UMB CS 420
Unrecognizability
Wednesday, April 6, 2022
Announcements

• HW 8 in
 • Due Wed 4/6 11:59pm EST

• HW 9 out
 • Due Sun 4/17 11:59pm EST
Last Time: Showing Mapping Reducibility

Language A is **mapping reducible** to language B, written $A \leq_m B$, if there is a **computable function** $f : \Sigma^* \rightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B.$$

The function f is called the **reduction** from A to B.

Step 1: Show there is computable fn f ... by creating a TM

Step 2: Prove the iff is true for f

Step 2a: “forward” direction (\Rightarrow): if $w \in A$ then $f(w) \in B$

Step 2b: “reverse” direction (\Leftarrow): if $f(w) \in B$ then $w \in A$

Step 2b: Equivalent (contrapositive): if $w \notin A$ then $f(w) \notin B$
Last Time: Using Mapping Reducibility

To prove decidability ...

• If $A \leq_m B$ and B is decidable, then A is decidable.

To prove undecidability ...

• If $A \leq_m B$ and A is undecidable, then B is undecidable.

Be careful with the direction of the reduction!
Flashback: \(\text{EQ}_{\text{TM}} \) is undecidable

\[\text{EQ}_{\text{TM}} = \{ \langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \} \]

Proof by contradiction:

- **Assume** \(\text{EQ}_{\text{TM}} \) has *decider* \(R \); use to create \(\text{ET}_{\text{TM}} \) *decider*:

\[\text{ET}_{\text{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \} \]

\[S = \text{“On input } \langle M \rangle, \text{ where } M \text{ is a TM:} \]

1. Run \(R \) on input \(\langle M, M_1 \rangle \), where \(M_1 \) is a TM that rejects all inputs.
2. If \(R \) accepts, *accept*; if \(R \) rejects, *reject.*"
Alternate Proof: \(EQ_{TM} \) is undecidable

\[EQ_{TM} = \{ \langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \} \]

Show mapping reducibility: \(E_{TM} \leq_m EQ_{TM} \)

Step 1: create computable fn \(f \), computed by TM \(S \)

\(S = \) “On input \(\langle M \rangle \), where \(M \) is a TM:

1. Construct: \(\langle M, M_1 \rangle \), where \(M_1 \) is a TM that rejects all inputs.
2. Output: \(\langle M, M_1 \rangle \)

Step 2: show iff requirements of mapping reducibility

| \(\Rightarrow \) | If \(\langle M \rangle \in E_{TM} \), then \(\langle M, M_1 \rangle \in EQ_{TM} \) |
| \(\Leftrightarrow \) | If \(\langle M \rangle \notin E_{TM} \), then \(\langle M, M_1 \rangle \notin EQ_{TM} \) |

And use theorem ...

If \(A \leq_m B \) and \(A \) is undecidable, then \(B \) is undecidable.
Flashback: \(E_{TM} \) is undecidable

\[E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \} \]

Proof, by contradiction:

- Assume \(E_{TM} \) has decider \(R \); use to create \(A_{TM} \) decider:

\[S = \text{“On input } \langle M, w \rangle \text{, an encoding of a TM } M \text{ and a string } w:\]

1. Use the description of \(M \) and \(w \) to construct the TM \(M_1 \)

\[M_1 = \text{“On input } x:\]

1. If \(x \neq w \), reject.
2. If \(x = w \), run \(M \) on input \(w \) and accept if \(M \) does.”

2. Run \(R \) on input \(\langle M_1 \rangle \).
3. If \(R \) accepts, reject; if \(R \) rejects, accept.”

If \(M \) accepts \(w \), \(M_1 \) \underline{not} in \(E_{TM} \)!
Alternate Proof: E_{TM} is undecidable

$E_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$

Show mapping reducibility??: $A_{TM} \leq_{m} E_{TM}$

Step 1: create computable fn $f: \langle M, w \rangle \rightarrow \langle M_1 \rangle$, computed by S

$S = \text{“On input } \langle M, w \rangle, \text{ an encoding of a TM } M \text{ and a string } w:$

1. Use the description of M and w to construct the TM M_1

 $M_1 = \text{“On input:}$

 1. If $x \neq w$, reject.
 2. If $x = w$, run M on input w and accept if M does.”

2. Output: $\langle M_1 \rangle$.

3. If R accepts, reject; if R rejects, accept.”

Step 2: show iff requirements of mapping reducibility:

? \Rightarrow if $\langle M, w \rangle \in A_{TM}$, then $\langle M_1 \rangle \not\in E_{TM}$

? \Leftarrow if $\langle M, w \rangle \not\in A_{TM}$, then $\langle M_1 \rangle \in E_{TM}$

- This reduces A_{TM} to E_{TM} !!
- It’s good enough, if: undecidable langs are closed under complement
Undecidable Langs Closed under Complement

Proof by contradiction

- **Assume** some lang L is undecidable and \overline{L} is decidable ...
 - Then \overline{L} has a decider

- ... then we can create decider for L from decider for \overline{L} ...
 - Because decidable languages are closed under complement (hw8)!

