CS420
Reducibility

Monday, March 28, 2022

```c
DEFINE DOESITHALT(PROGRAM):
{
    RETURN TRUE;
}
```

THE BIG PICTURE SOLUTION TO THE HALTING PROBLEM
Announcements

• HW 7 in
 • Due Sun 3/27 11:59pm

• HW 8 out
 • Due Sun 4/3 11:59pm
Last Time: Undecidability Proofs

- We proved \(A_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \} \) undecidable ...
- ... by contradiction:
 - Use hypothetical \(A_{TM} \) decider to create an impossible decider “\(D \)”!

- Step # 1: coming up with “\(D \)” --- hard!
 - Need to invent diagonalization

- Step # 2: “reduce” \(A_{TM} \) to the “\(D \)” problem --- easier!

- From now on: undecidability proofs only need to do step # 2!
 - And we now have two “impossible” problems to choose from
Last Time: The Halting Problem

\[\text{HALT}_{TM} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \} \]

Thm: \text{HALT}_{TM} is undecidable

Proof, by contradiction:

- Assume: \text{HALT}_{TM} has decider \(R \); use it to create decider for \(A_{TM} \):
 \[A_{TM} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \} \]

- ...

- But \(A_{TM} \) is undecidable and has no decider!
Last Time: The Halting Problem

\[\text{HALT}_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \} \]

Thm: \(\text{HALT}_{TM} \) is undecidable

Proof, by contradiction:

- **Assume:** \(\text{HALT}_{TM} \) has **decider** \(R \); use it to create decider for \(A_{TM} \):

\[A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \} \]

\(S = \text{“On input } \langle M, w \rangle \text{, an encoding of a TM } M \text{ and a string } w \text{:} \)

1. Run TM \(R \) on input \(\langle M, w \rangle \).
2. If \(R \) rejects, reject.
 - This means \(M \) loops on input \(w \)
3. If \(R \) accepts, simulate \(M \) on \(w \) until it halts.
 - This step always halts
4. If \(M \) has accepted, accept; if \(M \) has rejected, reject.”

Termination argument:

Step 1: \(R \) is a decider so always halts

Step 3: \(M \) always halts because \(R \) said so
Last Time: The Halting Problem

\[\text{HALT}_{TM} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \} \]

Thm: \(\text{HALT}_{TM} \) is undecidable

Proof, by contradiction:

- **Assume:** \(\text{HALT}_{TM} \) has *decider* \(R \); use it to create decider for \(A_{TM} \):

 \[A_{TM} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \} \]

 \[S = \text{“On input } \langle M, w \rangle \text{, an encoding of a TM } M \text{ and a string } w:\n 1. \text{ Run TM } R \text{ on input } \langle M, w \rangle.
 2. \text{ If } R \text{ rejects, reject.}
 3. \text{ If } R \text{ accepts, simulate } M \text{ on } w \text{ until it halts.}
 4. \text{ If } M \text{ has accepted, accept; if } M \text{ has rejected, reject.”} \]

- But \(A_{TM} \) is undecidable! i.e., this decider does not exist!
 - So \(\text{HALT}_{TM} \) is also undecidable!
Summary: The Limits of Algorithms

- \(A_{DFA} = \{ \langle B, w \rangle | B \text{ is a DFA that accepts input string } w \} \) Decidable
- \(A_{CFG} = \{ \langle G, w \rangle | G \text{ is a CFG that generates string } w \} \) Decidable
- \(A_{TM} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \} \) Undecidable
- \(HALT_{TM} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \} \) Undecidable
- \(E_{DFA} = \{ \langle A \rangle | A \text{ is a DFA and } L(A) = \emptyset \} \) Decidable
- \(E_{CFG} = \{ \langle G \rangle | G \text{ is a CFG and } L(G) = \emptyset \} \) Decidable
- \(E_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \} \) Undecidable
Reducibility: Modifying the TM

Thm: \(E_{TM} \) is undecidable

Proof, by contradiction:

