UMB CS 420
Non-Regular Languages
Wednesday, March 1, 2023
Announcements

• HW 4 out
 • Due Sun 3/5 11:59pm EST

• Submitted hw must correctly assign pages to each problem
 • Incorrectly assigned problems are marked zero
 • We will re-grade one time, if re-grade request is submitted

Quiz Preview
1. Are all languages (sets of strings) regular languages?
2. Can the Pumping Lemma be used to prove that a language is regular?
3. What can be the pumping lemma be used for?
So Far: Regular or Not?

• Many ways to prove a language is regular:
 • Construct a DFA recognizing it
 • Construct an NFA recognizing it
 • Create a regular expression describing the language

• Regular Expression \Leftrightarrow NFA \Leftrightarrow DFA \Leftrightarrow Regular Language

• But not all languages are regular!
 • E.g., programming language syntaxes are not regular
 • language of all python programs, or all HTML/XML pages, are not regular
 • That means:
 • There is no DFA or NFA recognizing those languages
 • And they cannot be described with a regular expression (a common mistake)!
Someone Who Did Not Try

RegEx match open tags except XHTML self-closing

I need to match all of these opening tags:

1553
<p>

But not these:

6572

You can't parse [X]HTML with regex. Because HTML can't be parsed

Regex is not a tool that can be used to correctly parse HTML. As I have
HTML-and-regex questions here so many times before, the use of regex
allow you to consume HTML. Regular expressions are a tool that is
sophisticated to understand the constructs employed by HTML. HTML
regular language and hence cannot be parsed by regular expression
queries are not equipped to break down HTML into its meaningful parts
but it is not getting to me. Even enhanced irregular regular expressions
used by Perl are not up to the task of parsing HTML. You will never

Have you tried using an XML parser instead?

ummm ... getting weird

hmm ... what's this?

Oh and by the way:

XML is a language of sufficient complexity that it cannot be parsed by regular
expressions. Even Jon Skeet cannot parse XML using regular expressions. Every
time you attempt to parse HTML with regular expressions, the unholy child weeps
the blood of virgins, and Russian hackers pwn your webapp. Parsing HTML with
regex summons tainted souls into the realm of the living. HTML and regex go
together like love, marriage, and ritual infanticide. The <center> cannot hold it is too
late. The force of regex and HTML together in the same conceptual space will
destroy your mind like so much watery putty. If you parse HTML with regex you are
inviting to them and their blasphemous ways which doom us all to inhuman toil for
the one whose Name cannot be expressed in the Basic Multilingual Plane, he
comes. HTML-plus-regexp will liquify the nerves of the sentient whilst you observe,
our psyche withering in the onslaught of horror. Regex-based HTML parsers are
the cancer that is killing StackOverflow it is too late, it is too late we can
not save the trangression of a child ensures regex will consume all living tissue (except for
HTML which it cannot, as previously prophesied) dear lord help us how can anyone
survive this scourge using regex to parse HTML and the application to an eternity
of dread torture and security holes using HTML establishes a breach between this
world and the next that corrupt entities (like SGML entities, but more corrupt) a mere glimpse of the world of regex parsers for
HTML will instantly transport a programmer's consciousness into a world of
ceaseless screaming, he comes, the pestilent slithy regex-infection will devour your
HTML parser, application and existence for all time like Visual Basic only worse he
comes he does not fight he comes, his unholy radiance destroying all
enlightenment. HTML tags leaking from your eyes like liquid pain, the song of
regular expression parsing will extinguish the voices of mortal man from the sphere
I can see it can you see it is beautiful the final snuffing of the lies of Man ALL IS
LOST ALL IS LOST the bony he comes he comes he comes the bony, his unholy radiance permeates
all my face my face is god NO NO NO NO stop the angles are not real
ZALGO IS TONG THE PONY he comes
Flashback: Designing DFAs or NFAs

- Each state “stores” some information
 - E.g., $q_{even} =$ “seen even # of 1s”
 - $q_{odd} =$ “seen odd # of 1s”
 - But finite states = finite amount of info storage (and must decide in advance)

- So DFAs can’t keep track of an arbitrary count!
 - would require infinite states
A Non-Regular Language

$L = \{ 0^n1^n \mid n \geq 0 \}$

- A DFA recognizing L would require infinite states! (impossible)
 - States representing zero 0s seen, one 0 seen, two 0s, ...

