CS420
Combining Automata & Regular Languages
Monday, January 31, 2022
UMass Boston Computer Science
Announcements

• HW 0 in

• HW 1 out
 • Due Sun 2/6 11:59pm
Last Time: Alphabets, Strings, Languages

• An alphabet is a non-empty finite set of symbols
 \[\Sigma_1 = \{0,1\} \]
 \[\Sigma_2 = \{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z\} \]

• A string is a finite sequence of symbols from an alphabet
 \[01001 \quad \text{abracadabra} \quad \varepsilon \]
 Empty string (length 0)

• A language is a set of strings
 \[A = \{\text{good, bad}\} \]
 \[\emptyset \quad \{\} \]
 Empty set is a language
 \[A = \{w \mid w \text{ contains at least one 1 and an even number of 0s, follow the last 1}\} \]
 Languages can be infinite
 “the set of all ...”
 “such that ...”
Last Time: Computers and Languages

- The **language of a machine** is the set of all strings that it accepts.

E.g.,
- An DFA $M = (Q, \Sigma, \delta, q_0, F)$ **accepts** string w if $\hat{\delta}(q_0, w) \in F$

- M **recognizes** the language $L(M) = \{w \mid M \text{ accepts } w\}$
Last Time: Regular Languages

A language is called a **regular language** if some finite automaton recognizes it.
Last Time: Finite State Automaton, a.k.a. DFAs

A finite automaton is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set called the states,
2. \(\Sigma\) is a finite set called the alphabet,
3. \(\delta: Q \times \Sigma \rightarrow Q\) is the transition function,\(^1\)
4. \(q_0 \in Q\) is the start state, and
5. \(F \subseteq Q\) is the set of accept states.

Key characteristic:
- Has a **finite** number of states
- I.e., a computer or program with access to a single cell of memory,
 - Where: \# states = the possible symbols that can be written to memory

Often used for text matching
Combining DFAs?

Password Requirements

» Passwords must have a minimum length of ten (10) characters - but more is better!
» Passwords **must include at least 3** different types of characters:
 » upper-case letters (A-Z)
 » lower-case letters (a-z)
 » symbols or special characters (%, &, *, $, etc.)
 » numbers (0-9)
» Passwords cannot contain all or part of your email address
» Passwords cannot be re-used

To match all requirements, combine smaller DFAs into one big DFA?

https://www.umb.edu/it/password
Password Checker DFAs

- M_1: Check special chars
- M_2: Check uppercase
- M_3: OR
- M_4: Check length
- M_5: AND

Want to be able to easily combine DFAs

We want:
OR, AND : DFA \times DFA \rightarrow DFA

To combine more than once, operations must be closed!
“Closed” Operations

- Set of Natural numbers = \{0, 1, 2, ...\}
 - Closed under addition:
 - if \(x\) and \(y\) are Natural numbers,
 - then \(z = x + y\) is a Natural number
 - Closed under multiplication?
 - yes
 - Closed under subtraction?
 - no

- Integers = {..., -2, -1, 0, 1, 2, ...}
 - Closed under addition and multiplication
 - Closed under subtraction?
 - yes
 - Closed under division?
 - no

- Rational numbers = \{\(x\mid x = y/z, y \text{ and } z \text{ are Integers}\}\}
 - Closed under division?
 - No?
 - Yes if \(z \neq 0\)

A set is **closed** under an operation if: the result of applying the operation to members of the set is in the same set.
Why Care About Closed Ops on Reg Langs?

- Closed operations preserve “regularness”

- I.e., it preserves the same computation model!

- This way, a “combined” machine can be “combined” again!

We want:
OR, AND : DFA × DFA → DFA
Password Checker: “OR” = “Union”

M_3: OR

M_1: Check special chars

M_2: Check uppercase
Password Checker: “OR” = “Union”

\[M_3: \text{OR} \]

\[M_1: \text{Check special chars} \]

\[M_2: \text{Check uppercase} \]
Union of Languages

Let the alphabet Σ be the standard 26 letters \{a, b, \ldots, z\}.

If $A = \{\text{good, bad}\}$ and $B = \{\text{boy, girl}\}$, then

$$A \cup B = \{\text{good, bad, boy, girl}\}$$
A Closed Operation: Union

THEOREM

The class of regular languages is closed under the union operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

- How do we prove that a language is regular?
 - Create a DFA recognizing it!
- So to **prove** this theorem ... create a DFA that recognizes $A_1 \cup A_2$
Want: M

M_1 recognizes A_1

M_2 recognizes A_2

Rough sketch Idea: M is a combination of M_1 and M_2 that “runs” its input on both M_1 and M_2 in parallel.

