NP

Monday, April 26, 2021
Announcements

• HW10 due Tues 4/27 11:59pm EST

• HW11 out soon
 • Due Tues 5/4 11:59pm EST

• **Reminder:** Submitted HW must be in your own words
 • Not “your own words”: Submitting answers from the internet
 • Not “your own words”: Changing variables / rearranging sentences
 • Suggestion: Looking into “clean room” design
Last Time: Polynomial Time (P)

Definition 7.12

P is the class of languages that are decidable in polynomial time on a deterministic single-tape Turing machine. In other words,

$$P = \bigcup_k \text{TIME}(n^k).$$

- Roughly corresponds to **solvable vs unsolvable** problems:
 - Problems in P = “solvable”
 - Problems outside P = “unsolvable”
Today: Search vs Verification

- **Search** problems are often **unsolvable**
- But, **verification** of search results is usually **solvable**

Examples

- Factoring
 - **Unsolvable**: Find factors of 8633
 - **Solvable**: Verify 89 and 97 are factors of 8633

- Passwords
 - **Unsolvable**: Find my umb.edu password
 - **Solvable**: Verify whether my umb.edu password is ... "correct horse battery staple"
Last Time: The \textit{PATH} Problem

\[
\text{PATH} = \{ \langle G, s, t \rangle \mid G \text{ is a directed graph that has a directed path from } s \text{ to } t \}\]

- The \textbf{search} problem:
 - Exponential time (brute force) algorithm \((n^n)\):
 - Check all possible paths and see if any connects \(s\) and \(t\)
 - Polynomial time algorithm:
 - Do a breadth-first search (roughly), marking "seen" nodes as we go

\begin{proof}
A polynomial time algorithm \(M\) for \textit{PATH} operates as follows.

\(M = \text{"On input } \langle G, s, t \rangle, \text{ where } G \text{ is a directed graph with nodes } s \text{ and } t:\)

1. Place a mark on node \(s\).
2. Repeat the following until no additional nodes are marked:
3. Scan all the edges of \(G\). If an edge \((a, b)\) is found going from a marked node \(a\) to an unmarked node \(b\), mark node \(b\).
4. If \(t\) is marked, accept. Otherwise, reject."
\end{proof}
Verifying a \textit{PATH} \\

\textit{PATH} = \{(G, s, t)| G \text{ is a directed graph that has a directed path from } s \text{ to } t\}

• **The verification problem:**
 • Given some path \(p \) in \(G \), check that it is a path from \(s \) to \(t \)
 • Let \(m = \text{longest possible path} = \# \text{ edges in } G \)
 • **Verifier** \(V = \text{On input } <G, s, t, p>, \text{ where } p \text{ is some set of edges:} \)
 1. Check some edge in \(p \) has “from” node \(s \); mark and set it as “current” edge
 • Max steps = \(O(m) \)
 2. Loop: While there remains unmarked edges in \(p \):
 a) Find the “next” edge in \(p \), whose “from” node is the “to” node of “current” edge
 b) If found, then mark that edge and set it as “current”, else reject
 • Each loop: Max steps \(O(m) \)
 • \# loops: at most \(m \) times
 • Total looping time = \(O(m^2) \)
 3. Check “current” edge has “to” node \(t \); if yes accept, else reject

• Total time = \(O(m) + O(m^2) = O(m^2) = \text{polynomial in } m \)

\textbf{NOTE: extra argument } p \textbf{PATH can be verified in polynomial time}
Verifiers, Formally

\[\text{PATH} = \{ \langle G, s, t \rangle \mid G \text{ is a directed graph that has a directed path from } s \text{ to } t \} \]

Definition 7.18

A verifier for a language \(A \) is an algorithm \(V \), where

\[A = \{ w \mid V \text{ accepts } \langle w, c \rangle \text{ for some string } c \}. \]

We measure the time of a verifier only in terms of the length of \(w \), so a polynomial time verifier runs in polynomial time in the length of \(w \). A language \(A \) is **polynomially verifiable** if it has a polynomial time verifier.

