CS 420
Nondeterminism
Wednesday, February 8, 2023
UMass Boston Computer Science
Announcements

• HW 1 in
 • due Tues 2/7 11:59pm EST

• HW 2 out
 • due Tues 2/14 11:59pm EST
Last Time: Is Union Closed For Regular Langs?

In this course, we are interested in closed operations for a set of languages (here the set of regular languages)

(In general, a set is **closed** under an operation if applying the **operation** to members of the set produces a result in the same set)

The class of regular languages is **closed** under the union operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.
Last Time: Is Union Closed For Regular Langs?

The class of regular languages is **closed** under the **union operation**.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

(In general, a set is **closed** under an operation if applying the **operation** to members of the set produces a result in the same set.)

A member of the set of regular languages is ...

... a regular language, which itself is a set (of strings) ...

... so the operations we’re interested in are **set operations**

Want to prove this statement

Or this (same) statement
Last Time: Is Union Closed For Regular Langs?

Statements

1. A_1 and A_2 are regular languages
2. A DFA $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognizes A_1
3. A DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognizes A_2
4. Construct DFA $M = (Q, \Sigma, \delta, q_0, F)$ (todo)
5. M recognizes $A_1 \cup A_2$ (How to create this? Don’t know what A_1 and A_2 are!)
6. $A_1 \cup A_2$ is a regular language
7. The class of regular languages is closed under the union operation.

Justifications

1. Assumption
2. Def of Regular Language
3. Def of Regular Language
4. Def of DFA
5. See examples
6. Def of Regular Language
7. From stmt #1 and #6

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.
A language is called a **regular language** if some finite automaton recognizes it.

Definition

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

1. Q is a finite set called the **states**,
2. Σ is a finite set called the **alphabet**,
3. $\delta: Q \times \Sigma \rightarrow Q$ is the **transition function**,
4. $q_0 \in Q$ is the **start state**, and
5. $F \subseteq Q$ is the **set of accept states**.

$M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$, recognize A_1,
$M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$, recognize A_2,

If we don’t know what exactly these languages are, we still know these facts...
Want: M

M_1 recognizes A_1

M_2 recognizes A_2

Rough sketch Idea:

M is a combination of M_1 and M_2 that checks whether its input is accepted by either M_1 and M_2.

But, a DFA can only read its input once!

Need to somehow simulate “being in” both an M_1 and M_2 state simultaneously.

THEOREM

The class of regular languages is closed under the union operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

\[
A_1 \cup A_2
\]
Last Time: Union is Closed For Regular Langs

Proof
• Given: $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$, recognize A_1,
 $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$, recognize A_2,
• Construct: $M = (Q, \Sigma, \delta, q_0, F)$, using M_1 and M_2, that recognizes $A_1 \cup A_2$
• states of M:

 $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$

 This set is the Cartesian product of sets Q_1 and Q_2

A finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

1. Q is a finite set called the states,
2. Σ is a finite set called the alphabet,
3. $\delta: Q \times \Sigma \rightarrow Q$ is the transition function,
4. $q_0 \in Q$ is the start state, and
5. $F \subseteq Q$ is the set of accept states.

A state of M is a pair:
- the first part is a state of M_1 and
- the second part is a state of M_2

So the states of M is all possible combinations of the states of M_1 and M_2
Last Time: Union is Closed For Regular Langs

Proof

- Given:
 \[M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1), \text{ recognize } A_1, \]
 \[M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2), \text{ recognize } A_2, \]
- Construct: \(M = (Q, \Sigma, \delta, q_0, F), \text{ using } M_1 \text{ and } M_2, \text{ that recognizes } A_1 \cup A_2 \)
- states of \(M \):
 \[Q = \{(r_1, r_2) \mid r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2 \]

This set is the **Cartesian product** of sets \(Q_1 \) and \(Q_2 \)

A **finite automaton** is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

\[
\alpha = (\delta_1(r_1, a), \delta_2(r_2, a))
\]

