Mapping Reducibility

Wednesday, April 7, 2021
Announcements

- HW 8 due Sun 4/11 11:59pm EST

- HW 9 out
 - Due Sun 4/18 11:59pm EST
 - Ch5 material (starting today)
Last time: “Reduced” A_{TM} to $HALT_{TM}$

Thm: $HALT_{TM}$ is undecidable

Proof, by contradiction:

• Assume $HALT_{TM}$ has decider R; use to create A_{TM} decider:

 $S =$ “On input $\langle M, w \rangle$, an encoding of a TM M and a string w:

 1. Run TM R on input $\langle M, w \rangle$.
 2. If R rejects, reject.
 3. If R accepts, simulate M on w until it halts.
 4. If M has accepted, accept; if M has rejected, reject.”

• Contradiction: A_{TM} is undecidable and has no decider!

Today: Formalize “reduction” and “reducibilty”
Last time: \(\text{REGULAR}_{\text{TM}} \) is undecidable

\[
\text{REGULAR}_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language} \}
\]

Proof, by contradiction:

• Assume \(\text{REGULAR}_{\text{TM}} \) has decider \(R \); use to create \(\text{A}_{\text{TM}} \) decider:

\[S = \text{"On input } \langle M, w \rangle \text{, an encoding of a TM } M \text{ and a string } w: } \]

• First, construct \(M_2 \) (see below, and next slide)

• Run \(R \) on input \(\langle M \rangle_2 \) \hspace{1cm} \textbf{Important: } M_2 \text{ is never run; only used as an arg}

• If \(R \) accepts, accept; if \(R \) rejects, reject

Want: \(L(M_2) = \)

• regular, if \(M \) accepts \(w \)
• nonregular, if \(M \) does not accept \(w \)
Thm: REGULAR_{TM} is undecidable (continued)

$\text{REGULAR}_{TM} = \{ \langle M \rangle | M$ is a TM and $L(M)$ is a regular language $\}$

$M_2 = \text{"On input } x:\n1. \text{ If } x \text{ has the form } 0^n1^n, \text{ accept.}\n2. \text{ If } x \text{ does not have this form, run } M \text{ on input } w \text{ and accept if } M \text{ accepts } w.\"$

- If M does not accept w, M_2 accepts all strings (regular lang)
- if M accepts w, M_2 accepts this non-regular lang
- Always accept strings 0^n1^n
- $L(M_2) = \text{nonregular, so far}$
- If M accepts w, accept everything else, so $L(M_2) = \Sigma^* = \text{regular}$

Want: $L(M_2) =$
- regular, if M accepts w
- nonregular, if M does not accept w
Reducing to non-\(A_{\text{TM}}\) language

\[EQ_{\text{TM}} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \} \]

Thm: \(EQ_{\text{TM}} \) is undecidable

Proof, by contradiction:

- Assume \(EQ_{\text{TM}} \) has decider \(R \); use to create \(A_{\text{TM}} \) decider.

\[E_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \} \]

\(S \) = “On input \(\langle M \rangle \), where \(M \) is a TM:

1. Run \(R \) on input \(\langle M, M_1 \rangle \), where \(M_1 \) is a TM that rejects all inputs.

2. If \(R \) accepts, accept; if \(R \) rejects, reject.”
Reducing to non-A_{TM} language

$EQ_{TM} = \{\langle M_1, M_2 \rangle | M_1$ and M_2 are TMs and $L(M_1) = L(M_2)\}$

Thm: EQ_{TM} is undecidable

Proof, by contradiction:

- Assume EQ_{TM} has decider R; use to create A_{TM} decider:

 $S =$ “On input $\langle M \rangle$, where M is a TM:

 1. Run R on input $\langle M, M_1 \rangle$, where M_1 is a TM that rejects all inputs.
 2. If R accepts, accept; if R rejects, reject.”

