A language is decidable iff it is Turing-recognizable and co-Turing-recognizable.

• So:
 \[\overline{A_{TM}} \text{ is not Turing-recognizable} \]
Today: Easier Undecidability Proofs!

• We proved \(A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \} \) undecidable by ...

• ... showing that its decider could be used to implement an impossible “D” decider.

• In other words, we reduced \(A_{TM} \) to the “D” problem.
 • That was hard (needed to invent diagonalization)

• But now we can reduce problems to \(A_{TM} \): much easier!
The Halting Problem

\[\text{HALT}_\text{TM} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \} \]

Thm: \(\text{HALT}_\text{TM} \) is undecidable

Proof, by contradiction:

- Assume \(\text{HALT}_\text{TM} \) has decider \(R \); use it to create decider for \(A_\text{TM} \):

\[S = \text{“On input } \langle M, w \rangle, \text{ an encoding of a } \text{TM } M \text{ and a string } w:\]

1. Run TM \(R \) on input \(\langle M, w \rangle \).
2. If \(R \) rejects, reject. \(\text{This means } M \text{ loops on input } w \)
3. If \(R \) accepts, simulate \(M \) on \(w \) until it halts. \(\text{This step always halts} \)
4. If \(M \) has accepted, accept; if \(M \) has rejected, reject.”
The Halting Problem

\[\text{HALT}_{TM} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \} \]

Thm: \(\text{HALT}_{TM} \) is undecidable

Proof, by contradiction:

• Assume \(\text{HALT}_{TM} \) has decider \(R \); use it to create decider for \(A_{TM} \):

\[S = \text{“On input } \langle M, w \rangle \text{, an encoding of a TM } M \text{ and a string } w:\]
\[1. \text{ Run TM } R \text{ on input } \langle M, w \rangle. \]
\[2. \text{ If } R \text{ rejects, reject.} \]
\[3. \text{ If } R \text{ accepts, simulate } M \text{ on } w \text{ until it halts.} \]
\[4. \text{ If } M \text{ has accepted, accept; if } M \text{ has rejected, reject.”} \]

• But \(A_{TM} \) is undecidable!
 • I.e., this decider that we just created cannot exist! So \(\text{HALT}_{TM} \) is undecidable
Easier Undecidability Proofs

In general, to prove the undecidability of a language:
• Use proof by contradiction:

• Assume the language is decidable,

• Show that its decider can be used to create a decider for ...

• ... a known undecidable language ...

• ... which doesn’t have a decider!
Summary: Languages About Machines

- $A_{DFA} = \{ \langle B, w \rangle \mid B \text{ is a DFA that accepts input string } w \}$
 Decidable

- $A_{CFG} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates string } w \}$
 Decidable

- $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}$
 Undecidable

- $E_{DFA} = \{ \langle A \rangle \mid A \text{ is a DFA and } L(A) = \emptyset \}$
 Decidable

- $E_{CFG} = \{ \langle G \rangle \mid G \text{ is a CFG and } L(G) = \emptyset \}$
 Decidable

- $E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}$
 Undecidable

- $EQ_{DFA} = \{ \langle A, B \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$
 Decidable

- $EQ_{CFG} = \{ \langle G, H \rangle \mid G \text{ and } H \text{ are CFGs and } L(G) = L(H) \}$
 Undecidable

- $EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$
 Undecidable
Reducibility: Modifying the TM

Thm: \(E_{TM} \) is undecidable

Proof, by contradiction:

- Assume \(E_{TM} \) has decider \(R \); use to create \(A_{TM} \) decider:

 \[
 S = \text{"On input } \langle M, w \rangle, \text{ an encoding of a TM } M \text{ and a string } w:}
 \]

 - First, construct \(M_1 \)
 - Run \(R \) on input \(\langle M \rangle \)
 - If \(R \) accepts, reject (because it means \(\langle M \rangle \) doesn’t accept \(w \))
 - If \(R \) rejects, then accept (\(\langle M \rangle \) accepts \(w \))

- Idea: Wrap \(\langle M \rangle \) in a new TM that can only accept \(w \):

 \[
 M_1 = \text{"On input } x:}

 \[
 1. \text{ If } x \neq w, \text{ reject.}

 \[
 2. \text{ If } x = w, \text{ run } M \text{ on input } w \text{ and accept if } M \text{ does.}"
 \]
Reducibility: Modifying the TM