A step in \(M \) includes both:
- a step in \(M_1 \), and
- a step in \(M_2 \)
Last Time: Union is Closed For Regular Langs

Proof

• Given: \(M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1) \), recognize \(A_1 \),
 \(M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2) \), recognize \(A_2 \),

• Construct: \(M = (Q, \Sigma, \delta, q_0, F) \), using \(M_1 \) and \(M_2 \), that recognizes \(A_1 \cup A_2 \)

• states of \(M \): \(Q = \{(r_1, r_2) \mid r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2 \)
This set is the Cartesian product of sets \(Q_1 \) and \(Q_2 \)

• \(M \) transition fn: \(\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a)) \)

• \(M \) start state: \((q_1, q_2) \)
 \text{Start state of } M \text{ is both start states of } M_1 \text{ and } M_2
Last Time: Union is Closed For Regular Langs

Proof

- **Given:**
 \[
 M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1), \text{ recognize } A_1, \\
 M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2), \text{ recognize } A_2,
 \]

- **Construct:** \(M = (Q, \Sigma, \delta, q_0, F) \), using \(M_1 \) and \(M_2 \), that recognizes \(A_1 \cup A_2 \)

- **states of** \(M \):
 \[
 Q = \{ (r_1, r_2) \mid r_1 \in Q_1 \text{ and } r_2 \in Q_2 \} = Q_1 \times Q_2
 \]
 This set is the *Cartesian product* of sets \(Q_1 \) and \(Q_2 \)

- **\(M \) transition fn:**
 \[
 \delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))
 \]

- **\(M \) start state:**
 \[
 (q_1, q_2)
 \]

- **\(M \) accept states:**
 \[
 F = \{ (r_1, r_2) \mid r_1 \in F_1 \text{ or } r_2 \in F_2 \}
 \]

Remember: Accept states must be subset of \(Q \)

(Q.E.D.)
Another operation: Concatenation

Example: Recognizing street addresses

212 Beacon Street

M_3: CONCAT

M_1: recognize numbers

M_2: recognize words

We want this operation to be closed ... allows using DFAs as building blocks (~ modular programming)
Concatenation of Languages

Let the alphabet Σ be the standard 26 letters $\{a, b, \ldots, z\}$.
If $A = \{\text{good, bad}\}$ and $B = \{\text{boy, girl}\}$, then

$$A \circ B = \{\text{goodboy, goodgirl, badboy, badgirl}\}$$
Is Concatenation Closed?

Theorem

The class of regular languages is closed under the concatenation operation.

In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$.

- Construct a **new** machine M recognizing $A_1 \circ A_2$? (like union)
 - Using DFA M_1 (which recognizes A_1),
 - and DFA M_2 (which recognizes A_2)
Let M_1 recognize A_1, and M_2 recognize A_2.

Want: Construction of M to recognize $A_1 \circ A_2$.
Overlapping Concatenation Example

• Let M_1 recognize language $A = \{\text{j}e\text{n}, \text{j}e\text{n}s\}$
• and M_2 recognize language $B = \{\text{smith}\}$
• Want: Construct M to recognize $A \circ B = \{\text{jen}\text{smith}, \text{jen}ss\text{smith}\}$

• If M sees jen ...
• M must decide to either:
Overlapping Concatenation Example

Let M_1 recognize language $A = \{\text{jens}, \text{jens}\}$

and M_2 recognize language $B = \{\text{smith}\}$

Want: Construct M to recognize $A \circ B = \{\text{jenssmith}, \text{jenssmith}\}$

If M sees jens ...

