Deterministic CFLs, PDAs, and Parsing

Monday, February 28, 2022
Announcements

• HW 4 in

• HW 5 out
 • Due Sun March 6 11:59pm
 • Problems about PDAs

• Upcoming: Spring Break is week of March 14
Previously: CFLs, CFGs, and Parse Trees

Generating strings:
- Start with start variable,
- Repeatedly apply rules to get a string (and parse tree)

\[A \rightarrow 0A1 \]
\[A \rightarrow B \]
\[B \rightarrow \# \]

\[A \rightarrow 0A1 \rightarrow 00A11 \rightarrow 000A111 \rightarrow 000B111 \rightarrow 000\#111 \]
Today: Generating vs Parsing

Generating strings:
- **Start with start variable,**
- **Repeatedly apply rules** to get a string (and parse tree)

```
A → 0A1
A → B
B → #
```

```
A ⇒ 0A1 ⇒ 00A11 ⇒ 000A111 ⇒ 000B111 ⇒ 000#111
```

In practice, the opposite is more interesting: **start with a string,** then parse it into parse tree.
Generating vs Parsing

• In practice, **parsing** a string is more important than **generating** one
 • E.g., a **compiler’s first step** parses source code into a parse tree
 • (Actually, *any* program with string inputs must first parse it)

• But: the PDAs we’ve seen are **non-deterministic** (like NFAs)

• A compiler’s parsing algorithm must be **deterministic**

• **So:** to model parsers, we need a **Deterministic PDA (DPDA)**
Last time: (Nondeterministic) PDA

\[
S \rightarrow aTb \mid b \\
T \rightarrow Ta \mid \epsilon
\]

This PDA nondeterministically “tries all grammar rules at once”

A parser implementation can’t do this!
A deterministic pushdown automaton is a 6-tuple \((Q, \Sigma, \Gamma, \delta, q_0, F')\), where \(Q\), \(\Sigma\), \(\Gamma\), and \(F\) are all finite sets, and

1. \(Q\) is the set of states,
2. \(\Sigma\) is the input alphabet,
3. \(\Gamma\) is the stack alphabet,
4. \(\delta: Q \times \Sigma \times \Gamma \rightarrow (Q \times \Gamma) \cup \{\emptyset\}\) is the transition function,
5. \(q_0 \in Q\) is the start state, and
6. \(F \subseteq Q\) is the set of accept states.

A pushdown automaton is a 6-tuple

1. \(Q\) is the set of states,
2. \(\Sigma\) is the input alphabet,
3. \(\Gamma\) is the stack alphabet,
4. \(\delta: Q \times \Sigma \times \Gamma \rightarrow \mathcal{P}(Q \times \Gamma)\)
5. \(q_0 \in Q\) is the start state, and
6. \(F \subseteq Q\) is the set of accept states.

Difference: DPDA has only one possible action, for any given state, input, and stack op (similar to DFA vs NFA).

This must take into account \(\varepsilon\) reads or stack ops! E.g., if \(\delta(q, a, X)\) is valid, then \(\delta(q, \varepsilon, X)\) must not be.
DPDAs are **Not** Equivalent to PDAs!

A PDA non-deterministically "tries all rules" (abandoning failed attempts) but a DPDA must decide on one rule at each step!

Parsing = deriving reversed: start with string, end with parse tree

Don’t know which rule to use because we can’t see rest of the input!

PDAs recognize CFLs, but **DPDAs only recognize DCFLs!** (a subset of CFLs)
Subclasses of CFLs

Programming language parsers / compilers are ideally in here
Compiler Stages

A program string (chars) (e.g., \(a : = (5 + 3) ; \ldots \))

DFAs (recognizing regular languages) in here!