- **Contradiction:** E_{TM} is undecidable!
Summary

- \(A_{\text{DFA}} = \{ \langle B, w \rangle | B \text{ is a DFA that accepts input string } w \} \) Decidable
- \(A_{\text{CFG}} = \{ \langle G, w \rangle | G \text{ is a CFG that generates string } w \} \) Decidable
- \(A_{\text{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \} \) Undecidable
- \(E_{\text{DFA}} = \{ \langle A \rangle | A \text{ is a DFA and } L(A) = \emptyset \} \) Decidable
- \(E_{\text{CFG}} = \{ \langle G \rangle | G \text{ is a CFG and } L(G) = \emptyset \} \) Decidable
- \(E_{\text{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \} \) Undecidable
- \(E_{\text{DFA}} = \{ \langle A, B \rangle | A \text{ and } B \text{ are DFAs and } L(A) = L(B) \} \) Decidable
- \(E_{\text{CFG}} = \{ \langle G, H \rangle | G \text{ and } H \text{ are CFGs and } L(G) = L(H) \} \) Undecidable
- \(E_{\text{TM}} = \{ \langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \} \) Undecidable

Observation: Can we decide anything about Turing Machines, i.e., about programs?
Can’t decide anything about TMs?

- **REGULAR_{TM} = \{<M> | M is a TM and L(M) is a regular language\}**
 Undecidable

- **CONTEXTFREE_{TM} = \{<M> | M is a TM and L(M) is a CFL\}**
 Undecidable

- **DECIDABLE_{TM} = \{<M> | M is a TM and L(M) is a decidable language\}**
 Undecidable

- **FINITE_{TM} = \{<M> | M is a TM and L(M) is a finite language\}**
 Undecidable

- ...
 Undecidable:
 ANYTHING_{TM} = \{<M> | M is a TM and “something something” about L(M)\}
 Rice’s Theorem
Today: Computable Functions

• Needed to formalize the notion of “reducibility”
Flashback: A_{NFA} is a decidable language

$A_{\text{NFA}} = \{\langle B, w \rangle | \; B \text{ is an NFA that accepts input string } w \}$

Decider (i.e., “run” function) for A_{NFA}:

$N =$ “On input $\langle B, w \rangle$, where B is an NFA and w is a string:

1. Convert NFA B to an equivalent DFA C, using the procedure for this conversion given in Theorem 1.39.
2. Run TM M on input $\langle C, w \rangle$.
3. If M accepts, accept; otherwise, reject.”

More generally, we’ve been saying “programs = TMs”, but programs do more than accept/reject?

We said this NFA -> DFA algorithm is a TM, but it doesn’t accept/reject?
Computable Functions

• A TM that, instead of accept/reject, “outputs” final tape contents

Definition 5.17

A function $f : \Sigma^* \rightarrow \Sigma^*$ is a *computable function* if some Turing machine M, on every input w, halts with just $f(w)$ on its tape.

• **Example 1:** All arithmetic operations

• **Example 2:** Converting between machines, like DFA \rightarrow NFA
 • E.g., adding states, changing transitions, wrapping TM in TM, etc.
Mapping Reducibility

Definition 5.20

Language A is **mapping reducible** to language B, written $A \leq_m B$, if there is a computable function $f : \Sigma^* \rightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B.$$

The function f is called the **reduction** from A to B.

Definition 5.17

A function $f : \Sigma^* \rightarrow \Sigma^*$ is a **computable function** if some Turing machine M, on every input w, halts with just $f(w)$ on its tape.
Thm: A_{TM} is mapping reducible to $HALT_{TM}$

- To show: $A_{TM} \leq_m HALT_{TM}$
- Want: computable fn $f : \langle M, w \rangle \rightarrow \langle M', w' \rangle$ where:

 $\langle M, w \rangle \in A_{TM}$ if and only if $\langle M', w' \rangle \in HALT_{TM}$

The following machine F computes a reduction f.

- $F =$ “On input $\langle M, w \rangle$:
 1. Construct the following machine M'.
 M' = “On input x:
 1. Run M on x.
 2. If M accepts, accept.
 3. If M rejects, enter a loop.”
 2. Output $\langle M', w \rangle$.”

Language A is mapping reducible to language B, written $A \leq_m B$, if there is a computable function $f : \Sigma^* \rightarrow \Sigma^*$, where for every w,

$w \in A \iff f(w) \in B$.

The function f is called the reduction from A to B.
How is mapping reducibility useful?
Thm: If $A \leq_m B$ and B is decidable, then A is decidable.

