Mapping Reducibility

Monday, April 4, 2022
Announcements

• HW 8 extended
 • Due Wed 4/6 11:59pm EST

• HW 9 out soon
Last Time: TM Accepting Computations

A TM accepting computation is sequence of configurations, where:

1. **Start Config:**
 - State: start state,
 - Head: at leftmost cell
 - Tape: has input string

2. **End Config:**
 - State: accept state

3. **Middle Configs:**
 - State + Head + Tape: each step must be valid according to δ

So: any machine that can recognize TM accepting sequences ...

"w" ... can be used to implement A_{TM} decider!

I.e., ... can be used to prove undecidability!
Last Time: What Makes CFLs “Context-Free”?

- $A_{CFG} = \{\langle G, w \rangle | G$ is a CFG that generates string $w \}$
 - Decidable
- $E_{CFG} = \{\langle G \rangle | G$ is a CFG and $L(G) = \emptyset \}$
 - Decidable
- $ALL_{CFG} = \{\langle G \rangle | G$ is a CFG and $L(G) = \Sigma^* \}$
 - Undecidable

This unintuitive result is explained by ...

... the fact that PDAs can recognize non-accepting TM config sequences

Can be computed in a “context-free” way:
check that pairs of configs are valid nondeterministically, ... and accept if any are not

... but PDAs cannot recognize accepting TM config sequences

Cannot be computed in a “context-free” way:
check that pairs of configs are valid nondeterministically, ... and accept if all are not

This gives insight into what makes context-free languages “context-free”
The Post Correspondence Problem (PCP)
A unique undecidable problem
A Non-Formal Languages Undecidable Problem: \textit{PCP}

- Let \(P \) be a set of "\textit{dominos}"
 - Where each \(t_i \) and \(b_i \) are strings

 \[
 \left\{ \frac{t_1}{b_1}, \frac{t_2}{b_2}, \ldots, \frac{t_k}{b_k} \right\}
 \]

- \text{E.g.,} \(P = \left\{ \frac{b}{ca}, \frac{a}{ab}, \frac{ca}{a}, \frac{abc}{c} \right\} \)

- A match is:
 - A sequence of dominos with the same top and bottom strings

- \text{E.g.,} \[
\begin{pmatrix}
\frac{a}{ab} & \frac{b}{ca} & \frac{ca}{a} & \frac{a}{ab} & \frac{abc}{c}
\end{pmatrix}
\] \rightarrow

- \text{Then:} \(PCP = \{ <P> \mid P \text{ is a set of dominos with a match} \} \)
Theorem: \(PCP \) is undecidable

\[PCP = \{ <P> \mid P \text{ is a set of dominos with a match} \} \]

Proof by contradiction:

Assume \(PCP \) is decidable, has decider \(R \); use it to create decider for \(A_{TM} \):

On input \(<M, w> \):
1. Construct a set of dominos \(P \) that has a **match** only when \(M \) accepts \(w \)
2. Run \(R \) with \(P \) as input
3. Accept if \(R \) accepts, else reject

So a match is a sequence of configs showing \(M \) accepting \(w \)!

Idea: \(P \) has \(M \)'s TM configurations as its domino strings
PCP Dominos

- **First domino:** \[
\begin{array}{c}
\# \\
\#q_0 w_1 w_2 \cdots w_n \# \\
\end{array}
\]

- **Key idea:** add dominos representing valid TM steps:
 - if \(\delta(q, a) = (r, b, R) \), put \(\begin{array}{c} qa \\ br \end{array} \) into \(P \)
 - if \(\delta(q, a) = (r, b, L) \), put \(\begin{array}{c} cq a \\ rcb \end{array} \) into \(P \)

- For the tape cells that don’t change: put \(\begin{array}{c} a \\ a \end{array} \) into \(P \)

- Top can only “catch up” if there is an accepting config sequence

\[M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}}) \]
PCP Example

- Let $w = 0100$ and $\delta(q_0, 0) = (q_7, 2, R)$ so $\left[\frac{q_00}{2q_7} \right]$ in P.
PCP Dominos (accepting)

