A **nondeterministic finite automaton** is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set of states,
2. \(\Sigma\) is a finite alphabet,
3. \(\delta:\ Q \times \Sigma \rightarrow \mathcal{P}(Q)\) is the transition function,
4. \(q_0 \in Q\) is the start state, and
5. \(F \subseteq Q\) is the set of accept states.

A **finite automaton** is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set called the **states**,
2. \(\Sigma\) is a finite set called the **alphabet**,
3. \(\delta:\ Q \times \Sigma \rightarrow Q\) is the **transition function**,
4. \(q_0 \in Q\) is the **start state**, and
5. \(F \subseteq Q\) is the **set of accept states**.
Announcements

• HW 2 in
 • Due Tue 2/14 11:59pm

• HW 3 out
 • Due Sun 2/26 11:59pm
 • Note: extended due date

• Office Hours
 • Woody’s time moved: Tue 4-5:30pm, McCormack 3rd floor, room 139

• No lecture next Monday 2/20

Quiz Preview
• An "if and only if" statement represents two of what kind of statements?
Last Time: Concatenation is Closed?

THEOREM

The class of regular languages is closed under the concatenation operation.

In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$.

Proof: Construct a new machine?
Concatenation Examples

Theorem

The class of regular languages is closed under the concatenation operation.

In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$.

- If: $a_1 \in A_1$, $a_2 \in A_2$
- If: $a_3 \in A_1$, $a_4 \notin A_2$
- If: $a_5 \notin A_1$, $a_6 \in A_2$
- If: $a_7 \notin A_1$, $a_8 \notin A_2$
- Then: $a_1 a_2 \in A_1 \circ A_2$???
- Then: $a_3 a_4 \in A_1 \circ A_2$???
- Then: $a_5 a_6 \in A_1 \circ A_2$???
- Then: $a_7 a_8 \in A_1 \circ A_2$???
Last Time: Concatenation is Closed?

Theorem

The class of regular languages is closed under the concatenation operation. In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$.

Proof: Construct a new machine?

- How does it know when to switch machines?
 - Can only read input once
Let M_1 recognize A_1, and M_2 recognize A_2.

Want: Construction of N to recognize $A_1 \circ A_2$.

N is an NFA! It can:
- Keep checking 1st part with M_1 and
- Move to M_2 to check 2nd part

ε = “empty transition” = reads no input

Allows N to be in both machines at the same time!
Concatenation is Closed for Regular Langs

Proof

Let $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1
Let $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2

Construct $N = (Q, \Sigma, \delta, q_1, F)$ to recognize $A_1 \circ A_2$

1. $Q = Q_1 \cup Q_2$
2. The state q_1 is the same as the start state of M_1
3. The accept states F_2 are the same as the accept states of M_2
Concatenation is Closed for Regular Langs

Proof

Let \(M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1) \) recognize \(A_1 \)

\(M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2) \) recognize \(A_2 \)

Construct \(N = (Q, \Sigma, \delta, q_1, F_1) \) to recognize \(A_1 \circ A_2 \)

1. \(Q = Q_1 \cup Q_2 \)
2. The state \(q_1 \) is the same as the start state of \(M_1 \)
3. The accept states \(F_2 \) are the same as the accept states of \(M_2 \)
4. Define \(\delta \) so that for any \(q \in Q \) and any \(a \in \Sigma \),

\[
\delta(q, a) = \begin{cases}
\delta_1(q, a) & \text{if } q \in Q_1 \text{ and } q \notin F_1 \\
\delta_2(q, a) & \text{if } q \in Q_2 \\
\delta_1(q, a) & \text{if } q \in F_1 \text{ and } a \neq \varepsilon \\
\text{?} & \text{if } q \in F_1 \text{ and } a = \varepsilon \\
\text{?} & \text{if } q \notin F_1 \end{cases}
\]

\(\delta(q, \varepsilon) = \emptyset \), for \(q \in Q, q \notin F_1 \)
Flashback: Is Union Closed For Regular Langs?

Statements
1. A_1 and A_2 are regular languages
2. A DFA $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognizes A_1
3. A DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognizes A_2
4. Construct DFA $M = (Q, \Sigma, \delta, q_0, F)$
5. M recognizes $A_1 \cup A_2$
6. $A_1 \cup A_2$ is a regular language
7. The class of regular languages is closed under the union operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Justifications
1. Assumption
2. Def of Regular Language
3. Def of Regular Language
4. Def of DFA
5. See examples
6. Def of Regular Language
7. From stmt #1 and #6
Is Concat Closed For Regular Langs?

