CS420

Combining Automata & Closed Operations

Monday, February 6, 2023

UMass Boston Computer Science
Announcements

• HW 1
 • Due Tue 2/7 11:59pm EST

Quiz Preview

• To prove the statement:
 • “The set of regular languages is **closed** under the **union** operation”
• What is the equivalent IF-THEN statement to prove?
Last Time: Proving a Language is Regular

Statements

1. If an FSM recognizes \(L \), then \(L \) is a regular language.

2. \(M = (Q, \Sigma, \delta, q_0, F) \) is an FSM.

3. \(M \) recognizes \(L \).

4. \(L = \{ w \mid w \text{ is string with odd # of } 1\text{s} \} \) is a regular language.

Justifications

1. Def. of a Regular Language

2. Definition of an FSM

3. See examples. This isn’t a proof, but good enough for programmers(?), and CS 420

4. Stmt #1 & #3 (modus ponens)
The page contains a discussion on tips for designing finite automata, based on analogies and practical steps. The content is reformatted below for clarity:

Last Time: Tips on Designing Finite Automata

Analogy
Finite Automata ~ “Programs” ::

Designing Finite Automata ~ “Programming”!

1. **Confirm understanding** of the problem
 - Create tests: example inputs vs expected results (accept / reject)

2. **Decide information** that machine “remembers”
 - These are the machine states: some are accept states; one is start state

3. **Determine transitions** between states

4. **Test** machine behaves as expected
 - Use initial examples; and create additional tests if needed
Last Time: Combining DFAs?

Password Requirements

» Passwords must have a minimum length of ten (10) characters - but more is better!
» Passwords **must include at least 3** different types of characters:
 » upper-case letters (A-Z)
 » lower-case letters (a-z)
 » symbols or special characters (%, &, *, $, etc.)
 » numbers (0-9)
» Passwords cannot contain all or part of your email address
» Passwords cannot be re-used

To match all requirements, combine smaller DFAs into one big DFA?

https://www.umb.edu/it/password

(We do this with programs all the time)
Password Checker DFAs

M_5: AND

M_3: OR

M_4: Check special chars

M_2: Check uppercase

M_4: Check length

Want to be able to easily **combine** DFAs, i.e., **composability**

We want these operations:

OR: $\text{DFA} \times \text{DFA} \rightarrow \text{DFA}$

AND: $\text{DFA} \times \text{DFA} \rightarrow \text{DFA}$

To combine more than once, operations must be **closed**!
“Closed” Operations

• Set of Natural numbers = \{0, 1, 2, \ldots\}
 • **Closed** under addition:
 • if \(x\) and \(y\) are Natural numbers,
 • then \(z = x + y\) is a Natural number
 • Closed under multiplication?
 • yes
 • Closed under subtraction?
 • no

• Integers = \{..., -2, -1, 0, 1, 2, \ldots\}
 • Closed under addition and multiplication
 • Closed under subtraction?
 • yes
 • Closed under division?
 • no

• Rational numbers = \{x \mid x = y/z, y and z are Integers\}
 • Closed under division?
 • No?
 • Yes if \(z \neq 0\)

A set is **closed** under an operation if: result of the operation is in the same set as inputs to the operation
We Want “Closed” Ops For Regular Langs!

• Set of Regular Languages = \{L_1, L_2, \ldots\}
 • Closed under ...?
 • OR (union)
 • AND (intersection)
 • ...

A set is **closed** under an operation if: result of the operation is in the same set as inputs to the operation
Why Care About Closed Ops on Reg Langs?

• Closed operations for regulars langs preserve “regularness”

• I.e., it preserves the same computation model!

• This allows “combining” smaller computation to get bigger ones:

 For Example:
 OR: Regular Lang × Regular Lang → Regular Lang

• So this semester, we will look for operations that are closed!
Union of Languages

Let the alphabet \(\Sigma \) be the standard 26 letters \(\{a, b, \ldots, z\} \).

If \(A = \{ \text{good, bad} \} \) and \(B = \{ \text{boy, girl} \} \), then

\[
A \cup B = \{ \text{good, bad, boy, girl} \}
\]
Is Union Closed For Regular Langs?

In this course, we are interested in closed operations for a set of languages (here the set of regular languages).

(In general, a set is **closed** under an operation if applying the operation to members of the set produces a result in the same set.)

The class of regular languages is **closed** under the union operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.
Is Union Closed For Regular Langs?

THEOREM

The class of regular languages is closed under the union operation.

In other words, if \(A_1 \) and \(A_2 \) are regular languages, so is \(A_1 \cup A_2 \).