- When accept state reached, let top “catch” up:

 For every \(a \in \Gamma \),

 put \[\frac{a}{q_{accept}} \] and \[\frac{q_{accept}}{a} \] into \(P \)

 Bottom “eats” one char

Only possible match: accepting sequence of TM configs

```
# | 2 1 q_{accept} 0 2 | # |
... |
# 2 1 q_{accept} 0 2 | # |
```

“eat” one char
Mapping Reducibility
Flashback: “Reduced”

\[
A_{TM} = \{(M, w) \mid M \text{ is a TM and } M \text{ accepts } w\}
\]

\[
HALT_{TM} = \{(M, w) \mid M \text{ is a TM and } M \text{ halts on input } w\}
\]

Thm: \(HALT_{TM}\) is undecidable

Proof, by contradiction:

- **Assume** \(HALT_{TM}\) has decider \(R\); use to create \(A_{TM}\) decider:

 - **Contradiction:** \(A_{TM}\) is undecidable and has no decider!

Let’s *formalize* this conversion, i.e., *mapping reducibility*
Flashback: \(A_{\text{NFA}} \) is a decidable language

\[
A_{\text{NFA}} = \{ \langle B, w \rangle \mid B \text{ is an NFA that accepts input string } w \}\]

Decider for \(A_{\text{NFA}} \):

\[N = \text{“On input } \langle B, w \rangle, \text{ where } B \text{ is an NFA and } w \text{ is a string:} \]

1. Convert NFA \(B \) to an equivalent DFA \(C \), using the procedure \(\text{NFA}\rightarrow\text{DFA} \).
2. Run TM \(M \) on input \(\langle C, w \rangle \).
3. If \(M \) accepts, accept; otherwise, reject.”

We said this \(\text{NFA}\rightarrow\text{DFA} \) algorithm is a TM, but it doesn’t accept/reject?

More generally, we’ve been saying “programs = TMs”, but programs do more than accept/reject?
Definition: Computable Functions

• Has TM that, instead of accept/reject, “outputs” final tape contents

A function $f : \Sigma^* \rightarrow \Sigma^*$ is a *computable function* if some Turing machine M, on every input w, halts with just $f(w)$ on its tape.

• Example 1: All arithmetic operations

• Example 2: Converting between machines, like DFA \rightarrow NFA
 • E.g., adding states, changing transitions, wrapping TM in TM, etc.
Definition: Mapping Reducibility

Language A is **mapping reducible** to language B, written $A \leq_m B$, if there is a computable function $f : \Sigma^* \rightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B.$$

“if and only if”

The function f is called the **reduction** from A to B.

- **“forward” direction (\Rightarrow):** if $w \in A$ then $f(w) \in B$
- **“reverse” direction (\Leftarrow):** if $f(w) \in B$ then $w \in A$

A function $f : \Sigma^* \rightarrow \Sigma^*$ is a **computable function** if some Turing machine M, on every input w, halts with just $f(w)$ on its tape.
Flashback: Equivalence of Contrapositive

“If X then Y” is equivalent to ... ?

• “If Y then X” (converse)
 • No!

• “If not X then not Y” (inverse)
 • No!

✓ “If not Y then not X” (contrapositive)
 • Yes!
Definition: Mapping Reducibility

Language A is **mapping reducible** to language B, written $A \leq_m B$, if there is a computable function $f : \Sigma^* \rightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B.$$

The function f is called the **reduction** from A to B.

"forward" direction (\Rightarrow): if $w \in A$ then $f(w) \in B$

"reverse" direction (\Leftarrow): if $f(w) \in B$ then $w \in A$

Equivalent (contrapositive): if $w \notin A$ then $f(w) \notin B
Proving Mapping Reducibility: 2 Steps

Language A is **mapping reducible** to language B, written $A \leq_m B$, if there is a **computable function** $f : \Sigma^* \rightarrow \Sigma^*$, where for every w, $w \in A \iff f(w) \in B$.

The function f is called the **reduction** from A to B.