M needs to be “in” both an M_1 and M_2 state simultaneously.

And then accept if either accepts.

The class of regular languages is closed under the union operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.
Union is Closed For Regular Languages

Proof

- Given:
 \[M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1), \text{ recognize } A_1, \]
 \[M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2), \text{ recognize } A_2, \]

- Construct: a **new** machine \(M = (Q, \Sigma, \delta, q_0, F) \) using \(M_1 \) and \(M_2 \)

- states of \(M \):
 \[Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2 \]
 This set is the **Cartesian product** of sets \(Q_1 \) and \(Q_2 \)

THEOREM

The class of regular languages is closed under the union operation.

In other words, if \(A_1 \) and \(A_2 \) are regular languages, so is \(A_1 \cup A_2 \).

Idea: \(M \) “runs” its input on both \(M_1 \) and \(M_2 \) in parallel

A **finite automaton** is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q \) is a finite set called the **states**,
2. \(\Sigma \) is a finite set called the **alphabet**,
3. \(\delta : Q \times \Sigma \rightarrow Q \) is the **transition function**,
4. \(q_0 \in Q \) is the **start state**, and
5. \(F \subseteq Q \) is the set of **accept states**.
Union is Closed For Regular Languages

Theorem

The class of regular languages is closed under the union operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Proof

- **Given:**
 \[M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1), \text{ recognize } A_1, \]
 \[M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2), \text{ recognize } A_2, \]

- **Construct:** a **new machine** $M = (Q, \Sigma, \delta, q_0, F)$ using M_1 and M_2

- **states of M:**
 \[Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2 \]
 This set is the *Cartesian product* of sets Q_1 and Q_2

A **finite automaton** is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where
\[(q) = (\delta_1(r_1, a), \delta_2(r_2, a)) \]

- a step in M_1, a step in M_2

1. Q is a finite set called the **states**,
2. Σ is a finite set called the **alphabet**,
3. $\delta: Q \times \Sigma \rightarrow Q$ is the **transition function**,
4. $q_0 \in Q$ is the **start state**, and
5. $F \subseteq Q$ is the **set of accept states**.
Theorem: The class of regular languages is closed under the union operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Proof:
- Given: $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$, recognize A_1,
 $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$, recognize A_2,
- Construct: a new machine $M = (Q, \Sigma, \delta, q_0, F)$ using M_1 and M_2

 - states of M: $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$
 - This set is the Cartesian product of sets Q_1 and Q_2

 - M transition fn: $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$
 a step in M_1, a step in M_2

 - M start state: (q_1, q_2)
Union is Closed For Regular Languages

Proof

- Given: \(M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1) \), recognize \(A_1 \),
 \(M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2) \), recognize \(A_2 \),

- Construct: a **new** machine \(M = (Q, \Sigma, \delta, q_0, F) \) using \(M_1 \) and \(M_2 \)

- **states of** \(M \): \(Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2 \)

 This set is the **Cartesian product** of sets \(Q_1 \) and \(Q_2 \)

- **\(M \) transition fn:** \(\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a)) \)

 a step in \(M_1 \), a step in \(M_2 \)

- **\(M \) start state:** \((q_1, q_2)\)

- **\(M \) accept states:** \(F = \{(r_1, r_2) | r_1 \in F_1 \text{ or } r_2 \in F_2\} \)

 Accept if **either** \(M_1 \) or \(M_2 \) accept

THEOREM

The class of regular languages is closed under the union operation.

In other words, if \(A_1 \) and \(A_2 \) are regular languages, so is \(A_1 \cup A_2 \).
Another operation: Concatenation

Example: Recognizing street addresses

212 Beacon Street

\[M_3: \text{CONCAT} \]

\[M_1: \text{recognize numbers} \]

\[M_2: \text{recognize words} \]
Concatenation of Languages

Let the alphabet Σ be the standard 26 letters \{a, b, \ldots, z\}.
If $A = \{\text{good, bad}\}$ and $B = \{\text{boy, girl}\}$, then

$$A \circ B = \{\text{goodboy, goodgirl, badboy, badgirl}\}$$
Is Concatenation Closed?

THEOREM

The class of regular languages is closed under the concatenation operation.

In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$.