Contradiction!
Turing Unrecognizable?

Is there anything out here?

A_{TM}

Turing-recognizable

decidable

context-free

regular

Where do these undecidable languages go?

$E_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$

$EQ_{CFG} = \{ \langle G, H \rangle | G \text{ and } H \text{ are CFGs and } L(G) = L(H) \}$

$EQ_{TM} = \{ \langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$
Thm: Some langs are not Turing-recognizable

Proof: requires 2 lemmas

• **Lemma 1**: The set of all languages is *uncountable*
 • **Proof**: Show there is a bijection with another uncountable set ...
 • ... The set of all infinite binary sequences

• **Lemma 2**: The set of all TMs is *countable*

• Therefore, some language is not recognized by a TM (pigeonhole principle)
Mapping a Language to a Binary Sequence

\[\Sigma^* = \{ \epsilon, 0, 1, 00, 01, 10, 11, 000, 001, \ldots \} \]

\[A = \{ 0, 00, 01, 000, 001, \ldots \} \]

\[\chi_A = 0 \ 1 \ 0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 1 \ 1 \ \ldots \]

Each digit represents one possible string:
- 1 if lang has that string,
- 0 otherwise
Thm: Some langs are not Turing-recognizable

Proof: requires 2 lemmas

- **Lemma 1:** The set of all languages is **uncountable**
 - **Proof:** Show there is a bijection with another uncountable set ...
 - ... The set of all infinite binary sequences
 - Now just prove set of infinite binary sequences is uncountable (exercise)

- **Lemma 2:** The set of all TMs is **countable**
 - Because every TM M can be encoded as a string $<M>$
 - And set of all strings is countable

- Therefore, some language is not recognized by a TM
Co-Turing-Recognizability

• A language is co-Turing-recognizable if ...
• ... it is the complement of a Turing-recognizable language.
Thm: Decidable \Leftrightarrow Recognizable & co-Recognizable
Thm: Decidable \Leftrightarrow Recognizable & co-Recognizable

\Rightarrow If a language is **decidable**, then it is **recognizable** and **co-recognizable**

- Decidable \Rightarrow Recognizable:
 - A decider is a recognizer, bc decidable langs are a subset of recognizable langs
- Decidable \Rightarrow Co-Recognizable:
 - To create co-decider from a decider ... switch reject/accept of all inputs
 - A co-decider is a co-recognizer, for same reason as above

\Leftarrow If a language is **recognizable** and **co-recognizable**, then it is **decidable**
Thm: Decidable ⇔ Recognizable & co-Recognizable

⇒ If a language is **decidable**, then it is **recognizable** and **co-recognizable**
 • Decidable ⇒ Recognizable:
 • A decider is a recognizer, bc decidable langs are a subset of recognizable langs
 • Decidable ⇒ Co-Recognizable:
 • To create co-decider from a decider ... switch reject/accept of all inputs
 • A co-decider is a co-recognizer, for same reason as above

⇐ If a language is **recognizable** and **co-recognizable**, then it is **decidable**
 • Let M_1 = recognizer for the language,
 • and M_2 = recognizer for its complement

 Decider M:
 • Run 1 step on M_1,
 • Run 1 step on M_2,
 • Repeat, until one machine accepts. If it’s M_1, accept. If it’s M_2, reject

Termination Arg: Either M_1 or M_2 must accept and halt, so M halts and is a decider
A Turing-unrecognizable language

• We’ve proved:

 \(A_{TM} \) is Turing-recognizable

 \(A_{TM} \) is undecidable

• So:

 \(\overline{A_{TM}} \) is not Turing-recognizable

• Because: recognizable & co-recognizable implies decidable
Is there anything out here?

Where do these undecidable languages go?

\[E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \} \]

\[EQ_{CFG} = \{ \langle G, H \rangle \mid G \text{ and } H \text{ are CFGs and } L(G) = L(H) \} \]

\[EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \} \]
Using Mapping Reducibility to Prove ...