- This language represents the essence of many PLs, e.g., HTML!
 - To better see this replace:
 - “0” with “<tag>“ or “(“
 - “1” with “</tag>” or “)”

- The problem is tracking nestedness
 - Regular languages cannot count arbitrary nesting depths
 - E.g., if { if { if { ... } } }
 - So most programming language syntax is not regular!
Prove: Aliens Do Not Exist

In general, proving something not true is different (and often harder) than proving it true.

In some cases, it’s possible, but typically requires new proof techniques!

So: We know how to prove a language is regular.
But can we prove a language is not regular?

YES! but requires a new proof technique!
A Lemma About Regular Languages

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, $s = xyz$, satisfying the following conditions:

1. for each $i \geq 0$, $xy^i z \in A$,
2. $|y| > 0$, and
3. $|xy| \leq p$.

Note: To use an “If X then Y” statement, first prove X is true, then conclude that Y is true.
Flashback: The Modus Ponens Inference Rule

If we know these statements are true ...

- If P then Q

- P

Then we also know this statement is true ...

- Q
A Lemma About Regular Languages

Pumping lemma
If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, $s = xyz$, satisfying the following conditions:

1. for each $i \geq 0$, $xy^iz \in A$,
2. $|y| > 0$, and
3. $|xy| \leq p$.

Strings in A satisfy these 3 conditions! (whatever they are ...)

To use The **Pumping Lemma** for a language A ...

... we must first prove that A is a regular language ...

Q: Can we use The **Pumping Lemma** to prove that a language is regular?

NO (but we already know how to do that anyways)

(but maybe it can be used to prove that a language is not regular!)
Equivalence of Conditional Statements

• Yes or No? “If X then Y” is equivalent to:

 • “If Y then X” (converse)
 • No!

 • “If not X then not Y” (inverse)
 • No!

 • “If not Y then not X” (contrapositive)
 • Yes!
Pumping lemma

If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, $s = xyz$, satisfying the following conditions:

1. for each $i \geq 0$, $xy^iz \in A$,
2. $|y| > 0$, and
3. $|xy| \leq p$.

Equivalent (contrapositive):
If any of these are not true ...

Contrapositive:
“If X then Y” is equivalent to “If not Y then not X”
Logical Inference Rules

Modus Ponens
Premises (known facts)
- If P then Q
- P is true
Conclusion (new fact)
- Q is true

Modus Tollens (contrapositive)
Premises (known facts)
- If P then Q
- Q is *not* true
Conclusion (new fact)
- P is *not* true
Lemma About Regular Languages: Details

Pumping lemma If \(A \) is a regular language, then there is a number \(p \) (the pumping length) where if \(s \) is any string in \(A \) of length at least \(p \), then \(s \) may be divided into three pieces, \(s = xyz \), satisfying the following conditions:

1. for each \(i \geq 0 \), \(xy^iz \in A \),
2. \(|y| > 0 \), and
3. \(|xy| \leq p \).

Any regular language satisfies these three conditions!

Specifically, these are conditions on strings in the language with length \(\geq p \).

NOTE:
- Lemma doesn’t give an exact \(p \)!
- Only that there is *some* string length \(p \) ...
The Pumping Lemma: Finite Langs

Pumping lemma If \(A \) is a regular language, then there is a number \(p \) (the pumping length) where if \(s \) is any string in \(A \) of length at least \(p \), then \(s \) may be divided into three pieces, \(s = xyz \), satisfying the following conditions:

1. for each \(i \geq 0 \), \(xy^i z \in A \),
2. \(|y| > 0 \), and
3. \(|xy| \leq p \).

