Space ... and Beyond

Wednesday, May 11, 2022
Announcements

• HW 12 due tonight 11:59pm EST
 • Last HW!

• Last lecture!
Previously: **NP-Completeness**

DEFINITION

A language B is **NP-complete** if it satisfies two conditions:

1. B is in NP, and
2. every A in NP is polynomial time reducible to B.

These are the “hardest” problems (in NP) to solve.
NP-Completeness vs NP-Hardness

Definition

A language B is **NP-complete** if it satisfies two conditions:

1. B is in NP, and
2. every A in NP is polynomial time reducible to B.

“NP-Complete” = in NP + “NP-Hard”

So a language can be NP-hard but not NP-complete!
Flashback: The Halting Problem

\[HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \} \]

Thm: \(HALT_{TM} \) is undecidable

Proof, by contradiction:

\begin{itemize}
 \item Assume \(HALT_{TM} \) has decider \(R \); use it to create decider for \(A_{TM} \):
 \begin{itemize}
 \item ...
 \end{itemize}
\end{itemize}

\begin{itemize}
 \item But \(A_{TM} \) is undecidable and has no decider!
Flashback: The Halting Problem

\[\text{HALT}_{\text{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \} \]

Thm: \text{HALT}_{\text{TM}} \text{ is undecidable}

Proof, by contradiction:

• Assume \text{HALT}_{\text{TM}} has decider \(R \); use it to create decider for \(A_{\text{TM}} \):

\[S = \text{“On input } \langle M, w \rangle, \text{ an encoding of a TM } M \text{ and a string } w: \]

1. Run TM \(R \) on input \(\langle M, w \rangle \).
2. If \(R \) rejects, \textit{reject}. \(\leftarrow \) This means \(M \) loops on input \(w \)
3. If \(R \) accepts, simulate \(M \) on \(w \) until it halts. \(\leftarrow \) This step always halts
4. If \(M \) has accepted, \textit{accept}; if \(M \) has rejected, \textit{reject.”}
Flashback: The Halting Problem

\[HALT_{TM} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \} \]

Thm: \(HALT_{TM} \) is undecidable

Proof, by contradiction:

• Assume \(HALT_{TM} \) has decider \(R \); use it to create decider for \(A_{TM} \):

\[S = \text{“On input } \langle M, w \rangle, \text{ an encoding of a TM } M \text{ and a string } w:} \]

 1. Run TM \(R \) on input \(\langle M, w \rangle \).
 2. If \(R \) rejects, reject.
 3. If \(R \) accepts, simulate \(M \) on \(w \) until it halts.
 4. If \(M \) has accepted, accept; if \(M \) has rejected, reject.”

• But \(A_{TM} \) is undecidable!
 • I.e., this decider that we just created cannot exist! So \(HALT_{TM} \) is undecidable.
The Halting Problem is \textbf{NP-Hard}

\[\text{HALT}_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \} \]

Proof: Reduce 3\textit{SAT} to the Halting Problem

(Why does this prove that the Halting Problem is \textbf{NP-hard}?)

Because 3\textit{SAT} is \textbf{NP}-complete! (so every \textbf{NP} problem is poly time reducible to 3\textit{SAT})
The Halting Problem is **NP-Hard**

\[\text{HALT}_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \} \]

Computable function, from 3SAT → HALT_{TM}:

On input \(\phi \), a formula in 3cnf:

- **Construct TM** \(M \)

 \[M = \text{on input } \phi \]

 - Try all assignments
 - If any satisfy \(\phi \), then **accept**
 - When all assignments have been tried, start over

- **Output** \(\langle M, \phi \rangle \)

\[(x_1 \lor \overline{x_2} \lor \overline{x_3}) \land (x_3 \lor \overline{x_5} \lor x_6) \land (x_3 \lor \overline{x_6} \lor x_4) \]

\[(x_1 \lor \overline{x_2} \lor x_3) \land (x_3 \lor \overline{x_5} \lor x_6) \land (x_3 \lor \overline{x_6} \lor x_4) \]

\[\text{HALT}_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \} \]

⇒ If \(\phi \) has a satisfying assignment, then \(M \) halts on \(\phi \)

⇐ If \(\phi \) has no satisfying assignment, then \(M \) loops on \(\phi \)
Definition

A language B is *NP-complete* if it satisfies two conditions:

1. B is in NP, and
2. every A in NP is polynomial time reducible to B.

So a language can satisfy condition #2 but not condition #1.