M must decide to either:
 - stay in M_1 (correct, if full input is jenssmith)
Overlapping Concatenation Example

- Let M_1 recognize language $A = \{ \text{jen}, \text{jens} \}$
- and M_2 recognize language $B = \{ \text{smith} \}$
- Want: Construct M to recognize $A \circ B = \{ \text{jensmith}, \text{jenssmith} \}$

- If M sees jen ...
 - M must decide to either:
 - stay in M_1 (correct, if full input is jenssmith)
 - or switch to M_2 (correct, if full input is jenssmith)

- But to recognize $A \circ B$, it needs to handle both cases!!
 - Without backtracking

Concatenation: $A \circ B = \{ xy \mid x \in A \text{ and } y \in B \}$
The class of regular languages is closed under the concatenation operation.

In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$.

- Cannot combine A_1 and A_2’s machine because:
 - Not clear when to switch machines? (can only read input once)
- Requires a new kind of machine!
- But does this mean concatenation is not closed for regular langs?
Deterministic vs Nondeterministic

Deterministic computation

- start
- ...
- accept or reject

DFAs
Deterministic vs Nondeterministic

Deterministic computation

- start
- ... (transitions)
- accept or reject

Nondeterministic computation

- states
- reject
- ... (transitions)

New FA

DFA

Nondeterministic computation can be in multiple states at the same time
Finite Automata: The Formal Definition

A finite automaton is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set called the states,
2. \(\Sigma\) is a finite set called the alphabet,
3. \(\delta: Q \times \Sigma \rightarrow Q\) is the transition function,
4. \(q_0 \in Q\) is the start state, and
5. \(F \subseteq Q\) is the set of accept states.

Also called a Deterministic Finite Automata (DFA)
Precise Terminology is Important

• A finite automata or finite state machine (FSM) defines ...
 ... computation with a finite number of states

• There are many kinds of FSMs

• We’ve learned one kind, the Deterministic Finite Automata (DFA)
 • (So up to now, the terms DFA and FSM refer to the same definition)

• But now we learn other kinds, e.g., Nondeterministic Finite Automata (NFA)

• Be careful with terminology!
A **nondeterministic finite automaton** is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set of states,
2. \(\Sigma\) is a finite alphabet,
3. \(\delta: Q \times \Sigma \epsilon \rightarrow \mathcal{P}(Q)\) is the transition function,
4. \(q_0 \in Q\) is the start state, and
5. \(F \subseteq Q\) is the set of accept states.

Power set, i.e. a transition results in set of states

Compare with DFA:

A finite automaton is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set called the **states**,
2. \(\Sigma\) is a finite set called the **alphabet**,
3. \(\delta: Q \times \Sigma \rightarrow Q\) is the **transition function**,
4. \(q_0 \in Q\) is the **start state**, and
5. \(F \subseteq Q\) is the **set of accept states**.
Power Sets

• A **power set** is the set of all subsets of a set

• **Example**: \(S = \{a, b, c\} \)

• Power set of \(S = \)
 • \(\{ \{ \}, \{ a \}, \{ b \}, \{ c \}, \{ a, b \}, \{ a, c \}, \{ b, c \}, \{ a, b, c \} \} \)
 • **Note**: includes the empty set!
DEFINITION

A *nondeterministic finite automaton* is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set of states,
2. \(\Sigma\) is a finite alphabet,
3. \(\delta: Q \times \Sigma_\varepsilon \to \mathcal{P}(Q)\) is the transition function,
4. \(q_0 \in Q\) is the start state, and
5. \(F \subseteq Q\) is the set of accept states.

Transition label can be “empty”, i.e., machine can transition without reading input.

\[\Sigma_\varepsilon = \Sigma \cup \{\varepsilon\}\]
NFA Example

• Come up with a formal description of the following NFA:

DEFINITION

A *nondeterministic finite automaton* is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set of states,
2. \(\Sigma\) is a finite alphabet,
3. \(\delta: Q \times \Sigma_e \rightarrow \mathcal{P}(Q)\) is the transition function,
4. \(q_0 \in Q\) is the start state, and
5. \(F \subseteq Q\) is the set of accept states.
The formal description of N_1 is $(Q, \Sigma, \delta, q_1, F)$, where