Example: a finite language \{"ab", "cd"\}

- All finite languages are regular
- (can easily construct DFA/NFA/Regular Expression recognizing them)

Conclusion: pumping lemma is only interesting for infinite langs!
(containing strings with repeatable parts)

Possible \(p \) for finite langs?

How about:

\[p = \text{LENGTH}(\text{longest string}) + 1 \]

strings in the language with length \(\geq p \)? None!

Therefore, all strings with length \(\geq p \) satisfy the pumping lemma conditions! 😊
The Pumping Lemma, a Closer Look

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, $s = xyz$, satisfying the following conditions:

1. for each $i \geq 0$, $xy^iz \in A$,
2. $|y| > 0$, and
3. $|xy| \leq p$.

Strings that have a **repeatable** part can be split into:

- $x =$ part before any repeating
- $y =$ repeated (or “pumpable”) part
- $z =$ part after any repeating

This makes sense because DFAs have finite states, so for “long enough” (i.e., length $\geq p$) inputs, some state must repeat

e.g., “long enough length” = $p = \# \text{ states} + 1$ (The Pigeonhole Principle)
The Pigeonhole Principle

If $\# \text{birds} > \# \text{holes}$, then there must be > 1 bird in some hole.
The Pumping Lemma, a Closer Look

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, $s = xyz$, satisfying the following conditions:

1. for each $i \geq 0$, $xy^i z \in A$,
2. $|y| > 0$, and
3. $|xy| \leq p$.

So a substring that can repeat once, can also be repeated any number of times.

In essence, the pumping lemma is a theorem about repeating patterns in regular languages.

Also, this is the only way for regular languages to repeat (Kleene star).

“long enough length” = $p = \# \text{states} + 1$ (some state must repeat)
The Pumping Lemma: Infinite Languages

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, $s = xyz$, satisfying the following conditions:

1. for each $i \geq 0$, $xy^iz \in A$,
2. $|y| > 0$, and
3. $|xy| \leq p$.

Example: *infinite* language $A = \{"00", "010", "0110", "01110", \ldots\}$

- It’s regular bc it has regular expression 01^*0

... and ”pumping” (repeating) middle y part creates a string that is still in the language
 - repeat *once* ($i = 1$): “010”,
 - repeat *twice* ($i = 2$): “0110”,
 - repeat *three times* ($i = 3$): “01110”

E.g., “010” $\in A$, so pumping lemma says it’s splittable into three parts xyz, e.g. $x = 0$, $y = 1$, $z = 0$
Summary: The Pumping Lemma ...

• ... states properties that are true for all regular languages
• ... specifically, properties about “long enough” strings in reg. langs
• In general, it describes repeating patterns in reg. langs

IMPORTANT:
• The Pumping Lemma cannot prove that a language is regular!

• But ... we can use it to prove that a language is not regular
Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, $s = xyz$, satisfying the following conditions:

1. for each $i \geq 0$, $xy^iz \in A$,
2. $|y| > 0$, and
3. $|xy| \leq p$.

Equivalent (contrapositive): If any of these are not true ...

Contrapositive: "If X then Y" is equivalent to "If not Y then not X"
Kinds of Mathematical Proof

• Deductive Proof
 • Logically infer conclusion from known definitions and assumptions

• Proof by induction
 • Use to prove properties of recursive definitions or functions

• Proof by contradiction
 • Proving the contrapositive
How To Do Proof By Contradiction

3 easy steps:

1. **Assume the opposite** of the statement to prove

2. Show that the assumption **leads to a contradiction**

3. **Conclude** that the original statement must be true
Let B be the language $\{0^n 1^n | n \geq 0\}$. We use the pumping lemma to prove that B is not regular. The proof is by contradiction.
Want to prove: 0^n1^n is not a regular language

Proof (by contradiction):

- **Assume:** 0^n1^n is a regular language
 - So it must satisfy the pumping lemma
 - I.e., all strings \geq length p are pumpable
- **Counterexample** = 0^p1^p

We must show that there is no possible way to split this string to satisfy the conditions of the pumping lemma!