Lexer

Program “words” (e.g., \(\text{ID}(a) \text{ ASSIGN LPAREN NUM(5) PLUS NUM(3) RPAREN SEMI} \ldots \))
A Lexer Implementation

```c
{%
/* C Declarations */
#include "tokens.h" /* definitions of IF, ID, NUM, ... */
#include "errormsg.h"
union {int ival; string sval; double fval;} yylval;
int charPos=1;
define ADJ  (EM_tokPos=charPos, charPos+=yyleng)
%
/* Lex Definitions */
digits  [0-9]+%
/* Regular Expressions and Actions */
if
[a-z][a-z0-9]*
    {ADJ; return IF;}
{digits}
    {ADJ; yylval.ival=atoi(yytext);
     return ID;}
({digits}"."[0-9]*)|([0-9]*"."{digits})
    {ADJ; yylval.fval=atof(yytext);
     return NUM;}
("-"[a-z]*"\n")|(" "|"\n"|"\t")+
    {ADJ;}
. %
{ADJ; EM_error("illegal character");}
%
```
Compiler Stages

A program (chars) (e.g., \(a : = (5 + 3) ; \ldots \))

- **DFAs** (recognizing regular languages) in here!
- **DPDAs** (recognizing DCFLs) in here!

Lexer

Program “words” (e.g., \(\text{ID}(a) \text{ ASSIGN LPAREN NUM(5) PLUS NUM(3) RPAREN SEMI} \ldots \))

Parser

Abstract Syntax tree (AST), i.e., a parse tree!

```
AssignStm
  a
  OpExp
    NumExp
    Plus
    NumExp
      5
      Plus
      NumExp
        3
```
A Parser Implementation

```c
#include <yacc.h>

void yyerror(char *s) { EM_error(EM_tokPos, "%s", s); }

%{
int yylex(void);
%
}

%token ID WHILE BEGIN END DO IF THEN ELSE SEMI ASSIGN

%start prog

%%

prog: stmlist

stm: ID ASSIGN ID |
    | WHILE ID DO stm
    | BEGIN stmlist END
    | IF ID THEN stm
    | IF ID THEN stm ELSE stm

stmlist: stm |
        | stmlist SEMI stm
```

Just write the CFG!

A “yacc” tool translates this to a (C program) implementation of a parser
Parsing

\[R \rightarrow S | T \]
\[S \rightarrow aSb | ab \]
\[T \rightarrow aTbb | a\text{bb} \]

\[\text{aaabbb} \rightarrow \text{aaSbb} \]

A parser must be able to choose the one correct rule, when reading input left-to-right

\[\text{aaabbbbbb} \rightarrow \text{aaTbbbb} \]
LL parsing

• L = left-to-right
• L = leftmost derivation

1 $S \rightarrow$ if E then S else S
2 $S \rightarrow$ begin S L
3 $S \rightarrow$ print E
4 $L \rightarrow$ end
5 $L \rightarrow$; S L
6 $E \rightarrow$ num = num

if 2 = 3 begin print 1; print 2; end else print 0
LL parsing

- L = left-to-right
- L = leftmost derivation

1. $S \rightarrow \text{if } E \text{ then } S \text{ else } S$
2. $S \rightarrow \text{begin } S \text{ end } L$
3. $S \rightarrow \text{print } E$
4. $L \rightarrow \text{end}$
5. $L \rightarrow \text{; } S \text{ end } L$
6. $E \rightarrow \text{num = num}$

if $2 = 3$ begin print 1; print 2; end else print 0
LL parsing

- L = left-to-right
- L = leftmost derivation

1. $S \rightarrow \text{if } E \text{ then } S \text{ else } S$
2. $S \rightarrow \text{begin } S \ L$
3. $S \rightarrow \text{print } E$
4. $L \rightarrow \text{end}$
5. $L \rightarrow ; \ S \ L$
6. $E \rightarrow \text{num } = \text{ num}$

if 2 = 3 begin print 1; print 2; end else print 0
LL parsing

• L = left-to-right
• L = leftmost derivation

1 $S \rightarrow \text{if } E \text{ then } S \text{ else } S$
2 $S \rightarrow \text{begin } S L$
3 $S \rightarrow \text{print } E$
4 $L \rightarrow \text{end}$
5 $L \rightarrow ; \ S \ L$
6 $E \rightarrow \text{num = num}$

if 2 = 3 begin print 1; print 2; end else print 0

“Prefix” languages (like Scheme/Lisp) are easily parsed with LL parsers
LR parsing