(In general, a set is **closed** under an operation if applying the operation to members of the set produces a result in the same set.)

A member of the set of regular languages is...

... a regular language, which itself is a set (of strings) ...

... so the operations we’re interested in are **set operations**
THEOREM

The class of regular languages is closed under the union operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.
Flashback: Mathematical Statements: IF-THEN

Using:
- If we know: \(P \to Q \) is TRUE, what do we know about \(P \) and \(Q \) individually?
 - Either \(P \) is FALSE (not too useful, can’t prove anything about \(Q \)), or
 - If \(P \) is TRUE, then \(Q \) is TRUE (modus ponens)

Proving:
Flashback: Mathematical Statements: IF-THEN

THEOREM

- The class of regular languages is closed under the union operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

- IF P is TRUE, then Q is TRUE (modus ponens)

Proving:

- To prove: $P \rightarrow Q$ is TRUE:
 - Prove P is FALSE (usually hard or impossible)
 - Assume P is TRUE, then prove Q is TRUE

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \rightarrow q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
</tbody>
</table>

Would have to prove there are no regular languages (impossible)
Is Union Closed For Regular Langs?

Statements

1. A_1 and A_2 are regular languages
2. A DFA $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognizes A_1
3. A DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognizes A_2
4. Construct DFA $M = (Q, \Sigma, \delta, q_0, F)$ (todo)
5. M recognizes $A_1 \cup A_2$
6. $A_1 \cup A_2$ is a regular language
7. The class of regular languages is closed under the union operation.

Justifications

1. Assumption
2. Def of Regular Language
3. Def of Regular Language
4. Def of DFA
5. See examples
6. Def of Regular Language
7. From stmt #1 and #6

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

???
A language is called a **regular language** if some finite automaton recognizes it.

Definition

A **finite automaton** is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set called the **states**,
2. \(\Sigma\) is a finite set called the **alphabet**,
3. \(\delta: Q \times \Sigma \rightarrow Q\) is the **transition function**,
4. \(q_0 \in Q\) is the **start state**, and
5. \(F \subseteq Q\) is the **set of accept states**.

\[M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1),\text{ recognize } A_1,\]
\[M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2),\text{ recognize } A_2,\]
Want: M

M_1 recognizes A_1

M_2 recognizes A_2

$A_1 \cup A_2$

Rough sketch idea: M is a combination of M_1 and M_2 that checks whether its input is accepted by either M_1 and M_2.

But, a DFA can only read its input once!

Need to somehow simulate “being in” both M_1 and M_2 state simultaneously.

THEOREM

The class of regular languages is closed under the union operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.
Union is Closed For Regular Languages

Proof

- Given: $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$, recognize A_1,
 $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$, recognize A_2,
- Construct: $M = (Q, \Sigma, \delta, q_0, F)$, using M_1 and M_2, that recognizes $A_1 \cup A_2$,
- states of M:
 $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$

A finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

1. Q is a finite set called the states,
2. Σ is a finite set called the alphabet,
3. $\delta: Q \times \Sigma \rightarrow Q$ is the transition function,\(^1\)
4. $q_0 \in Q$ is the start state, and
5. $F \subseteq Q$ is the set of accept states.

A state of M is a pair:
- the first part is a state of M_1 and
- the second part is a state of M_2

So the states of M is all possible combinations of the states of M_1 and M_2.
Union is Closed For Regular Languages

Proof
- Given: \(M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1) \), recognize \(A_1 \),
 \(M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2) \), recognize \(A_2 \),
- Construct: \(M = (Q, \Sigma, \delta, q_0, F) \), using \(M_1 \) and \(M_2 \), that recognizes \(A_1 \cup A_2 \)
- states of \(M \):
 \[Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2 \]
 This set is the *Cartesian product* of sets \(Q_1 \) and \(Q_2 \)

A finite automaton is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q \) is a finite set called the *states*,
2. \(\Sigma \) is a finite set called the *alphabet*,
3. \(\delta : Q \times \Sigma \rightarrow Q \) is the *transition function*,
4. \(q_0 \in Q \) is the *start state*, and
5. \(F \subseteq Q \) is the *set of accept states.*

A step in \(M \) includes both:
- a step in \(M_1 \), and
- a step in \(M_2 \)
Union is Closed For Regular Languages

Proof
• Given: $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$, recognize A_1, $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$, recognize A_2,

• Construct: $M = (Q, \Sigma, \delta, q_0, F)$, using M_1 and M_2, that recognizes $A_1 \cup A_2$