1. $Q = \{q_1, q_2, q_3, q_4\}$,
2. $\Sigma = \{0, 1\}$,
3. δ is given as

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>ε</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_1</td>
<td>${q_1}$</td>
<td>${q_1, q_2}$</td>
<td>\emptyset</td>
</tr>
<tr>
<td>q_2</td>
<td>${q_3}$</td>
<td>\emptyset</td>
<td>${q_3}$</td>
</tr>
<tr>
<td>q_3</td>
<td>\emptyset</td>
<td>${q_4}$</td>
<td>\emptyset</td>
</tr>
<tr>
<td>q_4</td>
<td>${q_4}$</td>
<td>${q_4}$</td>
<td>\emptyset,</td>
</tr>
</tbody>
</table>

4. q_1 is the start state, and
5. $F = \{q_4\}$.

$\delta: Q \times \Sigma \varepsilon \rightarrow \mathcal{P}(Q)$

- Empty transition (no input read)
- Result of transition is a set
- Empty transition (no input read)
- Multiple 1 transitions
- No 0 transition
In-class Exercise

• Come up with a formal description for the following NFA
 • \(\Sigma = \{ a, b \} \)

Definition

A **nondeterministic finite automaton** is a 5-tuple \((Q, \Sigma, \delta, q_0, F) \), where

1. \(Q \) is a finite set of states,
2. \(\Sigma \) is a finite alphabet,
3. \(\delta: Q \times \Sigma_e \rightarrow \mathcal{P}(Q) \) is the transition function,
4. \(q_0 \in Q \) is the start state, and
5. \(F \subseteq Q \) is the set of accept states.
In-class Exercise Solution

Let \(N = (Q, \Sigma, \delta, q_0, F) \)

- \(Q = \{ q_1, q_2, q_3 \} \)
- \(\Sigma = \{ a, b \} \)
- \(\delta \)
- \(q_0 = q_1 \)
- \(F = \{ q_1 \} \)

\[
\begin{align*}
\delta(q_1, a) &= \{ \} \\
\delta(q_1, b) &= \{ q_2 \} \\
\delta(q_1, \varepsilon) &= \{ q_3 \} \\
\delta(q_2, a) &= \{ q_2, q_3 \} \\
\delta(q_2, b) &= \{ q_3 \} \\
\delta(q_2, \varepsilon) &= \{ \} \\
\delta(q_3, a) &= \{ q_1 \} \\
\delta(q_3, b) &= \{ \} \\
\delta(q_3, \varepsilon) &= \{ \}
\end{align*}
\]
NFA Computation (JFLAP demo): 010110
NFA Computation Sequence

Symbol read

0

1

0

1

0

NFA accepts input if at least one path ends in accept state

Each step can branch into multiple states at the same time!

So this is an accepting computation
Flashback: DFA Computation Model

Informally

- **Machine** = a DFA
- **Input** = string of chars, e.g. “1101”

Machine “accepts” input if:
- **Start** in “start state”
- **Repeat:**
 - Read 1 char;
 - Change state according to the transition table
- **Result** =
 - Last state is “Accept” state

Formally (i.e., mathematically)

- \(M = (Q, \Sigma, \delta, q_0, F) \)
- \(w = w_1 w_2 \cdots w_n \)

\(M \) accepts \(w \) if
 - sequence of states \(r_0, r_1, \ldots, r_n \) in \(Q \) exists with
 - \(r_0 = q_0 \)
 - \(r_i = \delta(r_{i-1}, w_i) \), for \(i = 1, \ldots, n \)
 - \(r_n \in F \)
Informally

- Machine = a DFA-an NFA
- Input = string of chars, e.g. “1101”

Machine “accepts” input if:
- Start in “start state”

- Repeat:
 - Read 1 char;
 - Change state according to the transition table

- Result =
 - Last state is “Accept” state

Formally (i.e., mathematically)