• \(L = \) left-to-right
• \(R = \) rightmost derivation

\[
\begin{align*}
S & \rightarrow S ; S \\
S & \rightarrow \text{id} := E \\
S & \rightarrow \text{print} \ (\ L \) \\
E & \rightarrow \text{id} \\
E & \rightarrow \text{num} \\
E & \rightarrow E + E
\end{align*}
\]

\[
a := 7; \\
b := c + (d := 5 + 6, d)
\]

When parse is here, can’t determine whether it’s an assign \((\ :=)\) or addition \((+)\)

Need to save input to some temporary memory, like a stack: this is a job for a (D)PDA!!
LR parsing

• L = left-to-right
• R = rightmost derivation

\[
S \rightarrow S ; \ S \\
S \rightarrow \text{id} := E \\
S \rightarrow \text{print (} L \text{)} \\
E \rightarrow \text{id} \\
E \rightarrow \text{num} \\
E \rightarrow E + E
\]

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 \text{id}_4 := 6 \text{num}_10</td>
<td>a := 7 ; b := c + (d := 5 + 6 , d) $</td>
<td>shift</td>
</tr>
<tr>
<td>1 \text{id}_4 := 6 \text{E}_11</td>
<td>:= 7 ; b := c + (d := 5 + 6 , d) $</td>
<td>shift</td>
</tr>
<tr>
<td>1 \text{id}_4 := 6 \text{E}_11</td>
<td>7 ; b := c + (d := 5 + 6 , d) $</td>
<td>shift</td>
</tr>
<tr>
<td>1 \text{id}_4 := 6 \text{E}_11</td>
<td>; b := c + (d := 5 + 6 , d) $</td>
<td>reduce \ E \rightarrow \text{num}</td>
</tr>
<tr>
<td>1 \text{id}_4 := 6 \text{E}_11</td>
<td>; b := c + (d := 5 + 6 , d) $</td>
<td>reduce \ S \rightarrow \text{id} := \text{E}</td>
</tr>
<tr>
<td>1 \text{id}_4 := 6 \text{E}_11</td>
<td>; b := c + (d := 5 + 6 , d) $</td>
<td>shift</td>
</tr>
</tbody>
</table>
LR parsing

• L = left-to-right
• R = rightmost derivation

\[
S \rightarrow S ; \ S \quad E \rightarrow \text{id} \\
S \rightarrow \text{id} := E \quad E \rightarrow \text{num} \\
S \rightarrow \text{print (L)} \quad E \rightarrow E + E
\]
LR parsing

• **L** = left-to-right
• **R** = rightmost derivation

1. $S \rightarrow S ; \ S$
2. $S \rightarrow \text{id} := E$
3. $S \rightarrow \text{print} \ (L)$
4. $E \rightarrow \text{id}$
5. $E \rightarrow \text{num}$
6. $E \rightarrow E + E$

Stack

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$a := 7$</td>
<td>shift</td>
</tr>
<tr>
<td>1</td>
<td>$b := c + (\ d := 5 + 6 \ , \ d)$</td>
<td>reduce $E \rightarrow \text{num}$</td>
</tr>
<tr>
<td>1</td>
<td>$\text{id}_4 := 6$</td>
<td>shift</td>
</tr>
<tr>
<td>1</td>
<td>$\text{id}4 := 6 \ \text{num}{10}$</td>
<td>shift</td>
</tr>
<tr>
<td>1</td>
<td>$\text{id}4 := 6 \ E{11}$</td>
<td>shift</td>
</tr>
<tr>
<td>1</td>
<td>S_2</td>
<td>reduce $S \rightarrow \text{id} := E$</td>
</tr>
</tbody>
</table>