- Assume \(E_{TM} \) has decider \(R \); use it to create decider for \(A_{TM} \):

 \[
 S = \text{"On input } \langle M, w \rangle, \text{ an encoding of a TM } M \text{ and a string } w:\n \]

 - First, construct \(M_1 \)
 - Run \(R \) on input \(\langle M_1 \rangle \)
 - If \(R \) accepts, reject (because it means \(\langle M \rangle \) doesn’t accept \(w \))
 - If \(R \) rejects, then accept (\(\langle M \rangle \) accepts \(w \))

- Idea: Wrap \(\langle M \rangle \) in a new TM that can only accept \(w \):

 \[
 M_1 = \text{"On input } x: \]

 1. If \(x \neq w \), reject.
 2. If \(x = w \), run \(M \) on input \(w \) and accept if \(M \) does.

Input is \(w \), maybe accept

Input not \(w \), always reject

\(M_1 \) accepts \(w \) if \(M \) does
Reducibility: Modifying the TM

Thm: E_{TM} is undecidable

Proof, by contradiction:

• Assume E_{TM} has decider R; use it to create decider for A_{TM}:

 $S =$ “On input $\langle M, w \rangle$, an encoding of a TM M and a string w:
 - Run R on input $\langle M \rangle$
 - If R accepts, reject (because it means $\langle M \rangle$ doesn’t accept w)
 - If R rejects, then $\langle M \rangle$ accepts w

• Idea: Wrap $\langle M \rangle$ in a new TM that can only accept w:

 $M_1 =$ “On input x:
 1. If $x \neq w$, reject.
 2. If $x = w$, run M on input w and accept if M does.”
Summary: The Limits of Algorithms

- $A_{DFA} = \{ \langle B, w \rangle | \ B \text{ is a DFA that accepts input string } w \}$ Decidable
- $A_{CFG} = \{ \langle G, w \rangle | \ G \text{ is a CFG that generates string } w \}$ Decidable
- $A_{TM} = \{ \langle M, w \rangle | \ M \text{ is a TM and } M \text{ accepts } w \}$ Undecidable
- $E_{DFA} = \{ \langle A \rangle | \ A \text{ is a DFA and } L(A) = \emptyset \}$ Decidable
- $E_{CFG} = \{ \langle G \rangle | \ G \text{ is a CFG and } L(G) = \emptyset \}$ Decidable
- $E_{TM} = \{ \langle M \rangle | \ M \text{ is a TM and } L(M) = \emptyset \}$ Undecidable
- $EQ_{DFA} = \{ \langle A, B \rangle | \ A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$ Decidable
- $EQ_{CFG} = \{ \langle G, H \rangle | \ G \text{ and } H \text{ are CFGs and } L(G) = L(H) \}$ Undecidable
- $EQ_{TM} = \{ \langle M_1, M_2 \rangle | \ M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$ Undecidable
Reduce to something else: EQ_{TM} is undecidable

$EQ_{TM} = \{\langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2)\}$

Proof, by contradiction:

- **Assume**: EQ_{TM} has decider R; use it to create decider for A_{TM}:

 $E_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset\}$

 $S = \text{“On input } \langle M \rangle, \text{ where } M \text{ is a TM:} \quad$

 1. Run R on input $\langle M, M_1 \rangle$, where M_1 is a TM that rejects all inputs.

 2. If R accepts, accept; if R rejects, reject.”
Reduce to something else: EQ_{TM} is undecidable

$EQ_{TM} = \{\langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2)\}$

Proof, by contradiction:

• **Assume:** EQ_{TM} has *decider* R; use it to create *decider* for E_{TM}:

 $S = \text{"On input } \langle M \rangle, \text{ where } M \text{ is a TM:}
 \begin{enumerate}
 \item Run R on input $\langle M, M_1 \rangle$, where M_1 is a TM that rejects all inputs.
 \item If R accepts, accept; if R rejects, reject."
 \end{enumerate}$

• But E_{TM} is undecidable!
Summary: Undecidability Proof Techniques

- **Proof Technique #1:**
 - Use hypothetical decider to implement impossible A_{TM} decider
 - Example Proof: $HALT_{TM} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \}$