- **NOTE**: a cert \(c \) must be at most length \(n^k \), where \(n = \text{length of } w \)
 - Why?
- So \(\text{PATH} \) is polynomially verifiable
The **HAMPATH** Problem

- A Hamiltonian path goes through every node in the graph

The Search problem:
- Exponential time (brute force) algorithm:
 - Check all possible paths and see if any connect \(s \) and \(t \) using all nodes
- Polynomial time algorithm:
 - We don’t know if there is one!!!

The Verification problem:
- Still \(\mathcal{O}(m^2) \)!
- \(HAMPATH \) is polynomially verifiable, but **not** polynomially decidable
The class **NP**

- *PATH* is in **NP**, and **P**
- *HAMPATH* is in **NP**, but not **P**
NP = **Nondeterministic polynomial time**

Definition 7.19

NP is the class of languages that have polynomial time verifiers.

Theorem 7.20

A language is in NP iff it is decided by some nondeterministic polynomial time Turing machine.

=> If a lang \(L \) is in NP, then we know it has a poly time verifier \(V \)

- **Need to**: Create NTM deciding \(L \): on input \(w = \)
 - Nondeterministically run \(V \) with \(w \) and all possible certificates \(c \)

<= If \(L \) has NTM decider \(N \),

- **Need to**: show \(L \) is in NP, ie it has polytime verifier \(V \): on input \(<w, c> = \)
 - Convert \(N \) to deterministic TM, and run it on \(w \), but take only one computation path
 - Let certificate \(c \) dictate which computation path to follow
P vs NP

Definition 7.7
Let \(t : \mathbb{N} \rightarrow \mathbb{R}^+ \) be a function. Define the time complexity class, \(\text{TIME}(t(n)) \), to be the collection of all languages that are decidable by an \(O(t(n)) \) time Turing machine.

Definition 7.12
P is the class of languages that are decidable in polynomial time on a deterministic single-tape Turing machine. In other words,
\[
P = \bigcup_k \text{TIME}(n^k).
\]

Definition 7.21
\(\text{NTIME}(t(n)) = \{ L \mid L \text{ is a language decided by an } O(t(n)) \text{ time nondeterministic Turing machine} \}. \)

Corollary 7.22
\[
\text{NP} = \bigcup_k \text{NTIME}(n^k).
\]
More **NP** Problems

- **CLIQUE** $= \{\langle G, k \rangle \mid G$ is an undirected graph with a k-clique$\}$
 - A clique is a subgraph where every two nodes are connected
 - A k-clique contains k nodes

- **SUBSET-SUM** $= \{\langle S, t \rangle \mid S = \{x_1, \ldots, x_k\}$, and for some\n \[\{y_1, \ldots, y_l\} \subseteq \{x_1, \ldots, x_k\}, \text{ we have } \sum y_i = t\} \}$
Theorem: **CLIQUE is in NP**

\[\text{CLIQUE} = \{ \langle G, k \rangle \mid G \text{ is an undirected graph with a } k\text{-clique} \} \]

Proof Idea The clique is the certificate.

Proof The following is a **verifier** \(V \) for **CLIQUE**.

\(V = \text{"On input } \langle \langle G, k \rangle, c \rangle:\)

1. Test whether \(c \) is a subgraph with \(k \) nodes in \(G \). \(O(k) \)
2. Test whether \(G \) contains all edges connecting nodes in \(c \). \(O(k^2) \)
3. If both pass, accept; otherwise, reject.”

Definition 7.18 A **verifier** for a language \(A \) is an algorithm \(V \), where

\[A = \{ w \mid V \text{ accepts } \langle w, c \rangle \text{ for some string } c \} \]

We measure the time of a verifier only in terms of the length of \(w \), so a **polynomial time verifier** runs in polynomial time in the length of \(w \). A language \(A \) is **polynomially verifiable** if it has a polynomial time verifier.