Can determine (rightmost) rule
LR parsing

- L = left-to-right
- R = rightmost derivation

\[
1 \quad S \rightarrow S ; S \\
2 \quad S \rightarrow \text{id} := E \\
3 \quad S \rightarrow \text{print} \ (L) \\
4 \quad E \rightarrow \text{id} \\
5 \quad E \rightarrow \text{num} \\
6 \quad E \rightarrow E + E
\]
LR parsing

- **L = left-to-right**
- **R = rightmost derivation**

Production Rules

- $S \rightarrow S ; \; S$
- $E \rightarrow \text{id}$
- $S \rightarrow \text{id} : = \; E$
- $E \rightarrow \text{num}$
- $S \rightarrow \text{print} \; (\; L \;)$
- $E \rightarrow E \; + \; E$

Example

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>shift</td>
</tr>
<tr>
<td>id4</td>
<td></td>
<td>shift</td>
</tr>
<tr>
<td>:=6</td>
<td></td>
<td>shift</td>
</tr>
<tr>
<td>id4</td>
<td>:=6</td>
<td>reduce E → num</td>
</tr>
<tr>
<td>num10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>id4</td>
<td>:=6</td>
<td>reduce S → id:=E</td>
</tr>
<tr>
<td>E11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>S_2</td>
<td>shift</td>
</tr>
</tbody>
</table>
To learn more, take a Compilers Class!

A program (string of chars) → Lexer (DFAs / NFAs) → Parser (DPDAs) → Abstract Syntax tree (AST)

This phase needs computation that goes beyond CFLs
Non-CFLs
Flashback: Pumping Lemma for Regular Langs

• The Pumping Lemma describes how strings repeat

• Regular language strings can (only) repeat using Kleene pattern
 • But the substrings are independent!

• A non-regular language:
 \[\{0^n1^n | n \geq 0\} \]
 Kleene star can’t express this pattern: 2nd part depends on (length of) 1st part

• Q: How do CFLs repeat?
Repetition and Dependency in CFLs

\[A \rightarrow 0A1 \]
\[A \rightarrow B \]
\[B \rightarrow \# \]

\[\{0^n\#1^n \mid n \geq 0\} \]
How Do Strings in CFLs Repeat?

• Strings in regular languages repeat states

• Strings in CFLs repeat subtrees in the parse tree
Pumping Lemma for CFLS

Pumping lemma for context-free languages

If A is a context-free language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into five pieces $s = uvxyz$ satisfying the conditions:

1. for each $i \geq 0$, $uv^ixy^iz \in A$,
2. $|vy| > 0$, and
3. $|vxy| \leq p$.

Now there are two pumpable parts. But they must be pumped together!

Two pumpable parts, pumped together
Non CFL example: $D = \{ww \mid w \in \{0,1\}^*\}$

Previous: D is nonregular: unpumpable counterexample s: 0^p10^p1

Now: this s can be pumped according to CFL pumping lemma:

\[
\begin{array}{c}
000 \cdots 000 \\
u \\
0 \\
v \\
1 \\
x \\
y \\
0 \\
000 \cdots 0001 \\
z
\end{array}
\]

Pumping v and y (together) produces string still in D

• CFL Pumping Lemma conditions:
 1. for each $i \geq 0$, $uv^i xy^i z \in A$,
 2. $|vy| > 0$, and
 3. $|vxy| \leq p$.

This doesn't prove that the language is a CFL! It only means that this attempt to prove that the language is not a CFL failed.
Non CFL example: $D = \{ww \mid w \in \{0,1\}^*\}$

• Need another counterexample string s:

If vyx is contained in first or second half, then any pumping will break the match.

So vyx must straddle the middle
But any pumping still breaks the match because order is wrong

• CFL Pumping Lemma conditions:

1. for each $i \geq 0$, $uv^ixy^iz \in A$,
2. $|vy| > 0$, and
3. $|vxy| \leq p$.

Now we have proven that this language is not a CFL!
CFL Pumping Lemma is Too Restrictive?

Pumping lemma for context-free languages. If A is a context-free language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into five pieces $s = uvxyz$ satisfying the conditions

1. for each $i \geq 0$, $uv^ixy^iz \in A$,
2. $|vy| > 0$, and
3. $|vxy| \leq p$.