Thm: E_{TM} is undecidable

Proof, by contradiction:

• Assume E_{TM} has decider R; use to create A_{TM} decider:

 $S = “$ On input $\langle M, w \rangle$, an encoding of a TM M and a string w:

 First, construct M_1

 Run R on input $\langle M_1 \rangle$

 If R accepts, reject (because it means $\langle M \rangle$ doesn’t accept w)

 if R rejects, then accept ($\langle M \rangle$ accepts w)

• Idea: Wrap $\langle M \rangle$ in a new TM that can only accept w:

 $M_1 = “$ On input x:

 1. If $x \neq w$, reject.

 2. If $x = w$, run M on input w and accept if M does.”
One more, modify M: $\text{REGULAR}_{\text{TM}}$ is undecidable

$\text{REGULAR}_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language} \}$

Proof, by contradiction:

• Assume $\text{REGULAR}_{\text{TM}}$ has decider R; use to create A_{TM} decider:

 $S = \text{“On input } \langle M, w \rangle, \text{ an encoding of a TM } M \text{ and a string } w:\$

 • First, construct $M_2(??)$
 • Run R on input $\langle M \rangle_2$
 • If R accepts, accept; if R rejects, reject

Want: $L(M_2) =$

• regular, if M accepts w
• nonregular, if M does not accept w
Thm: $REGULAR_{TM}$ is undecidable (continued)

$REGULAR_{TM} = \{ \langle M \rangle \mid M$ is a TM and $L(M)$ is a regular language $\}$

$M_2 = \text{"On input } x:\\\n1. \text{If } x \text{ has the form } 0^n1^n, \text{ accept.}\\n2. \text{If } x \text{ does not have this form, run } M \text{ on input } w \text{ and accept if } M \text{ accepts } w.\"

Always accept strings 0^n1^n
$L(M_2) = \text{nonregular, so far}$

If M accepts w, accept everything else, so $L(M_2) = \Sigma^* = \text{regular}$

Want: $L(M_2) =$

- regular, if M accepts w
- nonregular, if M does not accept w
Reduce to something else: EQ_{TM} is undecidable

$EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

Proof, by contradiction:

• Assume EQ_{TM} has decider R; use to create A_{TM} decider:

\[S = \text{“On input } \langle M \rangle, \text{ where } M \text{ is a TM:} \]

1. Run R on input $\langle M, M_1 \rangle$, where M_1 is a TM that rejects all inputs.

2. If R accepts, accept; if R rejects, reject.”
Reduce to something else: EQ_{TM} is undecidable

$EQ_{TM} = \{ \langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

Proof, by contradiction:

- Assume EQ_{TM} has decider R; use to create A_{TM} decider:

 $S = \text{“On input } \langle M \rangle, \text{ where } M \text{ is a TM:} $

 1. Run R on input $\langle M, M_1 \rangle$, where M_1 is a TM that rejects all inputs.

 2. If R accepts, accept; if R rejects, reject.”

- But E_{TM} is undecidable!
Summary

- $A_{\text{DFA}} = \{ \langle B, w \rangle | B \text{ is a DFA that accepts input string } w \}$

- $A_{\text{CFG}} = \{ \langle G, w \rangle | G \text{ is a CFG that generates string } w \}$

- $A_{\text{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \}$

- $E_{\text{DFA}} = \{ \langle A \rangle | A \text{ is a DFA and } L(A) = \emptyset \}$

- $E_{\text{CFG}} = \{ \langle G \rangle | G \text{ is a CFG and } L(G) = \emptyset \}$

- $E_{\text{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$

- $E_{\text{DFA}} = \{ \langle A, B \rangle | A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$

- $E_{\text{CFG}} = \{ \langle G, H \rangle | G \text{ and } H \text{ are CFGs and } L(G) = L(H) \}$

- $E_{\text{TM}} = \{ \langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

We can’t compute anything about Turing Machines, i.e., about programs!
Also Undecidable ...