Proof

We let M be the decider for B and f be the reduction from A to B. We describe a decider N for A as follows.

$N =$ “On input w:
1. Compute $f(w)$.
2. Run M on input $f(w)$ and output whatever M outputs.”

Definition 5.20

Language A is *mapping reducible* to language B, written $A \leq_m B$, if there is a computable function $f : \Sigma^* \rightarrow \Sigma^*$, where for every w,

\[w \in A \iff f(w) \in B. \]

The function f is called the *reduction* from A to B.
Coro: If $A \leq_m B$ and A is undecidable, then B is undecidable.

- Proof by contradiction.

- Assume B is decidable.

- Then A is decidable (by the previous thm).

- **Contradiction:** we already said A is undecidable
Summary: Mapping Reducibility Theorems

- If $A \leq_m B$ and B is decidable, then A is decidable.
 Known

- If $A \leq_m B$ and A is undecidable, then B is undecidable.
 Unknown
Alternate Proof: The Halting Problem

$HALT_{TM}$ is undecidable

• If $A \leq_m B$ and A is undecidable, then B is undecidable.

• $A_{TM} \leq_m HALT_{TM}$

• Since A_{TM} is undecidable, then $HALT_{TM}$ is undecidable
Alternate Proof: EQ_{TM} is undecidable

$EQ_{TM} = \{ \langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

Flashback: proof by contradiction:

• Assume EQ_{TM} has decider R; use to create ET_{TM} decider:
 $ET_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$

$S = \text{“On input } \langle M \rangle, \text{ where } M \text{ is a TM:}$$

1. \text{ Run } R \text{ on input } \langle M, M_1 \rangle, \text{ where } M_1 \text{ is a TM that rejects all inputs.}$
2. \text{ If } R \text{ accepts, accept; if } R \text{ rejects, reject.”}$

Alternate proof: Show: $ET_{TM} \leq_m EQ_{TM}$

• Computable fn $f: \langle M \rangle \rightarrow \langle M, M_1 \rangle$

Definition 5.20

Language A is *mapping reducible* to language B, written $A \leq_m B$, if there is a computable function $f: \Sigma^* \rightarrow \Sigma^*$, where for every w,

$w \in A \iff f(w) \in B.$

The function f is called the *reduction* from A to B.
Reducing to complement: \(E_{TM} \) is undecidable

\[E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \} \]

Proof, by contradiction:

- Assume \(E_{TM} \) has decider \(R \); use to create \(A_{TM} \) decider:

 \(S = \text{“On input } \langle M, w \rangle \text{, an encoding of a TM } M \text{ and a string } w:\text{ 1. Use the description of } M \text{ and } w \text{ to construct the TM } M_1 \text{ just described.} \text{ 2. Run } R \text{ on input } \langle M_1 \rangle. \text{ 3. If } R \text{ accepts, reject; if } R \text{ rejects, accept.”} \)

Alternate proof: computable fn: \(\langle M, w \rangle \rightarrow \langle M_1 \rangle \)

- So this only reduces \(A_{TM} \) to \(\overline{E_{TM}} \)
- Still proves \(E_{TM} \) is undecidable
 - HW9: show that undecidable langs are closed under complement
More Helpful Theorems

If $A \leq_m B$ and B is Turing-recognizable, then A is Turing-recognizable.

If $A \leq_m B$ and A is not Turing-recognizable, then B is not Turing-recognizable.

• Same proofs as:

If $A \leq_m B$ and B is decidable, then A is decidable.

If $A \leq_m B$ and A is undecidable, then B is undecidable.
Thm: E_{Turing} is neither Turing-recognizable nor co-Turing-recognizable

$$E_{\text{Turing}} = \{ \langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$$

1. E_{Turing} is not Turing-recognizable

A_{Turing} is not Turing-recognizable, so E_{Turing} is not Turing-recognizable.
Mapping Reducibility implies Mapping Red. of Complements

Definition 5.20

Language A is *mapping reducible* to language B, written $A \leq_m B$, if there is a computable function $f : \Sigma^* \rightarrow \Sigma^*$, where for every w, $w \in A \iff f(w) \in B$.

