A **nondeterministic finite automaton** is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set of states,
2. \(\Sigma\) is a finite alphabet,
3. \(\delta: Q \times \Sigma \longrightarrow \mathcal{P}(Q)\) is the transition function,
4. \(q_0 \in Q\) is the start state, and
5. \(F \subseteq Q\) is the set of accept states.

A **finite automaton** is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set called the **states**,
2. \(\Sigma\) is a finite set called the **alphabet**,
3. \(\delta: Q \times \Sigma \longrightarrow Q\) is the **transition function**,
4. \(q_0 \in Q\) is the **start state**, and
5. \(F \subseteq Q\) is the **set of accept states**.
Announcements

• HW 1 in

• HW 2 out
 • Due Sun 2/13 11:59pm EST

• Ask HW questions publicly on Piazza
 • So the entire class can participate and benefit from the discussion
 • (Make it anonymous if you want to)

• Tip: Designing a machine = programming
Last Time

Let N_1 recognize A_1, and N_2 recognize A_2.

Want: Construction of N to recognize $A_1 \circ A_2$

$\epsilon =$ “empty transition” = reads no input

Allows NFA N to be “in” both machines at once

Does this prove concatenation is closed for regular languages?
Flashback: A DFA’s Language

• For DFA $M = (Q, \Sigma, \delta, q_0, F)$

• M accepts w if $\hat{\delta}(q_0, w) \in F$

• M recognizes language A if $A = \{w | M$ accepts $w\}$

Definition: A language is a regular language if a DFA recognizes it
An NFA’s Language

• For NFA $N = (Q, \Sigma, \delta, q_0, F)$

• N accepts w if $\hat{\delta}(q_0, w) \cap F \neq \emptyset$
 • i.e., if the final states have at least one accept state

• Language of $N = L(N) = \{ w \mid \hat{\delta}(q_0, w) \cap F \neq \emptyset \}$

Q: How does an NFA’s language relate to regular languages?
All we know so far: A language is regular if a DFA recognizes it
So is Concatenation Closed for Reg Langs?

• Concatenation of DFAs produces an NFA

• But a language is only regular if a DFA recognizes it

• To finish the proof that concat is closed ...
 ... we must prove that NFAs also recognize regular languages.

Specifically, we must prove:

NFAs \Leftrightarrow regular languages
How to Prove a Statement: $X \Leftrightarrow Y$

- $X \Leftrightarrow Y = \text{“} X \text{ if and only if } Y \text{”} = X \text{ iff } Y = X \leftrightarrow Y$
- Proof at minimum has 2 required parts:
 1. \Rightarrow if X, then Y
 - “forward” direction
 - assume X, then use it to prove Y
 2. \Leftarrow if Y, then X
 - “reverse” direction
 - assume Y, then use it to prove X
Proving NFAs Recognize Regular Langs

Theorem:
A language L is regular if and only if some NFA N recognizes L.

Proof:
⇒ If L is regular, then some NFA N recognizes it.
 • Easier
 • We know: if L is regular, then a DFA exists that recognizes it.
 • So to prove this part: Convert that DFA to an equivalent NFA! (see HW 2)

⇐ If an NFA N recognizes L, then L is regular.
 • Harder
 • We know: for L to be regular, there must be a DFA recognizing it
 • Proof Idea for this part: Convert given NFA N to an equivalent DFA

“equivalent” = “recognizes the same language”
How to convert NFA→DFA?

A finite automaton is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set called the states,
2. \(\Sigma\) is a finite set called the alphabet,
3. \(\delta: Q \times \Sigma \rightarrow Q\) is the transition function,
4. \(q_0 \in Q\) is the start state, and
5. \(F \subseteq Q\) is the set of accept states.

A nondeterministic finite automaton is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set of states,
2. \(\Sigma\) is a finite alphabet,
3. \(\delta: Q \times \Sigma_\epsilon \rightarrow \mathcal{P}(Q)\) is the transition function,
4. \(q_0 \in Q\) is the start state, and
5. \(F \subseteq Q\) is the set of accept states.

Proof idea:
Let each “state” of the DFA be a set of states in the NFA.
In a DFA, all these states at each step of NFA computation must be only one state.

So design a state in the DFA to be a set of NFA states!

This is similar to the proof strategy from “Closure of union” where: a state = a pair of states.
Convert NFA→DFA, Formally

- Let NFA $N = (Q, \Sigma, \delta, q_0, F)$

- An equivalent DFA M has states $Q' = \mathcal{P}(Q)$ (power set of Q)
Example:

The NFA N_4

A DFA D that is equivalent to the NFA N_4
NFA→DFA

Have: NFA \(N = (Q, \Sigma, \delta, q_0, F) \)

Want: DFA \(M = (Q', \Sigma, \delta', q_0', F') \)

1. \(Q' = \mathcal{P}(Q) \)
 - A state for \(M \) is a set of states in \(N \)