But can a language satisfy condition #1 but not condition #2?

Yes, every language in P ...

... unless $P = NP$
NP-Completeness vs NP-Hardness

Is there any problem definitely outside of here?
Space ...
Flashback: Dynamic Programming Example

- **Chomsky Grammar** G:
 - $S \rightarrow AB \mid BC$
 - $A \rightarrow BA \mid a$
 - $B \rightarrow CC \mid b$
 - $C \rightarrow AB \mid a$

- **Example string**: $baaba$

- Store every *partial string* and their generating variables in a *table*

<table>
<thead>
<tr>
<th>Substring start char</th>
<th>Substring end char</th>
<th>b</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
<td>vars for “b”</td>
<td>vars for “ba”</td>
<td>vars for “baa”</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td></td>
<td></td>
<td>vars for “a”</td>
<td>vars for “aa”</td>
<td>vars for “aab”</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
<td></td>
<td></td>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We are gaining time ...
... by spending more space!
Space Complexity, Formally

DEFINITION

Let \(M \) be a deterministic Turing machine that halts on all inputs. The **space complexity** of \(M \) is the function \(f : \mathbb{N} \rightarrow \mathbb{N} \), where \(f(n) \) is the maximum number of tape cells that \(M \) scans on any input of length \(n \). If the space complexity of \(M \) is \(f(n) \), we also say that \(M \) runs in space \(f(n) \).

If \(M \) is a nondeterministic Turing machine wherein all branches halt on all inputs, we define its space complexity \(f(n) \) to be the maximum number of tape cells that \(M \) scans on any branch of its computation for any input of length \(n \).
Space Complexity Classes

DEFINITION

Let $f: \mathcal{N} \rightarrow \mathcal{R}^+$ be a function. The *space complexity classes*, $\text{SPACE}(f(n))$ and $\text{NSPACE}(f(n))$, are defined as follows.

$\text{SPACE}(f(n)) = \{ L \mid L \text{ is a language decided by an } O(f(n)) \text{ space deterministic Turing machine} \}$.

$\text{NSPACE}(f(n)) = \{ L \mid L \text{ is a language decided by an } O(f(n)) \text{ space nondeterministic Turing machine} \}$.

Compare:

Let $t: \mathcal{N} \rightarrow \mathcal{R}^+$ be a function. Define the *time complexity class*, $\text{TIME}(t(n))$, to be the collection of all languages that are decidable by an $O(t(n))$ time Turing machine.

$\text{NTIME}(t(n)) = \{ L \mid L \text{ is a language decided by an } O(t(n)) \text{ time nondeterministic Turing machine} \}$.
Example: \(SAT \) Space Usage

\[
\text{\textcolor{blue}{2}^{0(m)}} \text{ exponential time machine}
\]

\[
M_1 = \text{“On input } \langle \phi \rangle, \text{ where } \phi \text{ is a Boolean formula:}
\]
1. For each truth assignment to the variables \(x_1, \ldots, x_m \) of \(\phi \):
2. Evaluate \(\phi \) on that truth assignment.
3. If \(\phi \) ever evaluated to 1, accept; if not, reject.”

\[
\text{\textcolor{green}{Each loop iteration requires } O(m) \text{ space}}
\]

\[
\text{\textcolor{green}{But the space is re-used on each loop! (nothing is stored from the last loop)}}
\]

\[
\text{\textcolor{green}{So the entire machine only needs } O(m) \text{ space!}}
\]

\[
\text{\textcolor{blue}{Space is “more powerful” than time.}}
\]

\[
\text{\textcolor{green}{SAT is in } O(m) \text{ space complexity class!}}
\]

\[
\text{\textcolor{green}{SAT} = \{ \langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula} \}}
\]
Example: Nondeterministic Space Usage

\[\text{ALL}_{\text{NFA}} = \{ \langle A \rangle | A \text{ is an NFA and } L(A) = \Sigma^* \} \]