• states of M: $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$

This set is the Cartesian product of sets Q_1 and Q_2

• M transition fn: $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$

• M start state: (q_1, q_2)

Start state of M is both start states of M_1 and M_2
Union is Closed For Regular Languages

Proof
- Given: \(M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1) \), recognize \(A_1 \),
 \(M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2) \), recognize \(A_2 \),

- Construct: \(M = (Q, \Sigma, \delta, q_0, F) \), using \(M_1 \) and \(M_2 \), that recognizes \(A_1 \cup A_2 \)

- states of \(M \): \(Q = \{ (r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2 \} = Q_1 \times Q_2 \)
 This set is the *Cartesian product* of sets \(Q_1 \) and \(Q_2 \)

- \(M \) transition fn: \(\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a)) \)

- \(M \) start state: \((q_1, q_2) \)

- \(M \) accept states: \(F = \{ (r_1, r_2) | r_1 \in F_1 \text{ or } r_2 \in F_2 \} \)

 Accept if either \(M_1 \) **or** \(M_2 \) **accept**

 Remember:
 Accept states must be subset of \(Q \)

\(\text{(Q.E.D.)}\)
Another operation: Concatenation

Example: Recognizing street addresses

212 Beacon Street

\[M_3: \text{CONCAT} \]

\[M_1: \text{recognize numbers} \]

\[M_2: \text{recognize words} \]
Concatenation of Languages

Let the alphabet Σ be the standard 26 letters $\{a, b, \ldots, z\}$.
If $A = \{\text{good, bad}\}$ and $B = \{\text{boy, girl}\}$, then

$$A \circ B = \{\text{goodboy, goodgirl, badboy, badgirl}\}$$
Is Concatenation Closed?

THEOREM

The class of regular languages is closed under the concatenation operation.

In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$.

- **Construct a new machine M recognizing $A_1 \circ A_2$?** (like union)
 - Using DFA M_1 (which recognizes A_1),
 - and DFA M_2 (which recognizes A_2)
Let M_1 recognize A_1, and M_2 recognize A_2.

Want: Construction of M to recognize $A_1 \circ A_2$
Overlapping Concatenation Example

- Let M_1 recognize language $A = \{\text{jen, jens}\}$
- and M_2 recognize language $B = \{\text{smith}\}$
- Want: Construct M to recognize $A \circ B = \{\text{jensmith, jenssmith}\}$

- If M sees jen ...
- M must decide to either:
Overlapping Concatenation Example

- Let M_1 recognize language $A = \{jen, jens\}$
- and M_2 recognize language $B = \{smith\}$
- Want: Construct M to recognize $A \circ B = \{jensmith, jenssmith\}$

- If M sees jen ...
- M must decide to either:
 - stay in M_1 (correct, if full input is jenssmith)
Overlapping Concatenation Example

- Let M_1 recognize language $A = \{ \text{jen, jens} \}$
- and M_2 recognize language $B = \{ \text{smith} \}$
- Want: Construct M to recognize $A \circ B = \{ \text{jensmith, jenssmith} \}$

- If M sees jen ...
- M must decide to either:
 - stay in M_1 (correct, if full input is jensmith)
 - or switch to M_2 (correct, if full input is jenssmith)

- But to recognize $A \circ B$, it needs to handle both cases!!
 - Without backtracking
Is Concatenation Closed? **FALSE?**

THEOREM

The class of regular languages is closed under the concatenation operation.

In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$.

- Cannot combine A_1 and A_2’s machine because:
 - Need to switch from A_1 to A_2 at some point ...
 - ... but we don’t know when! (we can only read input once)
- This requires a new kind of machine!
- But does this mean concatenation is not closed for regular langs?
Nondeterminism
Deterministic vs Nondeterministic

Deterministic computation

- start

- states

- ...

- accept or reject

DFAs
Deterministic vs Nondeterministic

Deterministic computation

start

... states

accept or reject

DFAs

Nondeterministic computation

Nondeterministic computation can be in multiple states at the same time

reject

accept

New FA
Finite Automata: The Formal Definition

Definition

A finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

1. Q is a finite set called the **states**,
2. Σ is a finite set called the **alphabet**,
3. $\delta: Q \times \Sigma \rightarrow Q$ is the **transition function**,
4. $q_0 \in Q$ is the **start state**, and
5. $F \subseteq Q$ is the **set of accept states**.