- Decidability

- Undecidability

- Recognizability

- Unrecognizability
More Helpful Theorems

If $A \leq_m B$ and B is Turing-recognizable, then A is Turing-recognizable.

If $A \leq_m B$ and A is not Turing-recognizable, then B is not Turing-recognizable.

• Same proofs as:

 If $A \leq_m B$ and B is decidable, then A is decidable.

 If $A \leq_m B$ and A is undecidable, then B is undecidable.
Thm: EQ_{TM} is neither Turing-recognizable nor co-Turing-recognizable.

$$EQ_{TM} = \{ \langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$$

1. EQ_{TM} is not Turing-recognizable

$A_{TM} \leq_m B_{TM}$ and A is not Turing-recognizable, then B is not Turing-recognizable.
Mapping Reducibility implies Mapping Red. of Complements

Language A is *mapping reducible* to language B, written $A \leq_m B$, if there is a computable function $f : \Sigma^* \rightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B.$$

The function f is called the *reduction* from A to B.

\[
\begin{array}{c}
A \leq_m B \\
\text{implies} \\
\overline{A} \leq_m \overline{B}
\end{array}
\]
Thm: EQ_{TM} is neither Turing-recognizable nor co-Turing-recognizable

$$EQ_{TM} = \{ (M_1, M_2) | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$$

1. EQ_{TM} is not Turing-recognizable

Two Choices:
- Create Computable fn: $A_{TM} \rightarrow EQ_{TM}$
- Or Computable fn: $A_{TM} \rightarrow \overline{EQ_{TM}}$

And use theorem ...

If $A \leq_m B$ and A is not Turing-recognizable, then B is not Turing-recognizable.
Thm: EQ_{TM} is not Turing-recognizable

$\text{EQ}_{\text{TM}} = \{(M_1, M_2) | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2)\}$

- **Create Computable fn:** $A_{\text{TM}} \rightarrow \overline{\text{EQ}_{\text{TM}}}$

Step 1

Computable fn

$\langle M, w \rangle \rightarrow \langle M_1, M_2 \rangle$ M_1 and M_2 are TMs and $L(M_1) \neq L(M_2)$

$F =$ “On input $\langle M, w \rangle$, where M is a TM and w a string:

1. Construct the following two machines, M_1 and M_2.
 $M_1 =$ “On any input:
 1. Reject.”

2. $M_2 =$ “On any input:
 1. Run M on w. If it accepts, accept.”

2. Output $\langle M_1, M_2 \rangle$.”

Step 2, iff:

\Rightarrow If M accepts w, then $M_1 \neq M_2$

\Leftarrow If M does not accept w, then $M_1 = M_2$
Thm: $E_{Q TM}$ is neither Turing-recognizable nor co-Turing-recognizable

$E_{Q TM} = \{ (M_1, M_2) | M_1$ and M_2 are TMs and $L(M_1) = L(M_2) \}$

1. $E_{Q TM}$ is not Turing-recognizable
 - Create Computable fn: $A_{TM} \rightarrow E_{Q TM}$
 - Or Computable fn: $A_{TM} \rightarrow \overline{E_{Q TM}}$
 - **DONE!**

 If $A \leq_m B$ and A is not Turing-recognizable, then B is not Turing-recognizable.

2. $\overline{E_{Q TM}}$ is not co- Turing-recognizable
 - (A lang is co-Turing-recog. if it is complement of Turing-recog. lang)
Previous: EQ_{TM} is not Turing-recognizable

$EQ_{TM} = \{\langle M_1, M_2 \rangle | M_1$ and M_2 are TMs and $L(M_1) = L(M_2)\}$

- Create Computable fn: $A_{TM} \rightarrow \overline{EQ_{TM}}$

Step 1

$\langle M, w \rangle \rightarrow \langle M_1, M_2 \rangle$ M_1 and M_2 are TMs and $L(M_1) \neq L(M_2)$

\[
F = \text{“On input } \langle M, w \rangle \text{, where } M \text{ is a TM and } w \text{ a string:}
\]

1. Construct the following two machines, M_1 and M_2.
 \[M_1 = \text{“On any input: } 1. \text{ Reject.”} \]
 \[M_2 = \text{“On any input: } 1. \text{ Run } M \text{ on } w. \text{ If it accepts, accept.”} \]

2. Output $\langle M_1, M_2 \rangle$.

- Accepts nothing
- Accepts nothing or everything
Now: $\overline{EQ_{TM}}$ is not Turing-recognizable