2. For \(R \in Q' \) and \(a \in \Sigma \),
 \[
 \delta'(R, a) = \bigcup_{r \in R} \delta(r, a)
 \]
 - \(R = \) a state in \(M = \) a set of states in \(N \)
 - Next state for DFA state \(R = \) next states of each NFA state \(r \) in \(R \)

3. \(q_0' = \{q_0\} \)

4. \(F' = \{R \in Q' | \ R \text{ contains an accept state of } N\} \)
Flashback: Adding Empty Transitions

- Define the set ε-REACHABLE(q)
 - ... to be all states reachable from q via zero or more empty transitions

(Defined recursively)

- **Base case:** $q \in \varepsilon$-REACHABLE(q)

- **Inductive case:**

 \[
 \varepsilon$-REACHABLE($q$) = \{ r \mid p \in \varepsilon$-REACHABLE($q$) and $r \in \delta(p, \varepsilon) \}\]

A state is in the reachable set if...

... there is an empty transition to it from another state in the reachable set
NFA → DFA

Have: NFA $N = (Q, \Sigma, \delta, q_0, F')$

Want: DFA $M = (Q', \Sigma, \delta', q_0', F')$

1. $Q' = \mathcal{P}(Q)$

2. For $R \in Q'$ and $a \in \Sigma$,
 \[
 \delta'(R, a) = \bigcup_{r \in R} \delta(r, a) \cup \varepsilon\text{-REACHABLE}(\delta(r, a))
 \]

3. $q_0' = \varepsilon\text{-REACHABLE}(q_0)$

4. $F' = \{R \in Q' | R \text{ contains an accept state of } N\}$

With empty transitions

Almost the same, except ...

Requires extending the fn to sets of states (see HW 2)
Proving NFAs Recognize Regular Langs

Theorem:
A language L is regular if and only if some NFA N recognizes L.

Proof:
⇒ If L is regular, then some NFA N recognizes it.
 • We know: If L is regular, then a DFA recognizes it.
 • We show: How to convert a DFA to an equivalent NFA

⇐ If an NFA N recognizes L, then L is regular.
 • We know: For L to be regular, there must be a DFA recognizing it
 • We show: How to convert NFA N to an equivalent DFA ...
 • ... using the NFA→DFA algorithm we just defined!
Flashback: Union is Closed For Regular Langs

Theorem

The class of regular languages is closed under the union operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Proof:

• How do we prove that a language is regular?
 • Create a DFA or NFA recognizing it!

• Create machine combining the machines recognizing A_1 and A_2
 • Should we create a DFA or NFA?
Flashback: Union is Closed For Regular Langs

Proof

- **Given:**
 \[M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1), \text{ recognize } A_1, \]
 \[M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2), \text{ recognize } A_2, \]

- **Construct:** a **new machine** \(M = (Q, \Sigma, \delta, q_0, F) \) using \(M_1 \) and \(M_2 \)

- **states of** \(M \):
 \[Q = \{ (r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2 \} = Q_1 \times Q_2 \]
 This set is the **Cartesian product** of sets \(Q_1 \) and \(Q_2 \)

- **\(M \) transition fn:**
 \[\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a)) \]

- **\(M \) start state:**
 \[(q_1, q_2) \]

- **\(M \) accept states:**
 \[F = \{ (r_1, r_2) | r_1 \in F_1 \text{ or } r_2 \in F_2 \} \]

\[M \text{ step} = \text{a step in } M_1 + \text{a step in } M_2 \]

State in \(M = M_1 \text{ state + } M_2 \text{ state} \)

Accept if either \(M_1 \) or \(M_2 \) accept
Union is Closed for Regular Languages
Union is Closed for Regular Languages

PROOF

Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1, and $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2.

Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize $A_1 \cup A_2$.

1. $Q = \{q_0\} \cup Q_1 \cup Q_2$.
2. The state q_0 is the start state of N.
3. The set of accept states $F = F_1 \cup F_2$.

Alternate Proof, with NFAs
Union is Closed for Regular Languages

PROOF

Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1, and $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2.

Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize $A_1 \cup A_2$.

1. $Q = \{q_0\} \cup Q_1 \cup Q_2$.

2. The state q_0 is the start state of N.

3. The set of accept states $F = F_1 \cup F_2$.

4. Define δ so that for any $q \in Q$ and any $a \in \Sigma$,

$$
\delta(q, a) = \begin{cases}
\delta_1(q, a) & q \in Q_1 \\
\delta_2(q, a) & q \in Q_2 \\
\{q_1 ? q_2\} & q = q_0 \text{ and } a = \varepsilon \\
\emptyset & q = q_0 \text{ and } a \neq \varepsilon
\end{cases}
$$
Concatenation is Closed for Regular Langs

Proof

Let \(N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1) \) recognize \(A_1 \), and
\(N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2) \) recognize \(A_2 \).

