CS420

Computing With Finite Automata

Monday, January 30, 2023

UMass Boston Computer Science
Announcements

• HW 0
 • due Tue 1/31 11:59pm EST

• HW 1
 • released Wed

• Please ask all HW questions on Piazza!
 • So all course staff can see,
 • and entire class can benefit
 • Do not email course staff with HW questions
Last Time: Finite Automata Formal Definition

DEFINITION

A *finite automaton* is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set called the *states*,
2. \(\Sigma\) is a finite set called the *alphabet*,
3. \(\delta : Q \times \Sigma \rightarrow Q\) is the *transition function*,
4. \(q_0 \in Q\) is the *start state*, and
5. \(F \subseteq Q\) is the *set of accept states*.

Also called a **Deterministic Finite Automata (DFA)**

(will be important later)
In-class Exercise

Come up with a formal description of the following machine:

Definition

A finite automaton is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set called the *states*,
2. \(\Sigma\) is a finite set called the *alphabet*,
3. \(\delta: Q \times \Sigma \rightarrow Q\) is the *transition function*,
4. \(q_0 \in Q\) is the *start state*, and
5. \(F \subseteq Q\) is the *set of accept states*.
In-class Exercise: solution

- $Q = \{q_1, q_2, q_3\}$
- $\Sigma = \{a, b\}$
- δ
 - $\delta(q_1, a) = q_2$
 - $\delta(q_1, b) = q_1$
 - $\delta(q_2, a) = q_3$
 - $\delta(q_2, b) = q_3$
 - $\delta(q_3, a) = q_2$
 - $\delta(q_3, b) = q_1$
- $q_0 = q_1$
- $F = \{q_2\}$

$M = (Q, \Sigma, \delta, q_0, F)$
Quiz Preview

1. Which are possible inputs to an FSM computation?

2. Which are possible results of running an FSM computation?

3. In CS 420, what kind of mathematical object is a language?
A Computation Model is ... (from lecture 1)

• Some base definitions and axioms ...

DEFINITION

A finite automaton is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set called the states,
2. \(\Sigma\) is a finite set called the alphabet,
3. \(\delta: Q \times \Sigma \rightarrow Q\) is the transition function,
4. \(q_0 \in Q\) is the start state, and
5. \(F \subseteq Q\) is the set of accept states.

• And rules that use the definitions ...
Computation with FSMs (JFLAP demo)

• FSM:

• Input: “1101”
FSM Computation Rules

Informally
- **Computation** = “Program” = a finite automata
- **Input** = string of chars, e.g. “1101”

To run a computation / “program”:
- **Start** in “start state”

Repeat:
- Read 1 char;
- Change state according to the transition table

Result =
- Accept if last state is “Accept” state
- Reject otherwise

Formally (i.e., mathematically)
- \(M = (Q, \Sigma, \delta, q_0, F) \)
- \(w = w_1w_2 \cdots w_n \)

Define variables \(r_0, \ldots, r_n \), representing sequence of states in the computation

- \(r_0 = q_0 \)
- \(r_i = \delta(r_{i-1}, w_i), \text{ for } i = 1, \ldots, n \)
- \(r_2 = \delta(r_1, w_2) \ldots \)

Let’s come up with nicer notation to represent this part

M accepts w if
- sequence of states \(r_0, r_1, \ldots, r_n \) in \(Q \) exists with \(r_n \in F \)

This is still a little verbose / informal

HINT: to better understand the math, always work out concrete examples
An Extended Transition Function

Define **extended transition function**: \(\hat{\delta}: Q \times \Sigma^* \rightarrow Q \)

- **Domain:**
 - Beginning state \(q \in Q \) (not necessarily the start state)
 - Input string \(w = w_1 w_2 \cdots w_n \) where \(w_i \in \Sigma \)

- **Range:**
 - Ending state (not necessarily an accept state)

(Defined recursively)

- **Base case:** ...

