UMB CS 420
Undecidability
Wednesday, March 23, 2022

Diagram:
- Turing-recognizable
- Decidable
- Context-free
- Regular

??
Announcements

• HW 7 due Sun 3/27 11:59pm EST
Recap: Decidability of Regular and CFLs

- $A_{\text{DFA}} = \{ \langle B, w \rangle | B \text{ is a DFA that accepts input string } w \}$ Decidable
- $A_{\text{NFA}} = \{ \langle B, w \rangle | B \text{ is an NFA that accepts input string } w \}$ Decidable
- $A_{\text{REX}} = \{ \langle R, w \rangle | R \text{ is a regular expression that generates string } w \}$ Decidable
- $E_{\text{DFA}} = \{ \langle A \rangle | A \text{ is a DFA and } L(A) = \emptyset \}$ Decidable
- $EQ_{\text{DFA}} = \{ \langle A, B \rangle | A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$ Decidable
- $A_{\text{CFG}} = \{ \langle G, w \rangle | G \text{ is a CFG that generates string } w \}$ Decidable
- $E_{\text{CFG}} = \{ \langle G \rangle | G \text{ is a CFG and } L(G) = \emptyset \}$ Decidable
- $EQ_{\text{CFG}} = \{ \langle G, H \rangle | G \text{ and } H \text{ are CFGs and } L(G) = L(H) \}$ Undecidable?
- $A_{\text{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \}$ Undecidable?
Thm: A_{TM} is Turing-recognizable

$A_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}$

$U = \text{ "On input } \langle M, w \rangle, \text{ where } M \text{ is a TM and } w \text{ is a string:}
1. \text{ Simulate } M \text{ on input } w.
2. \text{ If } M \text{ ever enters its accept state, } accept; \text{ if } M \text{ ever enters its reject state, } reject.\text{"} \$

$U = \text{ Extended } \delta \text{ "run" function for TMs}
\bullet \text{ Computer that can simulate other computers}
\bullet \text{ i.e., "The Universal Turing Machine"}
\bullet \text{ Problem: } U \text{ loops when } M \text{ loops}

So it's a recognizer, not a decider
Thm: A_{TM} is undecidable

$$A_{TM} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \}$$

- ???

It’s hard to prove that something is not true!

Typically need complicated proof techniques

e.g., pumping lemma and proof by contradiction for proving non-regularness

next
Kinds of Functions (a fn maps Domain → Range)

- **Injective**, a.k.a., “one-to-one”
 - Every element in Domain has a unique mapping
 - How to remember:
 - Entire Domain is mapped “in” to the Range

- **Surjective**, a.k.a., “onto”
 - Every element in Range is mapped to
 - How to remember:
 - “Sur” = “over” (eg, survey); Domain is mapped “over” the Range

- **Bijective**, a.k.a., “correspondence” or “one-to-one correspondence”
 - Is both injective and surjective
 - Unique pairing of every element in Domain and Range
Countability

• A set is “countable” if it is:
 • Finite
 • Or, there exists a bijection between the set and the natural numbers
 • In this case, the set has the same size as the set of natural numbers
 • This is called “countably infinite”
Exercise: Which set is larger?

- The set of:
 - Natural numbers, or
 - Even numbers?
- They are the **same size**! Both are **countably infinite**
 - Proof: **Bijection:**

<table>
<thead>
<tr>
<th>(n)</th>
<th>(f(n) = 2n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
</tr>
</tbody>
</table>
Exercise: Which set is larger?

- The set of:
 - Natural numbers \mathcal{N}, or
 - Positive rational numbers? $\mathcal{Q} = \{\frac{m}{n} \mid m, n \in \mathcal{N}\}$

- They are the same size! Both are countably infinite

One possible mapping?

But these don’t get mapped to: (not a bijection)
Exercise: Which set is larger?

• The set of:
 • Natural numbers \mathbb{N}, or
 • Positive rational numbers? $\mathbb{Q} = \left\{ \frac{m}{n} \mid m, n \in \mathbb{N} \right\}$

• They are the same size! Both are countably infinite

Another mapping: This is a bijection bc every natural number maps to a unique fraction, and vice versa
Exercise: Which set is larger?

- The set of:
 - Natural numbers, or \mathbb{N}
 - Real numbers, \mathbb{R}
- There are **more** real numbers. It is **uncountably infinite**.

Proof, by contradiction:
- **Assume** a bijection between natural and real numbers exists.
 - This means: every nat num maps to a unique real, and vice versa.

 But we show that in any given mapping,
 - Some real number is **not** mapped to ...
 - E.g., a number that has different digits at each position:

 $$ x = 0.4641 \ldots $$

 - This number **cannot** be included in mapping ...
 - ... So we have a **contradiction**!
Georg Cantor

• Invented set theory

• Came up with countable infinity (1873)

• And uncountability:
 • Also: how to show uncountability with “diagonalization” technique
Diagonalization with Turing Machines

Diagonal: Result of Giving a TM its own Encoding as Input

<table>
<thead>
<tr>
<th>(M_1)</th>
<th>(M_2)</th>
<th>(M_3)</th>
<th>(M_4)</th>
<th>(D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>accept</td>
<td>reject</td>
<td>accept</td>
<td>reject</td>
<td>accept</td>
</tr>
<tr>
<td>accept</td>
<td>accept</td>
<td>accept</td>
<td>accept</td>
<td>accept</td>
</tr>
<tr>
<td>reject</td>
<td>reject</td>
<td>reject</td>
<td>reject</td>
<td>reject</td>
</tr>
<tr>
<td>accept</td>
<td>accept</td>
<td>accept</td>
<td>accept</td>
<td>accept</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>reject</td>
<td>reject</td>
<td>accept</td>
<td>accept</td>
<td>...</td>
</tr>
</tbody>
</table>

Opposites

All TMs

Try to construct “opposite” TM \(D\)

TM \(D\) can’t exist!