Nondeterministic decider for \(\text{ALL}_{\text{NFA}} \) (accepts NFAs that reject something)

\[N = \text{“On input } \langle M \rangle, \text{ where } M \text{ is an NFA:} \]

1. Place a marker on the start state of the NFA.
2. Repeat \(2^q \) times, where \(q \) is the number of states of \(M \):
 - Nondeterministically select an input symbol and change the positions of the markers on \(M \)'s states to simulate reading that symbol.
3. Accept if stages 2 and 3 reveal some string that \(M \) rejects; that is, if at some point none of the markers lie on accept states of \(M \). Otherwise, reject.”

\[q \text{ states } = 2^q \text{ possible combinations (so exponential time)} \]

Additional, need a counter to count to \(2^q \); this requires \(\log(2^q) = q \) extra space

But each loop uses only \(O(q) \) space!

So the whole machine runs in (nondeterministic) linear \(O(q) \) space!
Facts About Time vs Space (for Deciders)

TIME → SPACE
- If a decider runs in time $t(n)$, then its maximum space usage is ...
- $t(n)$
- ... because it can add at most 1 tape cell per step

SPACE → TIME
- If a decider runs in space $f(n)$, then its maximum time usage is ...
- $(|\Gamma| + |Q|)^{f(n)} = 2^{df(n)}$
- ... because that’s the number of possible configurations
- (and a decider cannot repeat a configuration)
Flashback: Deterministic vs Non-Det. Time

• If a non-deterministic TM runs in: $t(n)$ time
• Then an equivalent deterministic TM runs in: $2^{O(t(n))}$
 • Exponentially slower

What about space?
Deterministic vs Non-Det. Space

THEOREM

Savitch’s theorem For any function \(f: \mathbb{N} \rightarrow \mathbb{R}^+ \), where \(f(n) \geq n \),
\[\text{NSPACE}(f(n)) \subseteq \text{SPACE}(f^2(n)). \]

- If a non-deterministic TM runs in: \(f(n) \) space
- Then an equivalent deterministic TM runs in: \(f^2(n) \) space
 - **Exponentially** Only \textbf{Quadratically} slower!
Flashback: Non-det. TM \rightarrow Deterministic TM

- Simulate NTM with Det. TM:
 - Number the nodes at each step
 - Deterministically check every tree path, in breadth-first order
 - 1
 - 1-1
 - 1-2
 - 1-1-1

$$b^t(n) = 2^{2^{O(t(n))}}$$

Diagram:
- Nondeterministic computation
- Max height (longest path) $t(n)$
- Max # of paths $b = \text{branching per level}$
- Accept

319
Flashback: Non-det \(\rightarrow\) Deterministic TM: Space

- **Input Tape**: \(n\) space
- **Simulation Tape**: \(t(n)\) space
- **Address Tape**: \(2^{O((n))}\) (exponential) space

3 tapes
Let N be an NTM deciding language A in space $f(n)$
- This means a single path could use $f(n)$ space
- That path could take $2^{df(n)}$ steps
 - (That’s the possible ways to fill the space)
 - Each step could be a non-deterministic branch that must be saved
- So naively tracking these branches requires $2^{df(n)}$ space!

• Instead, let’s “divide and conquer” to reduce space!
“Divide and Conquer” TM Config Sequences

• Want to check whether:

 \[C_{\text{start}} \xrightarrow{2^{O(f(n))} \text{ (possibly branching) steps}} C_{\text{accept}} \]

 Remembering the branch at every step costs exponential space

 So long as we save the intermediate config

 Each split must remember a “\(c_m \)” config = \(O(f(n)) \) space

 \[\log(2^{O(f(n))}) = O(f(n)) \]

• Instead, we check whether:

 \[C_{\text{start}} \xrightarrow{2^{O(f(n))}/2 \text{ steps}} C_m \xrightarrow{2^{O(f(n))}/2 \text{ steps}} C_{\text{accept}} \]

 Remembering these steps costs half the space ...