\(\delta: Q \times \Sigma \rightarrow Q \) is the **transition function**

- Set of pairs
- \(\Sigma^* = \text{set of all strings!} \)
- \(* = \text{“0 or more”} \)
Recursive Definitions

```javascript
function factorial(n) {
  if (n == 0) {
    return 1;
  } else {
    return n * factorial(n - 1);
  }
}
```

- **Why is this allowed?**
 - It’s a “feature” (i.e., an axiom!) of the programming language

- **Why does this “work”?** (Why doesn’t it loop forever?)
 - Because the recursive call always has a “smaller” argument ...
 - ... and so eventually reaches the base case and stops
Recursive Definitions

A Natural Number is either:

- **Zero**, or
- the **Successor** of a **Natural Number**

Examples
- **Zero**
- **Successor** of **Zero** (= “one”)
- **Successor** of **Successor** of **Zero** (= “two”)
- **Successor** of **Successor** of **Successor** of **Zero** (= “three”) ...

Use of definition before it is fully defined!

“smaller” argument
Recursive Definitions

Recursive definitions have:
- base case and
- recursive case
 (with a “smaller” object)

```c
/* Linked list Node*/

class Node {
    int data;
    Node next;
}
```

This is a recursive definition: Node is used before it is fully defined (but must be “smaller”)
An Extended Transition Function

Define extended transition function:

- **Domain:**
 - Beginning state $q \in Q$ (not necessarily the start state)
 - Input string $w = w_1 w_2 \cdots w_n$ where $w_i \in \Sigma$

- **Range:**
 - Ending state (not necessarily an accept state)

(Defined recursively)

- **Base case:** $\hat{\delta}(q, \varepsilon) = q$

- **Recursive case:** $\hat{\delta}(q, w) = \hat{\delta}(\delta(q, w_1), w_2 \cdots w_n)$

$\delta : Q \times \Sigma \rightarrow Q$ is the transition function

$\hat{\delta} : Q \times \Sigma^* \rightarrow Q$
Informally

- “Program” = a finite automata
- Input = string of chars, e.g. “1101”

To run a “program”:
- Start in “start state”

- Repeat:
 - Read 1 char;
 - Change state according to the transition table

- Result =
 - “Accept” if last state is “Accept” state
 - “Reject” otherwise

Formally (i.e., mathematically)

- $M = (Q, \Sigma, \delta, q_0, F)$
- $w = w_1w_2 \cdots w_n$

- $r_0 = q_0$

- $r_i = \delta(r_{i-1}, w_i)$, for $i = 1, \ldots, n$

Let’s come up with nicer notation to represent this part

- M accepts w if
 sequence of states r_0, r_1, \ldots, r_n in Q exists …
 with $r_n \in F$
FSM Computation Model

Informally

- "Program" = a finite automata
- **Input** = string of chars, e.g. "1101"

To run a “program”:
- **Start** in “start state”

- **Repeat:**
 - **Read** 1 char;
 - **Change** state according to the transition table

- **Result =**
 - "Accept" if last state is “Accept” state
 - “Reject” otherwise

Formally (i.e., mathematically)

- $M = (Q, \Sigma, \delta, q_0, F)$
- $w = w_1 w_2 \cdots w_n$

- $r_0 = q_0$

- $r_i = \delta(r_{i-1}, w_i)$, for $i = 1, \ldots, n$

- M accepts w if $\hat{\delta}(q_0, w) \in F$ and sequence of states r_0, r_1, \ldots, r_n in Q exists... with $r_n \in F$
Definition of Accepting Computations

An **accepting computation**, for FSM $M = (Q, \Sigma, \delta, q_0, F)$ and string w:

1. starts in the start state q_0
2. goes through a valid sequence of states according to δ
 - this implies that all $w_i \in \Sigma$
3. ends in an accept state

All 3 must be true for a computation to be an **accepting computation**!

M accepts w if $\hat{\delta}(q_0, w) \in F$
Accepting Computation or Not?

FSM:

- \(\hat{\delta}(q_1, 1101) \)
 - yes
- \(\hat{\delta}(q_1, 110) \)
 - No (doesn’t end in accept state)
- \(\hat{\delta}(q_2, 101) \)
 - No (doesn’t start in start state)
- \(\hat{\delta}(q_1, 123) \)
 - No (doesn’t follow delta transition function)
Alphabets, Strings, Languages

- An **alphabet** is a **non-empty finite set** of symbols
 \[\Sigma_1 = \{0,1\} \]
 \[\Sigma_2 = \{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z\} \]

- A **string** is a **finite sequence** of symbols from an alphabet

 \[
 01001 \quad \text{abracadabra} \quad \varepsilon
 \]

 Empty string (length 0)

- A **language** is a **set** of strings

 \[
 A = \{\text{good, bad}\}
 \]

 \[
 \emptyset \quad \{ \quad \}
 \]

 Empty set is a language

 \[
 A = \{ w \mid w \text{ contains at least one 1 and an even number of 0s follow the last 1} \}
 \]

 Languages can be infinite

 "the set of all ..."