Statements
1. A_1 and A_2 are regular languages
2. A DFA $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognizes A_1
3. A DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognizes A_2
4. Construct NFA $N = ???$ (todo)
5. N recognizes $A_1 \cup A_2 \cup A_1 \circ A_2$
6. $A_1 \circ A_2$ is a regular language
7. The class of regular languages is closed under the concatenation operation.

In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$.

Justifications
1. Assumption
2. Def of Regular Language
3. Def of Regular Language
4. Def of NFA
5. See examples
6. Does NFA recognize regular lang?
7. From stmt #1 and #6
Flashback: A DFA’s Language

- For DFA $M = (Q, \Sigma, \delta, q_0, F)$

- M accepts w if $\delta(q_0, w) \in F$

- M recognizes language $\{w \mid M$ accepts $w\}$

Definition: A DFA’s language is a regular language
An NFA’s Language

- For NFA $N = (Q, \Sigma, \delta, q_0, F)$
 - N accepts w if $\hat{\delta}(q_0, w) \cap F \neq \emptyset$
 - i.e., accept if final states contain at least one accept state

- Language of $N = L(N) = \left\{ w \mid \hat{\delta}(q_0, w) \cap F \neq \emptyset \right\}$

Q: What kind of languages do NFAs recognize?
Concatenation Closed for Reg Langs?

- Combining DFAs to recognize concatenation of languages ...

 ... produces an NFA

- So to prove concatenation is closed ...

 ... we must prove that NFAs also recognize regular languages.

Specifically, we must prove:

NFAs ⇔ regular languages
“If and only if” Statements

\[X \iff Y = \text{“}X \text{ if and only if } Y\text{”} = X \text{ iff } Y = X \iff Y \]

Represents two statements:

1. \(\Rightarrow \) if \(X \), then \(Y \)
 - “forward” direction

2. \(\iff \) if \(Y \), then \(X \)
 - “reverse” direction
How to Prove an “iff” Statement

\[X \leftrightarrow Y = "X \text{ if and only if } Y" = X \text{ iff } Y = X \leftrightarrow Y \]

Proof has two (If-Then proof) parts:

1. \(\Rightarrow \) if \(X \), then \(Y \)
 - “forward” direction
 - assume \(X \), then use it to prove \(Y \)

2. \(\Leftarrow \) if \(Y \), then \(X \)
 - “reverse” direction
 - assume \(Y \), then use it to prove \(X \)
Proving NFAs Recognize Regular Langs

Theorem:
A language L is regular if and only if some NFA N recognizes L.

Proof:
⇒ If L is regular, then some NFA N recognizes it.
 (Easier)
 • We know: if L is regular, then a DFA exists that recognizes it.
 • So to prove this part: Convert that DFA \rightarrow an equivalent NFA! (see HW 2)

⇐ If an NFA N recognizes L, then L is regular.
\[\Rightarrow \text{If } L \text{ is regular, then some NFA } N \text{ recognizes it} \]

<table>
<thead>
<tr>
<th>Statements</th>
<th>Justifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (L) is a regular language</td>
<td>1. Assumption [Assume the “if” part \ldots]</td>
</tr>
<tr>
<td>2. A DFA (M) recognizes (L)</td>
<td>2. Def of Regular language</td>
</tr>
<tr>
<td>3. Construct NFA (N) equiv to (M)</td>
<td>3. See hw 2!</td>
</tr>
<tr>
<td>4. An NFA (N) recognizes (L)</td>
<td>4. ???</td>
</tr>
<tr>
<td>5. If (L) is a regular language, then some NFA (N) recognizes it</td>
<td>5. ByStmts #1 and #4</td>
</tr>
</tbody>
</table>
Proving NFAs Recognize Regular Langs

Theorem:
A language L is regular if and only if some NFA N recognizes L.

Proof:

⇒ If L is regular, then some NFA N recognizes it.
 (Easier)
 • We know: if L is regular, then a DFA exists that recognizes it.
 • So to prove this part: Convert that DFA \rightarrow an equivalent NFA! (see HW 2)

⇐ If an NFA N recognizes L, then L is regular.
 (Harder)
 • We know: for L to be regular, there must be a DFA recognizing it
 • Proof Idea for this part: Convert given NFA N \rightarrow an equivalent DFA

“equivalent” = “recognizes the same language”
How to convert NFA→DFA?

A finite automaton is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set called the states,
2. \(\Sigma\) is a finite set called the alphabet,
3. \(\delta: Q \times \Sigma \rightarrow Q\) is the transition function,
4. \(q_0 \in Q\) is the start state, and
5. \(F \subseteq Q\) is the set of accept states.

A nondeterministic finite automaton is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set of states,
2. \(\Sigma\) is a finite alphabet,
3. \(\delta: Q \times \Sigma_\varepsilon \rightarrow \mathcal{P}(Q)\) is the transition function,
4. \(q_0 \in Q\) is the start state, and
5. \(F \subseteq Q\) is the set of accept states.