Review: Regular Language Pumping Lemma

- The **pumping length** \(p \) for a language \(L \) is ...
 ... the \# of states in that language’s NFA!

- If string length > \# of states, then some state must repeat

- If a state is repeated once, then it can repeat multiple times
Repeating Pattern in CFL Strings?

• When are we **guaranteed** to have a repeated subtree?
 • When **height** of parse tree > # of rules!

• Let \(k = \# \) of rules and \(b = \) longest rule RHS length
 • Then the length string where we know there’s a repeat is \(b^k \)
 • I.e., pumping length = \(b^k \)??

Pumping lemma for context-free languages. If \(A \) is a context-free language, then there is a number \(p \) (the pumping length) where, if \(s \) is any string in \(A \) of length at least \(p \), then \(s \) may be divided into five pieces \(s = uv^xy^zz \) satisfying the conditions:

1. for each \(i \geq 0 \), \(uv^ixy^iz \in A \),
2. \(|y| > 0 \), and
3. \(|xy| \leq p \).

Pumping Length could be too short!
A Pumpable Non-CFL?

• CFL Pumping Lemma says:
 • “All CFLs are pumpable”
 • So if we find a non-pumpable language ... it’s not a CFL!

• Pumping Lemma does not say:
 • “All non-CFLs are not pumpable”
 • (statement != it’s inverse)
 • So Pumping Lemma might not be able to prove some non-CFLs!

Example:

$$L = \{a^i b^j c^k d^l \mid i = 0 \text{ or } j = k = l\}$$

• For any counterexample, split into $uvxyz$ where,
 • v = first char
 • z = remaining chars
 • $u = x = y = \varepsilon$

• If there are as ...
 • ... it’s pumpable bc # of as is arbitrary

• If there are no as
 • ... it’s pumpable bc # of other chars is arbitrary

This language is pumpable ... but not a CFL!
(can’t come up with a CFG)
Ogden’s Lemma (generalizes pumping lemma)

Ogden’s lemma is: If \(L \) is a CFL, then there is a constant \(n \), such that if \(z \) is any string of length at least \(n \) in \(L \), in which we select at least \(n \) positions to be distinguished, then we can write \(z = uvwxy \), such that:

1. \(vwx \) has at most \(n \) distinguished positions.
2. \(vx \) has at least one distinguished position.
3. For all \(i \), \(uv^iwx^iy \) is in \(L \).

Example:

\[L = \{ a^i b^j c^k d^l \mid i = 0 \text{ or } j = k = l \} \]

Counterexample: \(\text{ab}^n\text{c}^n\text{d}^n \)

- \(n \) “distinguished” positions must include non-\(a \) character
 - Impossible to pump no matter which \(n \) chars are chosen
A Practical Non-CFL

• **XML**
 - ELEMENT \rightarrow <TAG>CONTENT</TAG>
 - Where TAG is any string

• **XML also looks like this non-CFL:**
 $$D = \{ww \mid w \in \{0,1\}^*\}$$

• **This means XML is not context-free!**
 - **Note:** HTML is context-free because ...
 - ... there are only a finite number of tags,
 - so they can be embedded into a finite number of rules.

• **In practice:**
 - XML is parsed as a CFL, with a CFG
 - Then matching tags checked in a 2nd pass with a more powerful machine...
Next Time: A More Powerful Machine ...

\[M_1 \] accepts its input if it is in language: \[B = \{ w\#w \mid w \in \{0,1\}^* \} \]

\[M_1 = \text{"On input string } w:\]
1. \text{Zig-zag across the tape to corresponding positions on either side of the } \# \text{ symbol to check whether these positions contain the same symbol. If they do not, or if no } \# \text{ is found, reject. Cross off symbols as they are checked to keep track of which symbols correspond.} \]

- Infinite memory, initially starts with input
- Can move to, and read/write from, arbitrary memory locations
In-class quiz 2/28

See gradescope