- \(M = (Q, \Sigma, \delta, q_0, F) \)
- \(w = w_1w_2 \cdots w_n \)

\(M \) accepts \(w \) if
- sequence of states \(r_0, r_1, \ldots, r_n \) in \(Q \) exists with
 - \(r_0 = q_0 \)
 - \(r_i = \delta(r_{i-1}, w_i) \), for \(i = 1, \ldots, n \)
 - \(r_i \in \delta(r_{i-1}, w_i) \) This is now a set
 - \(r_n \in F \)
Flashback: DFA Extended Transition Function

Define extended transition function:
\[\hat{\delta} : Q \times \Sigma^* \rightarrow Q \]

Domain:
- Beginning state \(q \in Q \) (not necessarily the start state)
- Input string \(w = w_1 w_2 \cdots w_n \) where \(w_i \in \Sigma \)

Range:
- Ending state (not necessarily an accept state)

(Defined recursively, on length of input string)

- **Base case:** \(\hat{\delta}(q, \varepsilon) = q \)
- **Recursive case:** \(\hat{\delta}(q, w) = \hat{\delta}(\delta(q, w_1), w_2 \cdots w_n) \)
Alternate Extended Transition Function

Define **extended transition function**: \(\hat{\delta} : Q \times \Sigma^* \rightarrow Q \)

- **Domain**:
 - Beginning state \(q \in Q \) (not necessarily the start state)
 - Input string \(w = w_1 w_2 \cdots w_n \) where \(w_i \in \Sigma \)

- **Range**:
 - Ending state (not necessarily an accept state)

(Defined recursively, on length of input string)

- **Base case**: \(\hat{\delta}(q, \varepsilon) = q \)
- **Recursive case**: \(\hat{\delta}(q, w) = \hat{\delta}(\delta(q, w_1), w_2 \cdots w_n) \)

\[\delta(\delta(q, w_1 \cdots w_{n-1}), w_n) \]

- **Empty string**
- **NonEmpty string**
- **Recursive call**: (smaller argument) computation “so far”
- **Single transition step**: on last char
Define **extended transition function**: \(\hat{\delta} : Q \times \Sigma^* \rightarrow Q \)

- **Domain:**
 - Beginning state \(q \in Q \)
 - Input string \(w = w_1 w_2 \cdots w_n \) where \(w_i \in \Sigma \)

- **Range:**
 - Ending state set of states

Result is set of states
Extended Transition Function

Define **extended transition function**: \(\hat{\delta} : Q \times \Sigma^* \rightarrow Q \)

Domain:
- Beginning state \(q \in Q \)
- Input string \(w = w_1w_2\cdots w_n \) where \(w_i \in \Sigma \)

Range:
- Ending state set of states

(Defined recursively, on length of input string)

- **Base case:** \(\hat{\delta}(q, \epsilon) = \{q\} \)

- **Recursive case:**
Extended Transition Function

Define **extended transition function**: \(\hat{\delta} : Q \times \Sigma^* \rightarrow Q \)

Domain:
- Beginning state \(q \in Q \)
- Input string \(w = w_1w_2 \cdots w_n \) where \(w_i \in \Sigma \)

Range:
- Ending state set of states

(Defined recursively, on length of input string)

- **Base case:** \(\hat{\delta}(q, \epsilon) = \{q\} \)
- **Recursive case:** \(\hat{\delta}(q, w) = \bigcup_{i=1}^{k} \delta(q_i, w_n) \) where: \(\hat{\delta}(q, w_1 \cdots w_{n-1}) = \{q_1, \ldots, q_k\} \)

Result is set of states

Empty string

All single transition steps for last char

Recursive call: (smaller argument) computation “so far”

nonEmpty string
NFA Extended δ Example

Base case:
$$\hat{\delta}(q, \epsilon) = \{q\}$$

Recursive case:
$$\hat{\delta}(q, w) = \bigcup_{i=1}^{k} \delta(q_i, w_n)$$
where:
$$\hat{\delta}(q, w_1 \cdots w_{n-1}) = \{q_1, \ldots, q_k\}$$