Step 1: Show there is computable fn f ... by creating a TM

Step 2: Prove the iff is true

Step 2a: “forward” direction (\Rightarrow): if $w \in A$ then $f(w) \in B$

Step 2b: “reverse” direction (\Leftarrow): if $f(w) \in B$ then $w \in A$

Step 2b: Equivalent (contrapositive): if $w \notin A$ then $f(w) \notin B

A function $f : \Sigma^* \rightarrow \Sigma^*$ is a **computable function** if some Turing machine M, on every input w, halts with just $f(w)$ on its tape.
Thm: A_{TM} is mapping reducible to $HALT_{TM}$

- To show: $A_{TM} \leq_m HALT_{TM}$

Step 1: computable fn f: $<M, w> \rightarrow <M', w>$ where:

$$\langle M, w \rangle \in A_{TM} \iff \langle M', w' \rangle \in HALT_{TM}$$

The following machine F computes a reduction f.

$F = \text{"On input } \langle M, w \rangle:\$

1. Construct the following machine M'.
 $M' = \text{"On input } x:\$
 1. Run M on x.
 2. If M accepts, accept.
 3. If M rejects, enter a loop.

2. Output $\langle M', w \rangle$.”

Output new M'

M' is like M, except it always loops when it doesn’t accept

Converting M to M'

Language A is mapping reducible to language B, written $A \leq_m B$, if there is a computable function $f: \Sigma^* \rightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B.$$
⇒ If M accepts w, then M' halts on w

- M' accepts (and thus halts) if M accepts

⇐ If M' halts on w, then M accepts w

⇐ (Alternatively) If M doesn’t accept w, then M' doesn’t halt on w (contrapositive)

- Two possibilities for non-acceptance:
 1. M loops: M' loops and doesn’t halt
 2. M rejects: M' loops and doesn’t halt

The following machine F computes a reduction f.

$F =$ “On input $\langle M, w \rangle$:

1. Construct the following machine M'.
 M' = “On input x:
 1. Run M on x.
 2. If M accepts, accept.
 3. If M rejects, enter a loop.”

2. Output $\langle M', w \rangle$.”
Uses of Mapping Reducibility

• To prove Decidability

• To prove Undecidability
Thm: If $A \leq_m B$ and B is decidable, then A is decidable.

Proof: We let M be the decider for B and f be the reduction from A to B. We describe a decider N for A as follows.

\[N = \text{“On input } w:\]

1. Compute $f(w)$.
2. Run M on input $f(w)$ and output whatever M outputs.

Language A is **mapping reducible** to language B, written $A \leq_m B$, if there is a computable function $f: \Sigma^* \rightarrow \Sigma^*$, where for every w,

\[w \in A \iff f(w) \in B. \]

The function f is called the **reduction** from A to B.

We know this is true bc of the iff (specifically reverse direction)
Corollary: If \(A \leq_m B \) and \(A \) is undecidable, then \(B \) is undecidable.

- Proof by contradiction.

- Assume \(B \) is decidable.

- Then \(A \) is decidable (by the previous thm).

- Contradiction: we already said \(A \) is undecidable.
Summary: Showing Mapping Reducibility

Language A is **mapping reducible** to language B, written $A \leq_m B$, if there is a **computable function** $f: \Sigma^* \rightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B.$$

The function f is called the **reduction** from A to B.

Step 1: Show there is computable fn f ... by creating a TM

Step 2: Prove the iff is true

Step 2a: “forward” direction (\Rightarrow): if $w \in A$ then $f(w) \in B$

Step 2b: “reverse” direction (\Leftarrow): if $f(w) \in B$ then $w \in A$

A function $f: \Sigma^* \rightarrow \Sigma^*$ is a **computable function** if some Turing machine M, on every input w, halts with just $f(w)$ on its tape.

Step 2b: Equivalent (contrapositive): if $w \notin A$ then $f(w) \notin B$
Summary: Using Mapping Reducibility

To prove decidability ...

- If $A \leq_m B$ and B is decidable, then A is decidable.

To prove undecidability ...

- If $A \leq_m B$ and A is undecidable, then B is undecidable.