Also called a **Deterministic Finite Automata (DFA)**
Precise Terminology is Important

• A **finite automata** or **finite state machine (FSM)** defines ...
 ... computation with a **finite** number of states

• There are **many kinds** of FSMs

• We’ve learned **one kind**, the **Deterministic Finite Automata (DFA)**
 • (So currently, the terms DFA and FSM refer to the same definition)

• We will learn **other kinds**, e.g., **Nondeterministic Finite Automata (NFA)**

• **Be careful with terminology!**
A nondeterministic finite automaton is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set of states,
2. \(\Sigma\) is a finite alphabet,
3. \(\delta: Q \times \Sigma \rightarrow \mathcal{P}(Q)\) is the transition function,
4. \(q_0 \in Q\) is the start state, and
5. \(F \subseteq Q\) is the set of accept states.

Definition

A finite automaton is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set called the *states*,
2. \(\Sigma\) is a finite set called the *alphabet*,
3. \(\delta: Q \times \Sigma \rightarrow Q\) is the *transition function*,
4. \(q_0 \in Q\) is the *start state*, and
5. \(F \subseteq Q\) is the *set of accept states*.
Power Sets

• A power set is the set of all subsets of a set

• **Example**: $S = \{a, b, c\}$

• Power set of $S =$
 • \emptyset, $\{a\}$, $\{b\}$, $\{c\}$, $\{a, b\}$, $\{a, c\}$, $\{b, c\}$, $\{a, b, c\}$
 • **Note**: includes the empty set!
A **nondeterministic finite automaton** is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set of states,
2. \(\Sigma\) is a finite alphabet,
3. \(\delta : Q \times \Sigma_\varepsilon \rightarrow \mathcal{P}(Q)\) is the transition function,
4. \(q_0 \in Q\) is the start state, and
5. \(F \subseteq Q\) is the set of accept states.

Transition label can be “empty”, i.e., machine can transition without reading input

\[\Sigma_\varepsilon = \Sigma \cup \{\varepsilon\}\]
NFA Example

• Come up with a formal description of the following NFA:

Definition

A **nondeterministic finite automaton** is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set of states,
2. \(\Sigma\) is a finite alphabet,
3. \(\delta: Q \times \Sigma_e \rightarrow \mathcal{P}(Q)\) is the transition function,
4. \(q_0 \in Q\) is the start state, and
5. \(F \subseteq Q\) is the set of accept states.
The formal description of N_1 is $(Q, \Sigma, \delta, q_1, F)$, where

1. $Q = \{q_1, q_2, q_3, q_4\}$,
2. $\Sigma = \{0,1\}$,
3. δ is given as

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>ε</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_1</td>
<td>${q_1}$</td>
<td>${q_1, q_2}$</td>
<td>\emptyset</td>
</tr>
<tr>
<td>q_2</td>
<td>${q_3}$</td>
<td>\emptyset</td>
<td>${q_3}$</td>
</tr>
<tr>
<td>q_3</td>
<td>\emptyset</td>
<td>${q_4}$</td>
<td>\emptyset</td>
</tr>
<tr>
<td>q_4</td>
<td>${q_4}$</td>
<td>${q_4}$</td>
<td>\emptyset,</td>
</tr>
</tbody>
</table>

$\delta: Q \times \Sigma \rightarrow \mathcal{P}(Q)$

4. q_1 is the start state, and
5. $F = \{q_4\}$.
In-class Exercise

• Come up with a formal description for the following NFA
 • \(\Sigma = \{ a, b \} \)

DEFINITION

A **nondeterministic finite automaton** is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q \) is a finite set of states,
2. \(\Sigma \) is a finite alphabet,
3. \(\delta: Q \times \Sigma_e \rightarrow P(Q) \) is the transition function,
4. \(q_0 \in Q \) is the start state, and
5. \(F \subseteq Q \) is the set of accept states.
In-class Exercise Solution

Let $N = (Q, \Sigma, \delta, q_0, F)$

- $Q = \{ q_1, q_2, q_3 \}$
- $\Sigma = \{ a, b \}$
- $\delta \ldots$
- $q_0 = q_1$
- $F = \{ q_1 \}$

$\delta(q_1, a) = \{\}$
$\delta(q_1, b) = \{ q_2 \}$
$\delta(q_1, \epsilon) = \{ q_3 \}$
$\delta(q_2, a) = \{ q_2, q_3 \}$
$\delta(q_2, b) = \{ q_3 \}$
$\delta(q_2, \epsilon) = \{\}$
$\delta(q_3, a) = \{ q_1 \}$
$\delta(q_3, b) = \{\}$
$\delta(q_3, \epsilon) = \{\}$
Next Time: Running Programs, NFAs (JFLAP demo): 010110
Check-in Quiz 2/6

On gradescope