- Construct a **new** machine M recognizing $A_1 \circ A_2$? (like union)
 - From DFA M_1 (which recognizes A_1),
 - and DFA M_2 (which recognizes A_2)
Let M_1 recognize A_1, and M_2 recognize A_2.

Want: Construction of M to recognize $A_1 \circ A_2$

Problem: Can only read input once, can't backtrack

Need to switch machines at some point, but when?
Overlapping Concatenation Example

- Let M_1 recognize language $A = \{ab, abc\}$
- And M_2 recognize language $B = \{cde\}$
- Want: Construct M to recognize $A \circ B = \{abcde, abccde\}$

- But if M sees ab as first part of input ...
- M must decide to either:
Overlapping Concatenation Example

- Let M_1 recognize language $A = \{ab, abc\}$
- And M_2 recognize language $B = \{cde\}$
- Want: Construct M to recognize $A \circ B = \{abcde, abccde\}$

- But if M sees ab as first part of input ...
- M must decide to either:
 - stay in M_1 (correct, if full input is $abcde$)
 - or switch to M_2 (correct, if full input is $abccde$)
- But it needs to handle both cases!

Concatenation: $A \circ B = \{xy \mid x \in A \text{ and } y \in B\}$
Nondeterminism
Deterministic vs Nondeterministic

Deterministic computation

- start

... states

- accept or reject

DFAs
Deterministic vs Nondeterministic

Deterministic computation

- start

states

accept or reject

DFAs

Nondeterministic computation

- reject

Nondeterministic computation can be in multiple states at the same time

- accept

New FA
Nondeterministic Finite Automata (NFA)

Definition

A *nondeterministic finite automaton* is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set of states,
2. \(\Sigma\) is a finite alphabet,
3. \(\delta: Q \times \Sigma \rightarrow \mathcal{P}(Q)\) is the transition function,
4. \(q_0 \in Q\) is the start state, and
5. \(F \subseteq Q\) is the set of accept states.

Compare with DFA:

A *finite automaton* is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set called the *states*,
2. \(\Sigma\) is a finite set called the *alphabet*,
3. \(\delta: Q \times \Sigma \rightarrow Q\) is the *transition function*,
4. \(q_0 \in Q\) is the *start state*, and
5. \(F \subseteq Q\) is the *set of accept states*.

Difference

Power set, i.e. a transition results in set of states
Power Sets

• A power set is the set of all subsets of a set

• Example: $S = \{a, b, c\}$

• Power set of $S =$
 • $\{\{\}, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$
 • Note: includes the empty set!
Nondeterministic Finite Automata (NFA)

Definition

A *nondeterministic finite automaton* is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set of states,
2. \(\Sigma\) is a finite alphabet,
3. \(\delta: Q \times \Sigma_e \rightarrow \mathcal{P}(Q)\) is the transition function,
4. \(q_0 \in Q\) is the start state, and
5. \(F \subseteq Q\) is the set of accept states.

Transition label can be “empty”, i.e., machine can transition without reading input

\[
\Sigma_e = \Sigma \cup \{\varepsilon\}
\]
NFA Example

• Come up with a formal description of the following NFA:

DEFINITION

A **nondeterministic finite automaton** is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set of states,
2. \(\Sigma\) is a finite alphabet,
3. \(\delta: Q \times \Sigma_e \rightarrow \mathcal{P}(Q)\) is the transition function,
4. \(q_0 \in Q\) is the start state, and
5. \(F \subseteq Q\) is the set of accept states.
The formal description of N_1 is $(Q, \Sigma, \delta, q_1, F)$, where

1. $Q = \{q_1, q_2, q_3, q_4\}$,
2. $\Sigma = \{0,1\}$,
3. δ is given as

\[
\begin{array}{c|ccc}
 & 0 & 1 & \varepsilon \\
\hline
q_1 & \{q_1\} & \{q_1, q_2\} & \emptyset \\
q_2 & \{q_3\} & \emptyset & \{q_3\} \\
q_3 & \emptyset & \{q_4\} & \emptyset \\
q_4 & \{q_4\} & \{q_4\} & \emptyset \\
\end{array}
\]

- **Empty transition** (no input read)
- **Result of transition is a set**

4. q_1 is the start state, and
5. $F = \{q_4\}$.

- **Multiple 1 transitions**
- **No 0 transition**
Next Time: Running Programs, NFAs (JFLAP demo): 010110
Check-in Quiz 1/31

On gradescope