Definition 7.19 \(\text{NP} \) is the class of languages that have polynomial time verifiers.
Proof 2: \textbf{CLIQUE} is in NP

\[\text{CLIQUE} = \{ \langle G, k \rangle | \text{G is an undirected graph with a } k\text{-clique} \} \]

\[N = \text{“On input } \langle G, k \rangle \text{, where } G \text{ is a graph:} \]
\[\begin{align*}
1. & \quad \text{Nondeterministically select a subset } c \text{ of } k \text{ nodes of } G. \\
2. & \quad \text{Test whether } G \text{ contains all edges connecting nodes in } c. \\
3. & \quad \text{If yes, } \text{accept}; \text{ otherwise, } \text{reject.”} \\
\end{align*} \]

To prove a lang } L \text{ is in NP, create either a:}
- **Deterministic** poly time verifier
- **Nondeterministic** poly time decider

\text{THEOREM 7.20}

A language is in NP iff it is decided by some nondeterministic polynomial time Turing machine.
More **NP** Problems

- **CLIQUE** = \{⟨G, k⟩\} | G is an undirected graph with a k-clique
 - A clique is a subgraph where every two nodes are connected
 - A k-clique contains k nodes

- **SUBSET-SUM** = \{⟨S, t⟩\} \ S = \{x_1, \ldots, x_k\}, and for some
 \ \{y_1, \ldots, y_l\} ≤ \{x_1, \ldots, x_k\}, we have \(\Sigma y_i = t\)
 - Some subset of a set of numbers S must sum to some total t
 - e.g., \{4, 11, 16, 21, 27\}, 25 \in **SUBSET-SUM**

\[\text{Graph Image}\]
Theorem: \textit{SUBSET-SUM is in NP}

\[\text{SUBSET-SUM} = \{ \langle S, t \rangle \mid S = \{ x_1, \ldots, x_k \}, \text{ and for some } \{ y_1, \ldots, y_l \} \subseteq \{ x_1, \ldots, x_k \}, \text{ we have } \sum y_i = t \} \]

Proof Idea The subset is the certificate.

To prove a lang is in NP, create either:
- Deterministic poly time verifier
- Nondeterministic poly time decider

Proof The following is a verifier \(V \) for \textit{SUBSET-SUM}.

\(V = \) “On input \(\langle \langle S, t \rangle, c \rangle \):
1. Test whether \(c \) is a collection of numbers that sum to \(t \).
2. Test whether \(S \) contains all the numbers in \(c \).
3. If both pass, \textit{accept}; otherwise, \textit{reject}.”

Alternative Proof We can also prove this theorem by giving a nondeterministic polynomial time Turing machine for \textit{SUBSET-SUM} as follows.

\(N = \) “On input \(\langle S, t \rangle \):
1. Nondeterministically select a subset \(c \) of the numbers in \(S \).
2. Test whether \(c \) is a collection of numbers that sum to \(t \).
3. If the test passes, \textit{accept}; otherwise, \textit{reject.”}
COMPOSITES = \{x \mid x = pq, \text{ for integers } p, q > 1\}

• A composite number is not prime

• COMPOSITES is polynomially verifiable
 • i.e., it’s in NP
 • i.e., factorability is in NP

• A certificate could be:
 • Some factor that is not 1

• Checking existence of factors (or not, i.e., testing primality) ...
 • ... is also poly time
 • But only discovered recently (2002)
Question: Does $P = NP$?

One of the greatest unsolved mysteries in science

$P = NP$

$P \text{ vs } \text{NP}$

PATH

P

CLIQUE

HAMPATH

COMPOSITES

How do you prove an algorithm doesn’t have a poly time algorithm? (in general it’s hard to prove that something doesn’t exist)
Implications if $P = NP$

- Every problem with a “brute force” solution also has an efficient solution

- I.e., “unsolvable” problems are “solvable”

BAD:
- Cryptography needs unsolvable problems
- Near perfect AI learning, recognition

GOOD: Optimization problems are solved
- Overcrowding or world hunger solved?
- Abundant energy resources?
Progress on whether $P = NP$?

• Some, but still not close

The Status of the P Versus NP Problem

By Lance Fortnow
Communications of the ACM, September 2009, Vol. 52 No. 9, Pages 78-86
10.1145/1562164.1562186

• One important concept discovered:
 • NP-Completeness (next time)
Next time: NP-Completeness

Definition 7.34
A language B is **NP-complete** if it satisfies two conditions:
1. B is in NP, and
2. every A in NP is polynomial time reducible to B.

- How does this help the $P = NP$ problem?

Theorem 7.35
If B is NP-complete and $B \in P$, then $P = NP$
Check-in Quiz 4/26
On gradescope