- **Proof Technique #2:**
 - Use hypothetical decider to implement impossible A_{TM} decider
 - But first modify the input M
 - Example Proof: $E_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$

- **Proof Technique #3:**
 - Use hypothetical decider to implement non-A_{TM} impossible decider
 - Example Proof: $EQ_{TM} = \{ \langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$
Summary: Decidability and Undecidability

- \(A_{\text{DFA}} = \{ \langle B, w \rangle | \ B \text{ is a DFA that accepts input string } w \} \)
 Decidable

- \(A_{\text{CFG}} = \{ \langle G, w \rangle | \ G \text{ is a CFG that generates string } w \} \)
 Decidable

- \(A_{\text{TM}} = \{ \langle M, w \rangle | \ M \text{ is a TM and } M \text{ accepts } w \} \)
 Undecidable

- \(E_{\text{DFA}} = \{ \langle A \rangle | \ A \text{ is a DFA and } L(A) = \emptyset \} \)
 Decidable

- \(E_{\text{CFG}} = \{ \langle G \rangle | \ G \text{ is a CFG and } L(G) = \emptyset \} \)
 Decidable

- \(E_{\text{TM}} = \{ \langle M \rangle | \ M \text{ is a TM and } L(M) = \emptyset \} \)
 Undecidable

- \(EQ_{\text{DFA}} = \{ \langle A, B \rangle | \ A \text{ and } B \text{ are DFAs and } L(A) = L(B) \} \)
 Decidable

- \(EQ_{\text{CFG}} = \{ \langle G, H \rangle | \ G \text{ and } H \text{ are CFGs and } L(G) = L(H) \} \)
 Undecidable

- \(EQ_{\text{TM}} = \{ \langle M_1, M_2 \rangle | \ M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \} \)
 Undecidable
Also Undecidable ...

- $\text{REGULAR}_{\text{TM}} = \{<M> | M \text{ is a TM and } L(M) \text{ is a regular language}\}$
Thm: \(REGULAR_{TM} \) is undecidable

\[REGULAR_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language} \} \]

Proof, by contradiction:

- **Assume:** \(REGULAR_{TM} \) has decider \(R \); use it to create *decider* for \(A_{TM} \):

 \(S = \) “On input \(\langle M, w \rangle \), an encoding of a TM \(M \) and a string \(w \):

 - First, construct \(M_2 \)
 - Run \(R \) on input \(\langle M_2 \rangle \)
 - If \(R \) accepts, accept; if \(R \) rejects, reject

Want: \(L(M_2) = \)

- regular, if \(M \) accepts \(w \)
- nonregular, if \(M \) does not accept \(w \)
Thm: $REGULAR_{TM}$ is undecidable (continued)

$REGULAR_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) \text{ is a regular language} \}$

$M_2 = \text{“On input } x:\\
1. \text{ If } x \text{ has the form } 0^n1^n, \text{ accept.}\\
2. \text{ If } x \text{ does not have this form, run } M \text{ on input } w \text{ and accept if } M \text{ accepts } w.\text{”}$

- Always accept strings 0^n1^n; $L(M_2)$ = nonregular, so far
- If M accepts w, accept everything else, so $L(M_2) = \Sigma^* = \text{regular}$
- Want: $L(M_2) =$\begin{itemize}
 \item regular, if M accepts w\item nonregular, if M does not accept w\end{itemize}
Also Undecidable ...

- $\text{REGULAR}_\text{TM} = \{ <M> \mid M \text{ is a TM and } L(M) \text{ is a regular language} \}$

- $\text{CONTEXTFREE}_\text{TM} = \{ <M> \mid M \text{ is a TM and } L(M) \text{ is a CFL} \}$

- $\text{DECIDABLE}_\text{TM} = \{ <M> \mid M \text{ is a TM and } L(M) \text{ is a decidable language} \}$

- $\text{FINITE}_\text{TM} = \{ <M> \mid M \text{ is a TM and } L(M) \text{ is a finite language} \}$

Seems like no algorithm can compute anything about language of TMs, i.e., about programs!
An Algorithm About Program Behavior?

```c
main()
{
    printf("hello, world\n");
}
```

Write a program that, given another program as its argument, returns TRUE if that argument prints “Hello, World!”