$EQ_{TM} = \{ \langle M_1, M_2 \rangle | M_1$ and M_2 are TMs and $L(M_1) = L(M_2) \}$

• Create Computable fn: $A_{TM} \rightarrow \overline{EQ_{TM}}$

Step 1 \(\langle M, w \rangle \rightarrow \langle M_1, M_2 \rangle \) M_1 and M_2 are TMs and $L(M_1) \neq L(M_2)$

\[
F = \text{“On input } \langle M, w \rangle, \text{ where } M \text{ is a TM and } w \text{ a string:}
\]

1. Construct the following two machines, M_1 and M_2.
 $\begin{align*}
 M_1 &= \text{“On any input:} \\
 &\quad 1. \text{Accept.”} \\
 M_2 &= \text{“On any input:} \\
 &\quad 1. \text{Run } M \text{ on } w. \text{ If it accepts, accept.”}
 \end{align*}
\]

2. Output $\langle M_1, M_2 \rangle$.

Step 2, iff:
\[\Rightarrow \text{If } M \text{ accepts } w, \text{ then } M_1 \equiv M_2 \]
\[\Leftarrow \text{If } M \text{ does not accept } w, \text{ then } M_1 \not\equiv M_2 \]

DONE!
Unrecognizable Languages?

- \(A_{TM} \)
- Turing-recognizable
- Decidable
- Context-free
- Regular

Where do these go?

- \(E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \} \)
- \(EQ_{CFG} = \{ \langle G, H \rangle \mid G \text{ and } H \text{ are CFGs and } L(G) = L(H) \} \)
- \(EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \} \)
Unrecognizable Languages

\[A_{TM} \]

Turing-recognizable

decidable

context-free

regular

\[E_{TM} = \{ \{ M \} | M \text{ is a TM and } L(M) = \emptyset \} \]

\[EQ_{TM} = \{ \{ G, H \} | G \text{ and } H \text{ are CFGs and } L(G) = L(H) \} \]
Thm: $\mathit{EQ}_{\mathit{CFG}}$ is not Turing-recognizable

Recognizable & co-recognizable implies decidable

• We’ve proved:

 $\mathit{EQ}_{\mathit{CFG}}$ is undecidable

• We now prove:

 $\mathit{EQ}_{\mathit{CFG}}$ is co-Turing recognizable

• And conclude that:
 • $\mathit{EQ}_{\mathit{CFG}}$ is not Turing recognizable

Unrecognizability
Proof Technique #1
Thm: EQ_{CFG} is co-Turing-recognizable

$EQ_{\text{CFG}} = \{(G, H) \mid G$ and H are CFGs and $L(G) = L(H)\}$

Recognizer for $\overline{EQ_{\text{CFG}}}$:

- On input (G, H):
 - For every possible string w:
 - Accept if $w \in L(G)$ and $w \notin L(H)$
 - Or accept if $w \in L(H)$ and $w \notin L(G)$
 - Else reject

This is only a recognizer because it loops for ever when $L(G) = L(H)$
Unrecognizable Languages

Diagram:
- A_{TM}: Turing-recognizable
- E_{TM}: $\{\{M\} | M$ is a TM and $L(M) = \emptyset\}$
- EQ_{TM}: $\{\{G, H\} | G$ and H are CFGs and $L(G) = L(H)\}$

Question: Where do these go?
Unrecognizable Languages

A_{TM}

Turing-recognizable

decidable

context-free

regular

$E_{Q_{TM}}$ $E_{Q_{CFG}}$

Where do these go?

$E_{TM} = \{ \{ M \} \mid M \text{ is a TM and } L(M) = \emptyset \}$
Thm: E_{TM} is not Turing-recognizable

Recognizable & co-recognizable implies decidable

- We’ve proved:
 - E_{TM} is undecidable

- We now prove:
 E_{TM} is co-Turing recognizable

- And then conclude that:
 - E_{TM} is not Turing recognizable
Thm: E_{TM} is co-Turing-recognizable

$$E_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$$

Recognizer for $\overline{E_{TM}}$: Let s_1, s_2, \ldots be a list of all strings in Σ^*

"On input $\langle M \rangle$, where M is a TM:

1. Repeat the following for $i = 1, 2, 3, \ldots$
2. Run M for i steps on each input, s_1, s_2, \ldots, s_i.
3. If M has accepted any of these, accept. Otherwise, continue."

This is only a **recognizer** because it loops for ever when $L(M)$ is empty.
Unrecognizable Languages
Check-in Quiz 4/6

On gradescope