Proof idea:
Let each “state” of the DFA = set of states in the NFA
Symbol read

0

1

0

1

1

0

NFA computation can be in multiple states

DFA computation can only be in one state

So encode: a set of NFA states as one DFA state

This is similar to the proof strategy from “Closure of union” where: a state = a pair of states
Convert NFA→DFA, Formally

• Let NFA \(N = (Q, \Sigma, \delta, q_0, F) \)

• An equivalent DFA \(M \) has states \(Q' = P(Q) \) (power set of \(Q \))
Example:

The NFA N_4

A DFA D that is equivalent to the NFA N_4
NFA→DFA

Have: NFA $N = (Q, \Sigma, \delta, q_0, F)$

Want: DFA $M = (Q', \Sigma, \delta', q_0', F')$

1. $Q' = \mathcal{P}(Q)$
 A DFA state = a set of NFA states

2. For $R \in Q'$ and $a \in \Sigma$,
 $$\delta'(R, a) = \bigcup_{r \in R} \delta(r, a)$$
 A DFA step = an NFA step for all states in the set

3. $q_0' = \{q_0\}$

4. $F' = \{R \in Q' | R \text{ contains an accept state of } N\}$

No empty transitions
Flashback: Adding Empty Transitions

- Define the set ϵ-REACHABLE(q)
 - ... to be all states reachable from q via zero or more empty transitions

(Defined recursively)

- **Base case:** $q \in \epsilon$-REACHABLE(q)

- **Recursive case:**
 $$\epsilon$${REACHABLE}(q) = \{ r \mid p \in \epsilon$${REACHABLE}(q) \text{ and } r \in \delta(p, \epsilon) \}$$

A state is in the reachable set if ...

... there is an empty transition to it from another state in the reachable set
NFA→DFA

Have: NFA $N = (Q, \Sigma, \delta, q_0, F')$

Want: DFA $M = (Q', \Sigma, \delta', q_0', F')$

1. $Q' = \mathcal{P}(Q)$

2. For $R \in Q'$ and $a \in \Sigma$,
 $$\delta'(R, a) = \bigcup_{r \in R} \delta(r, a) \subseteq \varepsilon\text{-REACHABLE}(\delta(r, a))$$

3. $q_0' = \varepsilon\text{-REACHABLE}(q_0)$

4. $F' = \{R \in Q' | R \text{ contains an accept state of } N \}$

With empty transitions

Almost the same, except ...

But this produces a set! We need another "reachable" function (see hw 3!)
Proving NFAs Recognize Regular Langs

Theorem:
A language L is regular if and only if some NFA N recognizes L.

Proof:
⇒ If L is regular, then some NFA N recognizes it.
 (Easier)
 • We know: if L is regular, then a DFA exists that recognizes it.
 • So to prove this part: Convert that DFA → an equivalent NFA! (see HW 2)

⇐ If an NFA N recognizes L, then L is regular.
 (Harder)
 • We know: for L to be regular, there must be a DFA recognizing it
 • Proof Idea for this part: Convert given NFA N → an equivalent DFA ...
 ... using our NFA to DFA algorithm!
Concatenation is Closed for Regular Langs

Proof

Let $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1

Let $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2

Construct $N = (Q, \Sigma, \delta, q_1, F)$ to recognize $A_1 \circ A_2$

1. $Q = Q_1 \cup Q_2$
2. The state q_1 is the same as the start state of M_1
3. The accept states F_2 are the same as the accept states of M_2
4. Define δ so that for any $q \in Q$ and any $a \in \Sigma$,

 \[
 \delta(q, a) = \begin{cases}
 \delta_1(q, a) & q \in Q_1 \text{ and } q \not\in F_1 \\
 \delta_1(q, a) & q \in F_1 \text{ and } a \neq \epsilon \\
 \{q_2\} & q \in F_1 \text{ and } a = \epsilon \\
 \delta_2(q, a) & q \in Q_2.
 \end{cases}
 \]

If a language has an NFA recognizing it, then it is a regular language.
Concat Closed for Reg Langs: Use NFAs Only

Proof

Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1, and $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2.