TRUE
Write a program that, given another program as its argument, returns TRUE if that argument prints "Hello, World!"
Also Undecidable ...

- $\text{REGULAR}_\text{TM} = \{<M> \mid M \text{ is a TM and } L(M) \text{ is a regular language}\}$

- $\text{CONTEXTFREE}_\text{TM} = \{<M> \mid M \text{ is a TM and } L(M) \text{ is a CFL}\}$

- $\text{DECIDABLE}_\text{TM} = \{<M> \mid M \text{ is a TM and } L(M) \text{ is a decidable language}\}$

- $\text{FINITE}_\text{TM} = \{<M> \mid M \text{ is a TM and } L(M) \text{ is a finite language}\}$

- ...

- $\text{ANYTHING}_\text{TM} = \{<M> \mid M \text{ is a TM and “… anything …” about } L(M)\}$

 Seems like no algorithm can compute anything about Turing Machines, i.e., about programs!

 Rice’s Theorem
Rice’s Theorem: \(ANYTHING_{\text{TM}} \) is Undecidable

\[
ANYTHING_{\text{TM}} = \{<M> \mid M \text{ is a TM and … anything … about } L(M)\}
\]

• “… Anything …”, more precisely:
 • For any \(M_1, M_2 \), if \(L(M_1) = L(M_2) \) …
 • … then \(M_1 \in ANYTHING_{\text{TM}} \iff M_2 \in ANYTHING_{\text{TM}} \)

• Also, “… Anything …” must be “non-trivial”:
 • \(ANYTHING_{\text{TM}} \neq \{\} \)
 • \(ANYTHING_{\text{TM}} \neq \) set of all TMs
Rice's Theorem: \(\text{ANYTHING}_{TM} \) is Undecidable

\[\text{ANYTHING}_{TM} = \{<M> \mid M \text{ is a TM and } \ldots \text{anything} \ldots \text{about } L(M) \} \]

Proof by contradiction

1. **Assume** some language satisfying \(\text{ANYTHING}_{TM} \) has a decider \(R \).
 - Since \(\text{ANYTHING}_{TM} \) is non-trivial, then there exists \(M_{\text{ANY}} \in \text{ANYTHING}_{TM} \)
 - Where \(R \) accepts \(M_{\text{ANY}} \)
2. **Use** \(R \) to create decider for \(A_{TM} \):

 On input \(<M, w>\):
 - **Create** \(M_w \):
 - \(M_w = \) on input \(x \):
 - Run \(M \) on \(w \)
 - If \(M \) rejects \(w \): reject \(x \)
 - If \(M \) accepts \(w \):
 - Run \(M_{\text{ANY}} \) on \(x \) and accept if it accepts, else reject
 - **Run** \(R \) on \(M_w \)
 - If it accepts, then \(M_w = M_{\text{ANY}} \), so \(M \) accepts \(w \), so accept
 - Else reject

These two cases must be different, (so \(R \) can distinguish when \(M \) accepts \(w \))

Wait! What if the TM that accepts nothing is in \(\text{ANYTHING}_{TM} \)?

Proof still works! Just use the complement of \(\text{ANYTHING}_{TM} \) instead!
Rice’s Theorem Implication

\{<M> | M \text{ is a TM that installs malware}\}

Undecidable!
(by Rice’s Theorem)
\[A_{DFA} = \{ \langle B, w \rangle | B \text{ is a DFA that accepts input string } w \} \]
\[A_{CFG} = \{ \langle G, w \rangle | G \text{ is a CFG that generates string } w \} \]
\[A_{TM} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \} \]

Decidable
Decidable
Undecidable

• In hindsight, of course a restricted TM (a **decider**) shouldn’t be able to simulate unrestricted TM (a **recognizer**)

• But could a restricted TM simulate an even more restricted TM?
 • Next time
Check-in Quiz 3/28
On gradescope