- $\textit{REGULAR}_{\text{TM}} = \{<M> \mid M \text{ is a TM and } L(M) \text{ is a regular language}\}$

- $\textit{CONTEXTFREE}_{\text{TM}} = \{<M> \mid M \text{ is a TM and } L(M) \text{ is a CFL}\}$

- $\textit{DECIDABLE}_{\text{TM}} = \{<M> \mid M \text{ is a TM and } L(M) \text{ is a decidable language}\}$

- $\textit{FINITE}_{\text{TM}} = \{<M> \mid M \text{ is a TM and } L(M) \text{ is a finite language}\}$

- ...

- $\textit{ANYTHING}_{\text{TM}} = \{<M> \mid M \text{ is a TM and “something something” about } L(M)\}$
Formalizing Reducibility, i.e., Mapping Reducibility
Flashback: A_{NFA} is a decidable language

$A_{\text{NFA}} = \{ \langle B, w \rangle | \text{B is an NFA that accepts input string } w \}$

Decider (i.e., “run” function) for A_{NFA}:

$N =$ “On input $\langle B, w \rangle$, where B is an NFA and w is a string:
1. Convert NFA B to an equivalent DFA C, using the procedure for this conversion given in Theorem 1.39.
2. Run TM M on input $\langle C, w \rangle$.
3. If M accepts, accept; otherwise, reject.”

We said this NFA -> DFA algorithm is a TM, but it doesn’t accept/reject?
Computable Functions

• A TM that, instead of accept/reject, “outputs” final tape contents

Definition 5.17

A function \(f : \Sigma^* \rightarrow \Sigma^* \) is a **computable function** if some Turing machine \(M \), on every input \(w \), halts with just \(f(w) \) on its tape.

• **Example 1:** All arithmetic operations

• **Example 2:** Machine conversion algorithms, like DFA -> NFA
 • E.g., adding states, changing transitions, wrapping TM in TM, etc.
Mapping Reducibility

Definition 5.20

Language A is *mapping reducible* to language B, written $A \leq_m B$, if there is a computable function $f : \Sigma^* \rightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B.$$

The function f is called the *reduction* from A to B.

Definition 5.17

A function $f : \Sigma^* \rightarrow \Sigma^*$ is a *computable function* if some Turing machine M, on every input w, halts with just $f(w)$ on its tape.
Thm: A_{TM} is mapping reducible to $HALT_{TM}$

- To show: $A_{TM} \leq_m HALT_{TM}$
- Want: computable fn $f : \langle M, w \rangle \rightarrow \langle M', w' \rangle$ where:

 $\langle M, w \rangle \in A_{TM}$ if and only if $\langle M', w' \rangle \in HALT_{TM}$

The following machine F computes a reduction f.

$F =$ “On input $\langle M, w \rangle$:
1. Construct the following machine M'
 $M' = "$On input x:
 1. Run M on x.
 2. If M accepts, accept.
 3. If M rejects, enter a loop.
2. Output $\langle M', w \rangle$.”

M accepts $w \iff M'$ halts on w

M' halts on w
How is mapping reducibility useful?
Thm: If $A \leq_m B$ and B is decidable, then A is decidable.

Proof We let M be the decider for B and f be the reduction from A to B. We describe a decider N for A as follows.

$N = "$On input w:
1. Compute $f(w)$.
2. Run M on input $f(w)$ and output whatever M outputs."

Definition 5.20

Language A is *mapping reducible* to language B, written $A \leq_m B$, if there is a computable function $f : \Sigma^* \rightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B.$$

The function f is called the *reduction* from A to B.
Corollary: If $A \leq_m B$ and A is undecidable, then B is undecidable.

- Proof by contradiction.
- Assume B is decidable.
- Then A is decidable (by the previous thm).
- So we have a contradiction.
Summary: Mapping Reducibility Theorems

• If $A \leq_m B$ and B is decidable, then A is decidable.

 known

• If $A \leq_m B$ and A is undecidable, then B is undecidable.

 unknown
Alternate Proof: The Halting Problem

HALT_{TM} is undecidable

- If $A \leq_m B$ and A is undecidable, then B is undecidable.

- $A_{\text{TM}} \leq_m \text{HALT}_{\text{TM}}$
Check-in Quiz 4/5

On gradescope