Construct \(N = (Q, \Sigma, \delta, q_1, F_1) \) to recognize \(A_1 \circ A_2 \)

1. \(Q = Q_1 \cup Q_2 \)

2. The state \(q_1 \) is the same as the start state of \(N_1 \)

3. The accept states \(F_2 \) are the same as the accept states of \(N_2 \)

4. Define \(\delta \) so that for any \(q \in Q \) and any \(a \in \Sigma_\varepsilon \),

\[
\delta(q, a) = \begin{cases}
\delta_1(q, a) & q \in Q_1 \text{ and } q \notin F_1 \\
\delta_1(q, a) & q \in F_1 \text{ and } a \neq \varepsilon \\
\delta_1(q, a) \cup \{q_2\} & q \in F_1 \text{ and } a = \varepsilon \\
\delta_2(q, a) & q \in Q_2.
\end{cases}
\]
List of Closed Ops for Reg Langs (so far)

- Union
- Concatentation
 - Kleene Star (repetition)
Kleene Star Example

Let the alphabet Σ be the standard 26 letters $\{a, b, \ldots, z\}$.

If $A = \{\text{good, bad}\}$ and $B = \{\text{boy, girl}\}$, then

$$A^* = \{\varepsilon, \text{good, bad, goodgood, goodbad, badgood, badbad, goodgoodgood, goodgoodbad, goodbadgood, goodbadbad, \ldots}\}$$

Note: repeat zero or more times

(this is an infinite language!)
New start (and accept) state, ε-transitions to old start state

Old accept states ε-transition to old start state

Kleene Star
Kleene Star is Closed for Regular Langs

THEOREM

The class of regular languages is closed under the star operation.
Kleene Star is Closed for Regular Langs

Proof Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1. Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize A_1^\ast.

1. $Q = \{q_0\} \cup Q_1$

2. The state q_0 is the new start state.

3. $F = \{q_0\} \cup F_1$

Kleene star of a language must accept the empty string!
Kleene Star is Closed for Regular Langs

Proof Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1. Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize A_1^\ast.

1. $Q = \{q_0\} \cup Q_1$

2. The state q_0 is the new start state.

3. $F = \{q_0\} \cup F_1$

4. Define δ so that for any $q \in Q$ and any $a \in \Sigma$,

$$
\delta(q, a) = \begin{cases}
\delta_1(q, a) & q \in Q_1 \text{ and } q \notin F_1 \\
\delta_1(q, a) & q \in F_1 \text{ and } a \neq \epsilon \\
\delta_1(q, a) \cup \{q_1\} & q \in F_1 \text{ and } a = \epsilon \\
\{q_1\} & q = q_0 \text{ and } a = \epsilon \\
\emptyset & q = q_0 \text{ and } a \neq \epsilon.
\end{cases}
$$
Many More Closed Operations on Regular Languages!

- Complement
- Intersection
- Difference
- Reversal
- Homomorphism
- (See HW2)
Why do we care about these ops?

- Union
- Concat
- Kleene star

- They are sufficient to represent all regular languages!
- I.e., they define regular expressions
So Far: Regular Language Representations

1. State diagram (NFA/DFA)
 ![State Diagram]

2. Formal description
 1. \(Q = \{ q_1, q_2, q_3 \} \),
 2. \(\Sigma = \{ 0, 1 \} \),
 3. \(\delta \) is described as

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_1)</td>
<td>(q_1)</td>
</tr>
<tr>
<td>(q_2)</td>
<td>(q_3)</td>
</tr>
<tr>
<td>(q_3)</td>
<td>(q_2)</td>
</tr>
</tbody>
</table>

3. \(\Sigma^*001\Sigma^* \)

4. \(q_1 \) is the start state, and
5. \(F = \{ q_2 \} \).

A practical application: text search ... it doesn’t fit!

These define a computer (program) that finds strings containing 001

Need a more concise notation
Regular Expressions Are Widely Used

- Perl
- Python
- Java
- Every lang!
Regular Expressions: Formal Definition

A regular expression R is

1. a for some a in the alphabet Σ, (A lang containing a) length-1 string
2. ε, (A lang containing) the empty string
3. \emptyset, The empty set (i.e., a lang containing no strings)
4. $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions, union
5. $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions, or concat
6. (R_1^*), where R_1 is a regular expression, star

Base cases plus union, concat, and Kleene star can express any regular language! (But we have to prove it)
Regular Expression: Concrete Example

Entire reg expr: represents lang whose strings are strings from these langs concat’ed together (implicit concat op)

- the lang \{"0","1"\}
- \((0 \cup 1)0^*\)
- the lang \{"", "0", "00", ...
- the lang \{"0\"
- the lang \{"1\"

- Operator **Precedence:**
 - Paren
 - Star
 - Concat (sometimes implicit)
 - Union

R is a regular expression if \(R \) is

1. \(a \) for some \(a \) in the alphabet \(\Sigma \),
2. \(\varepsilon \),
3. \(\emptyset \),
4. \((R_1 \cup R_2)\), where \(R_1 \) and \(R_2 \) are regular expressions,
5. \((R_1 \circ R_2)\), where \(R_1 \) and \(R_2 \) are regular expressions, or
6. \((R_1^*)\), where \(R_1 \) is a regular expression.
Check-in Quiz 2/7

On gradescope