- $\hat{\delta}(q_0, \epsilon) = \{q_0\}$ (Stay in start state)
- $\hat{\delta}(q_0, 0) = \delta(q_0, 0) = \{q_0, q_1\}$ (Same as single step δ)
- $\hat{\delta}(q_0, 00) = \delta(q_0, 0) \cup \delta(q_1, 0) = \{q_0, q_1\} \cup \emptyset = \{q_0, q_1\}$
- $\hat{\delta}(q_0, 001) = \delta(q_0, 1) \cup \delta(q_1, 1) = \{q_0\} \cup \{q_2\} = \{q_0, q_2\}$

We haven’t considered empty transitions!
Adding Empty Transitions

• Define the set ε-REACHABLE(q)
 • ... to be all states reachable from q via zero or more empty transitions

(Defined recursively)

• **Base case:** $q \in \varepsilon$-REACHABLE(q)

• **Inductive case:**
 \[
 \varepsilon$-REACHABLE$(q) = \{ r | p \in \varepsilon$-REACHABLE$(q)$ and $r \in \delta(p, \varepsilon) \}\]

A state is in the reachable set if...

... there is an empty transition to it from another state in the reachable set
ε-REACHABLE Example

\[
\varepsilon\text{-REACHABLE}(1) = \{1, 2, 3, 4, 6\}
\]
NFA Extended Transition Function

Define **extended transition function**: \(\hat{\delta} : Q \times \Sigma^* \rightarrow \mathcal{P}(Q) \)

Domain:
- Beginning state \(q \in Q \)
- Input string \(w = w_1w_2 \cdots w_n \) where \(w_i \in \Sigma \)

Range:
- Ending set of states

(Defined recursively, on length of input string)

- **Base case:** \(\hat{\delta}(q, \varepsilon) = \{q\} \)

- **Recursive case:** \(\hat{\delta}(q, w) = \bigcup_{i=1}^{k} \delta(q_i, w_n) \)

where: \(\hat{\delta}(q, w_1 \cdots w_{n-1}) = \{q_1, \ldots, q_k\} \)
NFA Extended Transition Function

Define **extended transition function**: \(\hat{\delta} : Q \times \Sigma^* \rightarrow \mathcal{P}(Q) \)

Domain:
- Beginning state \(q \in Q \)
- Input string \(w = w_1 w_2 \cdots w_n \) where \(w_i \in \Sigma \)

Range:
- Ending set of states

(Defined recursively, on length of input string)

- **Base case:** \(\hat{\delta}(q, \epsilon) = \{q\} \)

- **Recursive case:** \(\hat{\delta}(q, w) = \bigcup_{i=1}^{k} \hat{\delta}(q_i, w_n) \)

 where: \(\hat{\delta}(q, w_1 \cdots w_{n-1}) = \{q_1, \ldots, q_k\} \)

"Take single step, then follow all empty transitions"
Summary: NFAs vs DFAs

DFAs
- Can only be in **one** state
- Transition:
 - Must read 1 char
- Acceptance:
 - If final state is **accept** state

NFAs
- Can be in **multiple** states
- Transition
 - Can read no chars
 - i.e., empty transition
- Acceptance:
 - If **one of final** states is accept state
Last Time: Concatenation of Languages

Let the alphabet Σ be the standard 26 letters $\{a, b, \ldots, z\}$. If $A = \{\text{good, bad}\}$ and $B = \{\text{boy, girl}\}$, then

$$A \circ B = \{\text{goodboy, goodgirl, badboy, badgirl}\}$$
Last Time: Concatenation is Closed?

Theorem

The class of regular languages is closed under the concatenation operation.

In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$.

Proof: Construct a new machine

- How does it know when to switch machines?
 - Can only read input once
Let N_1 recognize A_1, and N_2 recognize A_2.