 "such that ..."
Computation and Languages

• The **language** of a machine is the **set of all strings that it accepts**

• E.g., An FSM M **accepts** w if $\delta(q_0, w) \in F$

• Language of $M = L(M) = \{w \mid M$ accepts $w\}$

“the set of all ...”

“such that ...”
Language Terminology

• M accepts w

• M recognizes language A if $A = \{ w \mid M$ accepts $w \}$
Computation and Classes of Languages

• The **language** of a machine is the **set of all strings** that it accepts

• A **computation model** is equivalent to the **set of machines** it defines

• E.g., all possible FSMs are a computation model

• Thus: a **computation model** is also equivalent to a **set of languages**
Regular Languages: Definition

If a finite automaton (FSM) recognizes a language, then that language is called a regular language.

A language is a set of strings. If $A = \{w \mid M \text{ accepts } w\}$, then M recognizes language A.
A Language, Regular or Not?

• If given: a Finite Automaton M
 • We know: $L(M)$, the language recognized by M, is a regular language

 If a finite automaton (FSM) recognizes a language, then that language is called a regular language.

 (modus ponens)

• If given: a Language A
 • Is A a regular language?
 • Not necessarily!
 • How do we determine, i.e., prove, that A is a regular language?
An Inference Rule: Modus Ponens

Premises
- If P then Q
- P is true

Example Premises
- If there is an FSM recognizing language A, then A is a regular language
- There is an FSM M where $L(M) = A$

Conclusion
- Q must also be true

Conclusion
- A is a regular language!
A Language, Regular or Not?

• If given: a Finite Automaton M
 • We know: $L(M)$, the language recognized by M, is a regular language

If a finite automaton (FSM) recognizes a language, then that language is called a regular language.

• If given: a Language A
 • Is A is a regular language?
 • Not necessarily!
 • How do we determine, i.e., prove, that A is a regular language?

Create an FSM recognizing A!
Designing Finite Automata: Tips

• Input is read only once, one char at a time

• Must decide accept/reject after that

• States = the machine’s memory!
 • # states must be decided in advance
 • Think about what information must be remembered.

• Every state/symbol pair must have a transition (for DFAs)

• Come up with examples!
Design a DFA: accept strs with odd # 1s

- On input 1:
 - Accept
- On input 0:
 - Reject
- On input 01:
 - Accept
- On input 11:
 - Reject
- On input 1101:
 - Accept
- On input ε
 - Reject
Design a DFA: accept strs with odd # 1s

• **States:**
 • 2 states:
 • seen even 1s so far
 • seen odds 1s so far

• **Alphabet:** 0 and 1

• **Transitions:**

• **Start / Accept states:**
In-class exercise

• **Prove:** the following language is a regular language:
 • $A = \{w \mid w \text{ has exactly three 1's}\}$
 • i.e., design a finite automata that recognizes it!

• Where $\Sigma = \{0, 1\}$,

• Remember:

DEFINITION

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

1. Q is a finite set called the *states*,
2. Σ is a finite set called the *alphabet*,
3. $\delta : Q \times \Sigma \rightarrow Q$ is the *transition function*,
4. $q_0 \in Q$ is the *start state*, and
5. $F \subseteq Q$ is the *set of accept states*.
In-class exercise Solution

• Design finite automata recognizing:
 • \(\{w \mid w \text{ has exactly three 1’s} \} \)

• States:
 • Need one state to represent how many 1’s seen so far
 • \(Q = \{q_0, q_1, q_2, q_3, q_{4+}\} \)

• Alphabet: \(\Sigma = \{0, 1\} \)

• Transitions:

• Start state:
 • \(q_0 \)

• Accept states:
 • \(\{q_3\} \)
Check-in Quiz 1/30

On gradescope