What should happen here?

It must both accept and reject!
Thm: A_{TM} is undecidable

$A_{TM} = \{\langle M, w \rangle | M$ is a TM and M accepts $w\}$

Proof by contradiction:

1. Assume A_{TM} is decidable. Then there exists a decider H:

 $$H(\langle M, w \rangle) = \begin{cases}
 accept & \text{if } M \text{ accepts } w \\
 reject & \text{if } M \text{ does not accept } w
 \end{cases}$$

2. If H exists, then we can create the “opposite” machine:

 $D =$ “On input $\langle M \rangle$, where M is a TM:
 1. Run H on input $\langle M, \langle M \rangle \rangle$.
 2. Output the opposite of what H outputs. That is, if H accepts, reject; and if H rejects, accept.”

From the previous slide

Result of giving a TM itself as input

Do the opposite
Thm: A_{TM} is undecidable

$A_{TM} = \{\langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \}$

Proof by contradiction:

1. **Assume** A_{TM} is decidable. Then there exists a decider H:

 $$H(\langle M, w \rangle) = \begin{cases} \text{accept} & \text{if } M \text{ accepts } w \\ \text{reject} & \text{if } M \text{ does not accept } w \end{cases}$$

2. If H exists, then we can create an “opposite” machine:

 $D = \text{“On input } \langle M \rangle, \text{ where } M \text{ is a TM:}

 1. \text{Run } H \text{ on input } \langle M, \langle M \rangle \rangle.

 2. \text{Output the opposite of what } H \text{ outputs. That is, if } H \text{ accepts, reject; and if } H \text{ rejects, accept.”} $

3. But D does not exist! **Contradiction!** So assumption is false.
Easier Undecidability Proofs

• We proved \(A_{TM} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \} \) undecidable ...

• ... by contradiction:

• By showing its decider can help create impossible decider “D”!

• Coming up with “D” was hard (needed to invent diagonalization)

• But then we more easily reduced \(A_{TM} \) to “D”

• Easier: reduce problems to \(A_{TM} \)!
The Halting Problem

\[\text{HALT}_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \} \]

Thm: \(\text{HALT}_{TM} \) is undecidable

Proof, by contradiction:

- **Assume** \(\text{HALT}_{TM} \) has decider \(R \); use it to create decider for \(A_{TM} \):

- ...

- **But** \(A_{TM} \) is undecidable and has no decider!

I.e., "Algorithm to determine if a TM is an decider"?
The Halting Problem

\[HALT_{\text{TM}} = \{ \langle M, w \rangle | \text{M is a TM and M halts on input } w \} \]

Thm: \(HALT_{\text{TM}} \) is undecidable

Proof, by contradiction:

- Assume \(HALT_{\text{TM}} \) has decider \(R \); use it to create decider for \(A_{\text{TM}} \):

 \[
 S = \text{"On input } \langle M, w \rangle, \text{ an encoding of a TM } M \text{ and a string } w:\n \]

 1. Run TM \(R \) on input \(\langle M, w \rangle \).
 2. If \(R \) rejects, reject. \(\text{This means } M \text{ loops on input } w \)
 3. If \(R \) accepts, simulate \(M \) on \(w \) until it halts. \(\text{This step always halts} \)
 4. If \(M \) has accepted, accept; if \(M \) has rejected, reject."

Termination argument:
Step 1: \(R \) is a decider so always halts
Step 3: \(M \) always halts bc \(R \) said so
The Halting Problem

\[\text{HALT}_\text{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \} \]

Thm: \(\text{HALT}_\text{TM} \) is undecidable

Proof, by contradiction:

- **Assume** \(\text{HALT}_\text{TM} \) has decider \(R \); use it to create decider for \(A_\text{TM} \):

 \[
 S = \text{“On input } \langle M, w \rangle, \text{ an encoding of a TM } M \text{ and a string } w:\n
 1. \text{ Run TM } R \text{ on input } \langle M, w \rangle.
 2. \text{ If } R \text{ rejects, reject. }
 3. \text{ If } R \text{ accepts, simulate } M \text{ on } w \text{ until it halts.}
 4. \text{ If } M \text{ has accepted, accept; if } M \text{ has rejected, reject.”}
 \]

- **But** \(A_\text{TM} \) is undecidable!
 - i.e., this decider that we just created cannot exist! So \(\text{HALT}_\text{TM} \) is undecidable
Easier Undecidability Proofs

In general, to prove the undecidability of a language:

• Use proof by contradiction:

1. Assume the language is decidable,

2. Show that its decider can be used to create a decider for ...

• ... a known undecidable language ...

3. ... which doesn’t have a decider! Contradiction!
Summary: The Limits of Algorithms

- $A_{DFA} = \{ \langle B, w \rangle \mid B$ is a DFA that accepts input string $w \}$
- $A_{CFG} = \{ \langle G, w \rangle \mid G$ is a CFG that generates string $w \}$
- $A_{TM} = \{ \langle M, w \rangle \mid M$ is a TM and M accepts $w \}$
- $E_{DFA} = \{ \langle A \rangle \mid A$ is a DFA and $L(A) = \emptyset \}$
- $E_{CFG} = \{ \langle G \rangle \mid G$ is a CFG and $L(G) = \emptyset \}$
- $E_{TM} = \{ \langle M \rangle \mid M$ is a TM and $L(M) = \emptyset \}$

Decidable
Decidable
Undecidable
Decidable
Decidable
Undecidable
Check-in Quiz 3/23

On gradescope