 ... and we can reuse that space to check the second half

 \[\text{Total: } O(f(n)) \times O(f(n)) = O(f^2(n)) \text{ space} \]

 (Savitch’s Thm)

• Keep dividing ...

 \[C_{\text{start}} \xrightarrow{} \xrightarrow{} \xrightarrow{} C_{\text{accept}} \]
Formally: A “Yielding” Algorithm

\begin{align*}
\text{CANYIELD} &= \text{“On input } c_1, c_2, \text{ and } t:\n1. \text{ If } t = 1, \text{ then test directly whether } c_1 = c_2 \text{ or whether } c_1 \text{ yields } c_2 \text{ in one step according to the rules of } N. \text{ Accept if either test succeeds; reject if both fail.}
2. \text{ If } t > 1, \text{ then for each configuration } c_m \text{ of } N \text{ using space } f(n):
3. \text{ Run } \text{CANYIELD}(c_1, c_m, \frac{t}{2}).
4. \text{ Run } \text{CANYIELD}(c_m, c_2, \frac{t}{2}).
5. \text{ If steps 3 and 4 both accept, then accept.}
6. \text{ If haven’t yet accepted, reject.”}
\end{align*}
Savitch’s Theorem: Proof

• Let N be an NTM deciding language A in space $f(n)$
• Construct equivalent deterministic TM M using $O(f^2(n))$ space:

$$M = "\text{On input } w:\n1. \text{ Output the result of CANYIELD}(c_{\text{start}}, c_{\text{accept}}, 2^{df(n)})\."$$

• $c_{\text{start}} = \text{start configuration of } N$
• $c_{\text{accept}} = \text{new accepting config where all } N\text{'s accepting configs go}$

Extra d constant depends on size of tape alphabet
PSPACE

Definition

PSPACE is the class of languages that are decidable in polynomial space on a deterministic Turing machine. In other words,

\[\text{PSPACE} = \bigcup_{k} \text{SPACE}(n^k). \]
NPSPACE

Analogous to P and NP for time complexity

DEFINITION

NPSPACE is the class of languages that are decidable in polynomial space on a deterministic Turing machine. In other words,

\[
\text{NPSPACE} = \bigcup_{k} \text{NSPACE}(n^k).
\]

But \(P \subseteq \text{PSPACE} \) and \(NP \subseteq \text{NPSPACE} \)
- Because each step can use at most one extra tape cell
- But space can be re-used
Flashback: Does $P = NP$?

Proving $P \neq NP$ is hard because how do you prove an algorithm doesn’t have a poly time algorithm? (in general it’s hard to prove that something doesn’t exist)
PSPACE = NPSPACE?

- **PSPACE**: langs decidable in poly space on deterministic TM
- **NPSPACE**: langs decidable in poly space on nondeterministic TM

Theorem: PSPACE = NPSPACE !!!

Proof: By Savitch’s Theorem!

Savitch’s theorem For any function \(f : \mathbb{N} \rightarrow \mathbb{R}^+ \), where \(f(n) \geq n \),
\[\text{NSPACE}(f(n)) \subseteq \text{SPACE}(f^2(n)). \]
Space vs Time

• \(P \subseteq \text{PSPACE} \) and \(\text{NP} \subseteq \text{NPSPACE} \)
 • Because each step can use at most one extra tape cell
 • And space can be re-used

• \(\text{PSPACE} \subseteq \text{EXPTIME} \)
 • Because an \(f(n) \) space TM has \(2^{O(f(n))} \) possible configurations
 • And a halting TM cannot repeat a configuration

• We already know \(P \subseteq \text{NP} \) and \(\text{PSPACE} = \text{NPSPACE} \) ... so:

\[
P \subseteq \text{NP} \subseteq \text{PSPACE} = \text{NPSPACE} \subseteq \text{EXPTIME}
\]
Space vs Time: Conjecture

 Researchers believe these are all completely contained within each other

 But this is an open conjecture!

 Only known result so far is: \(P \subseteq \text{EXPTIME} \)
(this means some problems provably have no poly time algorithm!)

\[P \subseteq \text{NP} \subseteq \text{PSPACE} = \text{NPSPACE} \subseteq \text{EXPTIME} \]
Last Quiz 5/11

In gradescope