UMB CS 420
Non-CFLs
Wednesday, March 22, 2023
Announcements

• HW 6
 • Due Sunday 3/26 11:pm EDT

Quiz Preview

• The **Pumping Lemma for CFLs** states that:
 • all strings in a CFL that are longer than the pumping length can be split into 5 substrings \(uvxyz \) ...
 • ... where repeating some of these substrings (together) results in a "pumped" string that is still in the language.
 • Which are the substrings that can be pumped (together) in this way?
Flashback: Pumping Lemma for Regular Langs

- **Pumping Lemma** describes how strings repeat

- Regular language strings repeat using **Kleene star** operation
 - 3 substrings \(xyz\) are independent!

- A non-regular language:
 \[
 \{0^n1^n | n \geq 0\}
 \]

 Kleene star can’t express this pattern: 2nd part depends on (length of) 1st part

- \(Q\): How do CFLs repeat?
Repetition and Dependency in CFLs

Parts before/after repetition point are linked

\[A \rightarrow 0A1 \]
\[A \rightarrow B \]
\[B \rightarrow \# \]

\[\{0^n\#1^n | n \geq 0\} \]

Repetition

\[A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 000A111 \Rightarrow 000B111 \Rightarrow 000\#111 \]
How Do Strings in CFLs Repeat?

• Strings in regular languages repeat states

• Strings in CFLs repeat subtrees in the parse tree

NFA can take loop transition any number of times, to process repeated y in input

One repeated subtree means that it can be repeated any number of times

5 substrings

Linked parts

Linked parts repeat together
Pumping Lemma for CFLS

Pumping lemma for context-free languages If \(A \) is a context-free language, then there is a number \(p \) (the pumping length) where, if \(s \) is any string in \(A \) of length at least \(p \), then \(s \) may be divided into five pieces \(s = uvxyz \) satisfying the conditions:

1. for each \(i \geq 0 \), \(uv^ixy^iz \in A \),
2. \(|vy| > 0 \), and
3. \(|vxy| \leq p \).

Pumping lemma If \(A \) is a regular language, then there is a number \(p \) (the pumping length) where if \(s \) is any string in \(A \) of length at least \(p \), then \(s \) may be divided into three pieces, \(s = xyz \), satisfying the conditions:

1. for each \(i \geq 0 \), \(xy^iz \in A \),
2. \(|y| > 0 \), and
3. \(|xy| \leq p \).

Two pumpable parts.
But they must be pumped together!
A Non CFL example

\[\text{language } B = \{ a^n b^n c^n \mid n \geq 0 \} \text{ is not context free} \]

Intuition

- Strings in CFLs can have two parts that are “pumped” together
- This language requires three parts to be “pumped” together
- So it’s not a CFL!

Proof?
Want to prove: \(a^n b^n c^n \) is not a CFL

Proof (by contradiction):

- **Assume**: \(a^n b^n c^n \) is a CFL
 - So it must satisfy the pumping lemma for CFLs
 - i.e., all strings \(\geq \) length \(p \) are pumpable
- **Counterexample** = \(a^p b^p c^p \)

Now we must find a contradiction ...

Contradiction if: string \(\geq \) length \(p \) that is **not** splittable into \(uvxyz \) where \(v \) and \(y \) are pumpable

Pumping lemma for context-free languages: If \(A \) is a context-free language, then there is a number \(p \) (the pumping length) where, if \(s \) is any string in \(A \) of length at least \(p \), then \(s \) may be divided into five pieces \(s = uvxyz \) satisfying the conditions

1. for each \(i \geq 0, \ uv^ixy^i z \in A \)
2. \(|vy| > 0 \), and
3. \(|vxy| \leq p \).

Reminder: CFL Pumping lemma says: all strings \(a^n b^n c^n \geq \) length \(p \) are splittable into \(uvxyz \) where \(v \) and \(y \) are pumpable

\[p \ as \quad p \ bs \quad p \ bs \]
\[a \ ... \ b \ ... \ c \ ... \]
Want to prove: $a^n b^n c^n$ is not a CFL

Possible Splits

Proof (by contradiction):

- **Assume:** $a^n b^n c^n$ is a CFL
 - So it must satisfy the pumping lemma for CFLs
 - i.e., all strings \geq length p are pumppable
- **Counterexample** $= a^p b^p c^p$
 - Contradiction if: string \geq length p that is not splittable into $uvxyz$ where v and y are pumppable

- **Possible Splits (using condition # 3: $|vxy| \leq p$)**
 - vxy is all as
 - vxy is all bs
 - vxy is all cs
 - vxy has as and bs
 - vxy has bs and cs

So $a^n b^n c^n$ is not a CFL (justification: contrapositive of CFL pumping lemma)
Another Non-CFL $D = \{ww | w \in \{0,1\}^*\}$

Be careful when choosing counterexample s: $0^p 1 0^p 1$
This s can be pumped according to CFL pumping lemma:

\[
\begin{align*}
0^p 1 \\
\{000 \ldots 000\} & \ {0} & \ {1} & \ {000 \ldots 0001} \\
\text{u} & \ {v} & \ {x} & \ {y} & \ {z}
\end{align*}
\]

- CFL Pumping Lemma conditions:
 1. for each $i \geq 0$, $uv^i xy^i z \in A$,
 2. $|vy| > 0$, and
 3. $|vxy| \leq p$.

This doesn't prove that the language is a CFL! It only means that this attempt to prove that the language is not a CFL failed.
Another Non-CFL \(D = \{ww | w \in \{0,1\}^*\} \)

- Need another counterexample string \(s \):
 - If \(vyx \) is contained in first or second half, then any pumping will break the match.
 - \(0^p 1^p 0^p 1^p \)
 - So \(vyx \) must straddle the middle.
 - But any pumping still breaks the match because order is wrong.

- CFL Pumping Lemma conditions:
 1. for each \(i \geq 0 \), \(uv^i xy^i z \in A \),
 2. \(|vy| > 0 \), and
 3. \(|vxy| \leq p \).

Now we have proven that this language is not a CFL!
A Practical Non-CFL

• **XML**
 - ELEMENT \rightarrow `<TAG>CONTENT</TAG>`
 - Where TAG is any string

• **XML also looks like this** non-CFL: $D = \{ww \mid w \in \{0,1\}^*\}$

• **This means XML is not context-free!**
 - **Note**: HTML is context-free because ...
 - … there are only a finite number of tags,
 - so they can be embedded into a finite number of rules.

In practice:
• XML is parsed as a CFL, with a CFG
• Then matching tags checked in a 2nd pass with a more powerful machine...
Next: A More Powerful Machine ...

\[M_1 \] accepts its input if it is in language: \[B = \{ w\#w \mid w \in \{0,1\}^* \} \]

\[M_1 = \text{"On input string } w: \]

1. Zig-zag across the tape to corresponding positions on either side of the \# symbol to check whether these positions contain the same symbol. If they do not, or if no \# is found, reject. Cross off symbols as they are checked to keep track of which symbols correspond.

Infinite memory (initial contents are the input string)

Can move to, and read/write from arbitrary memory locations!
In-class quiz 3/22

See gradescope