Reminder: Pumping lemma says:
- all strings $0^n1^n \geq$ length p are **splittable** into xyz where y is pumpable
- So find string \geq length p that is **not** splittable into xyz where y is pumpable

Pumping lemma

If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, $s = xyz$, satisfying the following conditions:

1. for each $i \geq 0$, $xy^iz \in A$,
2. $|y| > 0$, and
3. $|xy| \leq p$.

423
Want to prove: \(0^n1^n\) is not a regular language

Possible Split: \(y = \text{all } 0s\)

Proof (by contradiction):

- Assume: \(0^n1^n\) is a regular language
 - So it must satisfy the pumping lemma
 - I.e., all strings \(\geq\) length \(p\) are pumpable
- Counterexample = \(0^p1^p\)
- Choose \(xyz\) split so \(y\) contains:
 - all 0s
- Pumping \(y\): produces a string with more 0s than 1s
 - ... not in the language \(0^n1^n\)
 - So \(0^p1^p\) is not pumpable? (according to pumping lemma)
 - So \(0^n1^n\) is a not regular language? (contrapositive)
 - This is a contradiction of the assumption?
Want to prove: 0^n1^n is **not** a regular language

Possible Split: $y = all \ 1s$

Proof (by contradiction):

- **Assume: 0^n1^n is a regular language**
 - So it must satisfy the pumping lemma
 - I.e., all strings \geq length p are pumpable
- **Counterexample** = 0^p1^p

- **Choose xyz split so y contains:**
 - all 1s

- **Is this string pumpable?**
 - No!
 - By the same reasoning as in the previous slide

Is there another way to split into xyz?
Want to prove: 0^n1^n is not a regular language

Possible Split: $y = 0s$ and $1s$

Proof (by contradiction):

- **Assume:** 0^n1^n is a regular language
 - So it must satisfy the pumping lemma
 - I.e., all strings \geq length p are pumpable

- **Counterexample** = 0^p1^p

- **Choose xyz split so y contains:**
 - both 0s and 1s

$$\text{p } 0s \quad \text{p } 1s$$

$$00 \ldots 011 \ldots 1$$

$X \quad Y \quad Z$

- **Is this string pumpable?**
 - No!
 - Pumped string will have equal 0s and 1s
 - But they will be in the wrong order: so there is still a **contradiction**!
The Pumping Lemma: Condition 3

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, $s = xyz$, satisfying the following conditions:

1. for each $i \geq 0$, $xy^i z \in A$,
2. $|y| > 0$, and
3. $|xy| \leq p$.

p 0s

00 ... 011 ... 1

y must be in here!

The repeating part y ... must be in the first p characters!
The Pumping Lemma: Pumping Down

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, $s = xyz$, satisfying the following conditions:

1. for each $i \geq 0$, $xy^iz \in A$,
2. $|y| > 0$, and
3. $|xy| \leq p$.

Repeating party must be non-empty ... but can be repeated zero times!

Example: $L = \{0^i1^j \mid i > j\}$
Want to prove: \(L = \{0^i1^j \mid i > j\} \) is not a regular language

Proof (by contradiction):

- **Assume: \(L \) is a regular language**
 - So it must satisfy the pumping lemma
 - I.e., all strings \(\geq \) length \(p \) are pumpable

- **Counterexample = \(0^{p+1}1^p \)**

- **Choose \(xyz \) split so \(y \) contains:**
 - all 0s
 - (Only possibility, by condition 3)

- **Repeat \(y \) zero times (pump down):** produces string with \(\# \) 0s \(\leq \) \(\# \) 1s
 - ... not in the language \(\{0^i1^j \mid i > j\} \)
 - So \(\{0^i1^j \mid i > j\} \) does not satisfy the pumping lemma
 - So it is a not regular language
 - This is a contradiction of the assumption!
Next Time (and rest of the Semester)

• If a language is not regular, then what is it?

• There are many more classes of languages!
Check-in Quiz 3/1

On gradescope