The function f is called the *reduction* from A to B.

\[A \leq_m B \]

implies

\[\overline{A} \leq_m \overline{B} \]
Thm: EQ_{TM} is neither Turing-recognizable nor co-Turing-recognizable.

$$EQ_{\text{TM}} = \{\langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2)\}$$

1. EQ_{TM} is not Turing-recognizable

Two Choices:

- Create Computable fn: $A_{\text{TM}} \rightarrow EQ_{\text{TM}}$

- Or Computable fn: $A_{\text{TM}} \rightarrow \overline{EQ_{\text{TM}}}$
Thm: EQ_{TM} is not Turing-recognizable

$EQ_{TM} = \{(M_1, M_2) | M_1$ and M_2 are TMs and $L(M_1) = L(M_2)\}$

• Create Computable fn: $A_{TM} \rightarrow EQ_{TM}$

• $\langle M, w \rangle \rightarrow \langle M_1, M_2 \rangle$ M_1 and M_2 are TMs and $L(M_1) \neq L(M_2)$

$F = \text{"On input } \langle M, w \rangle, \text{ where } M \text{ is a TM and } w \text{ a string:}\$

1. Construct the following two machines, M_1 and M_2.
 $M_1 = \text{"On any input: }
 \begin{cases}
 1. \text{ Reject.} \\
 \end{cases}
 \text{ Accepts nothing}

 M_2 = \text{"On any input: }
 \begin{cases}
 1. \text{ Run } M \text{ on } w. \text{ If it accepts, accept.} \\
 \end{cases}
 \text{ Accepts nothing or everything}

2. Output $\langle M_1, M_2 \rangle$."

• If M accepts w, M_1 not equal to M_2
• If M does not accept w, M_1 equal to M_2
Thm: EQ_{TM} is neither Turing-recognizable nor co-Turing-recognizable

$$EQ_{TM} = \{ \langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$$

1. EQ_{TM} is not Turing-recognizable
 - Create Computable fn: $A_{TM} \rightarrow EQ_{TM}$
 - Or Computable fn: $A_{TM} \rightarrow \overline{EQ_{TM}}$
 - DONE!

2. $\overline{EQ_{TM}}$ is not co-Turing-recognizable
 - (A lang is co-Turing-recog. if it is complement of Turing-recog. lang)
Prev: EQ_{TM} is not Turing-recognizable

$EQ_{TM} = \{ (M_1, M_2) \mid M_1$ and M_2 are TMs and $L(M_1) = L(M_2) \}$

- Create Computable fn: $A_{TM} \rightarrow EQ_{TM}$
 - $\langle M, w \rangle \rightarrow \langle M_1, M_2 \rangle$ M_1 and M_2 are TMs and $L(M_1) \neq L(M_2)$

$F = \text{“On input } \langle M, w \rangle, \text{ where } M \text{ is a TM and } w \text{ a string:}\
 1. \text{Construct the following two machines, } M_1 \text{ and } M_2.\
 M_1 = \text{“On any input: Reject.”}\
 1. \text{Reject.”}\
 M_2 = \text{“On any input:}\
 1. \text{Run } M \text{ on } w. \text{ If it accepts, accept.”}\
 2. \text{Output } \langle M_1, M_2 \rangle.\text{”}\

DONE!
Now: $\overline{E_{TM}}$ is not Turing-recognizable

$E_{TM} = \{ \langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

- Create Computable fn: $A_{TM} \rightarrow \overline{E_{TM}}$
- $\langle M, w \rangle \rightarrow \langle M_1, M_2 \rangle$ M_1 and M_2 are TMs and $L(M_1) \neq L(M_2)$

$F = \text{“On input } \langle M, w \rangle, \text{ where } M \text{ is a TM and } w \text{ a string:} \$

1. Construct the following two machines, M_1 and M_2.
 $M_1 = \text{“On any input:} \rightarrow \text{Accept.”}$
 $M_2 = \text{“On any input:} \rightarrow \text{Accept nothing or everything}$

2. Output $\langle M_1, M_2 \rangle.$
Unrecognizable Languages

\[\overline{A_{TM}} \subseteq EQ_{TM} \]

- Turing-recognizable
- Decidable
- Context-free
- Regular
Check-in Quiz 4/7

On gradescope