Want: Construction of N to recognize $A_1 \circ A_2$.

ε = “empty transition” = reads no input
Allows N to be in both machines at once

N is an NFA! It simultaneously:
- Keeps checking 1st part with N_1 and
- Moves to N_2 to check 2nd part
Flashback: Is Union Closed For Regular Langs?

Statements
1. A_1 and A_2 are regular languages
2. A DFA $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognizes A_1
3. A DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognizes A_2
4. Construct DFA $M = (Q, \Sigma, \delta, q_0, F)$
5. M recognizes $A_1 \cup A_2$
6. $A_1 \cup A_2$ is a regular language
7. The class of regular languages is closed under the union operation.

Justifications
1. Assumption
2. Def of Regular Language
3. Def of Regular Language
4. Def of DFA
5. See examples
6. Def of Regular Language
7. From stmt #1 and #6

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.
Is Concat Closed For Regular Langs?

Statements
1. A_1 and A_2 are regular languages
2. A NFA $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognizes A_1
3. A NFA $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognizes A_2
4. Construct NFA $N = ???$ (todo)
5. M recognizes $A_1 \cup A_2 A_1 \circ A_2$
6. $A_1 \circ A_2 A_1 \cup A_2$ is a regular language
7. The class of regular languages is closed under the concatenation operation.

Justifications
1. Assumption
2. Def of Regular Language
3. Def of Regular Language
4. Def of NFA
5. See examples
6. Def of Regular Language
7. From stmt #1 and #6

In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$.
Concatenation is Closed for Regular Langs

Proof

Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1, and
$N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2.

Construct $N = (Q, \Sigma, \delta, q_1, F)$ to recognize $A_1 \circ A_2$
1. $Q = Q_1 \cup Q_2$
2. The state q_1 is the same as the start state of N_1
3. The accept states F_2 are the same as the accept states of N_2
4. Define δ so that for any $q \in Q$ and any $a \in \Sigma \varepsilon$,

![Diagrams showing the construction of N from N_1 and N_2.]
Concatenation is Closed for Regular Langs

Proof

Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1, and $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2.

Construct $N = (Q, \Sigma, \delta, q_1, F_2)$ to recognize $A_1 \circ A_2$

1. $Q = Q_1 \cup Q_2$
2. The state q_1 is the same as the start state of N_1
3. The accept states F_2 are the same as the accept states of N_2
4. Define δ so that for any $q \in Q$ and any $a \in \Sigma_e$,

$$
\delta(q, a) = \begin{cases}
\delta_1(q, a) & q \in Q_1 \text{ and } q \not\in F_1 \\
\delta_1(q, a) & q \in F_1 \text{ and } a \neq \varepsilon \\
\delta_1(q, a) \cup \{q_2\} & q \in F_1 \text{ and } a = \varepsilon \\
\delta_2(q, a) & q \in Q_2.
\end{cases}
$$
Flashback: A DFA’s Language

- For DFA $M = (Q, \Sigma, \delta, q_0, F)$

- M accepts w if $\hat{\delta}(q_0, w) \in F$

- M recognizes language A if $A = \{w | M$ accepts $w\}$

- A language is a regular language if a DFA recognizes it
An NFA’s Language

• For NFA $N = (Q, \Sigma, \delta, q_0, F)$

• N accepts w if $\hat{\delta}(q_0, w) \cap F \neq \emptyset$
 • i.e., if the final states have at least one accept state

• Language of $N = L(N) = \left\{ w \mid \hat{\delta}(q_0, w) \cap F \neq \emptyset \right\}$

Q: How does an NFA’s language relate to regular languages
• Definition: A language is regular if a DFA recognizes it
Is Concatenation Closed for Reg Langs?

• Concatenation of DFAs produces an NFA

To finish the proof ...
• we must prove that NFAs also recognize regular languages.

Specifically, we must prove:
• NFAs \Leftrightarrow regular languages
Check-in Quiz 2/8

On gradescope