Be careful with the **direction of the reduction!**
Alternate Proof: The Halting Problem

HALT_TM is undecidable

- If $A \leq_m B$ and A is undecidable, then B is undecidable.

- $A_{TM} \leq_m \text{HALT}_{TM}$

- Since A_{TM} is undecidable,
 - ... and we showed mapping reducibility from A_{TM} to HALT_{TM},
 - then HALT_{TM} is undecidable.

\[\blacksquare \]
Flashback: EQ_{TM} is undecidable

$EQ_{TM} = \{\langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2)\}$

Proof by contradiction:

- **Assume** EQ_{TM} has **decider** R; use to create EQ_{TM} **decider**:

 $\quad = \{\langle M \rangle | M \text{ is a TM and } L(M) = \emptyset\}$

 $S = \text{“On input } \langle M \rangle, \text{ where } M \text{ is a TM:}

 1. \text{ Run } R \text{ on input } \langle M, M_1 \rangle, \text{ where } M_1 \text{ is a TM that rejects all inputs.}

 2. \text{ If } R \text{ accepts, } \text{accept}; \text{ if } R \text{ rejects, } \text{reject.”}
Alternate Proof: $E_{Q_{TM}}$ is undecidable

$E_{Q_{TM}} = \{\langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2)\}$

Show mapping reducibility: $E_{TM} \leq_m E_{Q_{TM}}$

Step 1: create computable fn f: $<M> \rightarrow <M_1, M_2>$, computed by S

$$S = \text{“On input } \langle M \rangle, \text{ where } M \text{ is a TM:}$$

1. **Construct:** $\langle M, M_1 \rangle$, where M_1 is a TM that rejects all inputs.
2. **Output:** $\langle M, M_1 \rangle$

Step 2: show iff requirements of mapping reducibility (exercise)

And use theorem ...

If $A \leq_m B$ and A is undecidable, then B is undecidable.
Flashback: \(E_{TM} \) is undecidable
\[
E_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}
\]

Proof, by contradiction:
• Assume \(E_{TM} \) has decider \(R \); use to create \(A_{TM} \) decider:

\[
S = \text{"On input } \langle M, w \rangle, \text{ an encoding of a TM } M \text{ and a string } w:\n1. \text{ Use the description of } M \text{ and } w \text{ to construct the TM } M_1
2. \text{ Run } R \text{ on input } \langle M_1 \rangle.
3. \text{ If } R \text{ accepts, reject; if } R \text{ rejects, accept."
}
\]

• So this only reduces \(A_{TM} \) to \(\overline{E_{TM}} \)

If \(M \) accepts \(w \), \(M_1 \) not in \(E_{TM} \)!
Alternate Proof: E_{TM} is undecidable

$E_{TM} = \{ \langle M \rangle | M$ is a TM and $L(M) = \emptyset \}$

Show mapping reducibility??: $A_{TM} \leq_{m} E_{TM}$

Step 1: create computable fn f: $\langle M, w \rangle \rightarrow \langle M' \rangle$, computed by S

$$S = \text{"On input } \langle M, w \rangle, \text{ an encoding of a TM } M \text{ and a string } w:\$$

1. Use the description of M and w to construct the TM M_1

$$M_1 = \text{"On input } x:\$$

1. If $x \neq w$, reject.
2. If $x = w$, run M on input w and accept if M does.”

2. **Output:** $\langle M_1 \rangle$.

3. If R accepts, reject; if R rejects, accept.”

• So this only reduces A_{TM} to $\overline{E_{TM}}$

• It’s good enough! Still proves E_{TM} is undecidable
 • Because undecidable langs are closed under complement

Step 2: show iff requirements of mapping reducibility (exercise)
Undecidable Langs Closed under Complement

Proof by contradiction

• **Assume** some lang \(L \) is undecidable and \(\overline{L} \) is decidable ...
 • Then \(\overline{L} \) has a decider

 \[\text{Contradiction!} \]

• ... **then** we can create decider for \(L \) from decider for \(\overline{L} \) ...
 • Because decidable languages are closed under complement (hw8)!
Check-in Quiz 4/4

On gradescope