Construct $N = (Q, \Sigma, \delta, q_1, F)$ to recognize $A_1 \circ A_2$

1. $Q = Q_1 \cup Q_2$
2. The state q_1 is the same as the start state of N_1
3. The accept states F are the same as the accept states of N_2
4. Define δ so that for any $q \in Q$ and any $a \in \Sigma$,

 $\delta(q, a) = \begin{cases}
 \delta_1(q, a) & q \in Q_1 \text{ and } q \not\in F_1 \\
 \delta_2(q, a) & q \in Q_2 \\
 \delta_1(q, a) & q \in F_1 \text{ and } a \neq \varepsilon \\
 \{q_2\} & q \in F_1 \text{ and } a = \varepsilon
 \end{cases}$

If language is regular, then it has an NFA recognizing it ...
Flashback: Union is Closed For Regular Langs

Theorem
The class of regular languages is closed under the union operation.
In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Proof:
- How do we prove that a language is regular?
 - Create a DFA or NFA recognizing it!
- Combine the machines recognizing A_1 and A_2
 - Should we create a DFA or NFA?
Flashback: Union is Closed For Regular Langs

Proof

- Given: $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$, recognize A_1,
 $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$, recognize A_2,

- Construct: a new machine $M = (Q, \Sigma, \delta, q_0, F)$ using M_1 and M_2

- states of M: $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$
 This set is the Cartesian product of sets Q_1 and Q_2

- M transition fn: $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$

- M start state: (q_1, q_2)

- M accept states: $F = \{(r_1, r_2) | r_1 \in F_1 \text{ or } r_2 \in F_2\}$

- State in $M = M_1$ state + M_2 state

- M step = a step in M_1 + a step in M_2

- Accept if either M_1 or M_2 accept
Union is Closed for Regular Languages

Add new start state, and ε-transitions to old start states
Union is Closed for Regular Languages

PROOF

Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1, and $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2.

Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize $A_1 \cup A_2$.

1. $Q = \{q_0\} \cup Q_1 \cup Q_2$.
2. The state q_0 is the start state of N.
3. The set of accept states $F = F_1 \cup F_2$.

Alternate Proof, with NFAs
Union is Closed for Regular Languages

PROOF

Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1, and $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2.

Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize $A_1 \cup A_2$.

1. $Q = \{ q_0 \} \cup Q_1 \cup Q_2$.

2. The state q_0 is the start state of N.

3. The set of accept states $F = F_1 \cup F_2$.

4. Define δ so that for any $q \in Q$ and any $a \in \Sigma_e$,

$$
\delta(q, a) = \begin{cases}
\delta_1(q, a) & q \in Q_1 \\
\delta_2(q, a) & q \in Q_2 \\
\{ q_1 \cup q_2 \} & q = q_0 \text{ and } a = \varepsilon \\
\emptyset & q = q_0 \text{ and } a \neq \varepsilon
\end{cases}
$$

Don’t forget Statements and Justifications!
List of Closed Ops for Reg Langs (so far)

- Union
- Concatentation
 - Kleene Star (repetition) ?
Kleene Star Example

Let the alphabet Σ be the standard 26 letters \{a, b, \ldots, z\}.

If $A = \{\text{good, bad}\}$

$$A^* = \{\varepsilon, \text{good, bad, goodgood, goodbad, badgood, badbad, goodgoodgood, goodgoodbad, goodbadgood, goodbadbad, \ldots}\}$$

Note: repeat zero or more times

(this is an infinite language!)
New start (and accept) state,
ε-transitions to old start state

Old accept states
ε-transition to old start state

Kleene Star
In-class exercise:
Kleene Star is Closed for Regular Langs

Theorem
The class of regular languages is closed under the star operation.
Kleene Star is Closed for Regular Langs

Proof Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1. Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize A_1^*.
Kleene Star is Closed for Regular Langs

Proof Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1. Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize A_1^*.

1. $Q = \{q_0\} \cup Q_1$
2. The state q_0 is the new start state.
3. $F = \{q_0\} \cup F_1$

Kleene star of a language must accept the empty string!
Kleene Star is Closed for Regular Langs

Proof
Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1.
Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize A_1^\ast.

1. $Q = \{q_0\} \cup Q_1$
2. The state q_0 is the new start state.
3. $F = \{q_0\} \cup F_1$
4. Define δ so that for any $q \in Q$ and any $a \in \Sigma_e$,

$$
\delta(q, a) = \begin{cases}
\delta_1(q, a) & q \in Q_1 \text{ and } q \not\in F_1 \\
\delta_1(q, a) & q \in F_1 \text{ and } a \neq \varepsilon \\
\delta_1(q, \varepsilon) \cup \{q_1\} & q \in F_1 \text{ and } a = \varepsilon \\
\{q_1\} & q = q_0 \text{ and } a = \varepsilon \\
\emptyset & q = q_0 \text{ and } a \neq \varepsilon.
\end{cases}
$$
Next Time: Why These Closed Operations?

- Union
- Concat
- Kleene star

All regular languages can be constructed from:
- single-char strings, and
- these three combining operations!
Check-in Quiz 2/15
On gradescope