Mapping Reducibility

Wednesday, April 19, 2023
Announcements

• HW 9 still out
 • Due Sun 4/23 11:59pm EST

Quiz Preview

• Mapping reducibility is a relation between two ...?
Last time: Undecidable ...

- $\text{REGULAR}_{\text{TM}} = \{<M> | M \text{ is a TM and } L(M) \text{ is a regular language}\}$

- $\text{CONTEXTFREE}_{\text{TM}} = \{<M> | M \text{ is a TM and } L(M) \text{ is a CFL}\}$

- $\text{DECIDABLE}_{\text{TM}} = \{<M> | M \text{ is a TM and } L(M) \text{ is a decidable language}\}$

- $\text{FINITE}_{\text{TM}} = \{<M> | M \text{ is a TM and } L(M) \text{ is a finite language}\}$

- ...

- $\text{ANYTHING}_{\text{TM}} = \{<M> | M \text{ is a TM and “… anything …” about } L(M)\}$
Flashback: “Reduced”

Thm: $HALT_{TM}$ is undecidable

Proof, by contradiction:

- Assume: $HALT_{TM}$ has decider R; use it to create A_{TM} decider:

 $S = \text{“On input } \langle M, w \rangle \text{, an encoding of a TM } M \text{ and a string } w:\n \begin{align*}
 1. \text{ Run TM } R \text{ on input } \langle M, w \rangle . \\
 2. \text{ If } R \text{ rejects, reject.} \\
 3. \text{ If } R \text{ accepts, simulate } M \text{ on } w \text{ until it halts.} \\
 4. \text{ If } M \text{ has accepted, accept; if } M \text{ has rejected, reject.”}
 \end{align*}

 A potential problem: could the conversion itself go into an infinite loop?

 Let’s formalize this conversion, i.e., mapping reducibility
Flashback: A_{NFA} is a decidable language

$A_{NFA} = \{ \langle B, w \rangle \mid B \text{ is an NFA that accepts input string } w \}$

Decider for A_{NFA}:

$N = \text{"On input } \langle B, w \rangle, \text{ where } B \text{ is an NFA and } w \text{ is a string:"

1. Convert NFA B to an equivalent DFA C, using the procedure $\text{NFA} \to \text{DFA}$
2. Run TM M on input $\langle C, w \rangle$.
3. If M accepts, accept; otherwise, reject."

We said this NFA \to DFA algorithm is a decider TM, but it doesn’t accept/reject?

More generally, our analogy has been: “programs \sim TMs”, but programs do more than accept/reject?
Definition: Computable Functions

A function \(f : \Sigma^* \rightarrow \Sigma^* \) is a **computable function** if some Turing machine \(M \), on every input \(w \), halts with just \(f(w) \) on its tape.

• A **computable function** is represented with a TM that, instead of accept/reject, “outputs” its final tape contents

• Example 1: All arithmetic operations

• Example 2: Converting between machines, like DFA→NFA
 • E.g., adding states, changing transitions, wrapping TM in TM, etc.
Definition: Mapping Reducibility

Language A is **mapping reducible** to language B, written $A \leq_m B$, if there is a computable function $f : \Sigma^* \rightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B.$$

The function f is called the **reduction** from A to B.

A function $f : \Sigma^* \rightarrow \Sigma^*$ is a **computable function** if some Turing machine M, on every input w, halts with just $f(w)$ on its tape.
Flashback: Equivalence of Contrapositive

“If X then Y” is equivalent to ...

1. “If Y then X” (converse)

2. “If not X then not Y” (inverse)

3. “If not Y then not X” (contrapositive)
Flashback: Equivalence of Contrapositive

“If X then Y” is equivalent to ... ?

× “If Y then X” (converse)
 • No!

× “If not X then not Y” (inverse)
 • No!

✓ “If not Y then not X” (contrapositive)
 • Yes!
Definition: Mapping Reducibility

Language A is **mapping reducible** to language B, written $A \leq_m B$, if there is a computable function $f : \Sigma^* \rightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B.$$

The function f is called the **reduction** from A to B.

- **“forward” direction** (\Rightarrow): if $w \in A$ then $f(w) \in B$
- **“reverse” direction** (\Leftarrow): if $f(w) \in B$ then $w \in A$

Equivalent (contrapositive): if $w \notin A$ then $f(w) \notin B$

Reverse direction just as important: don’t convert non-As into Bs

Easier to prove
Proving Mapping Reducibility: 2 Steps

Language A is **mapping reducible** to language B, written $A \leq_m B$, if there is a **computable function** $f: \Sigma^* \rightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B.$$

The function f is called the **reduction** from A to B.

Step 1: Show there is computable fn f... by creating a TM

Step 2: Prove the iff is true for that computable fn TM

Step 2a: “forward” direction (\Rightarrow): if $w \in A$ then $f(w) \in B$

Step 2b: “reverse” direction (\Leftarrow): if $f(w) \in B$ then $w \in A$

Step 2b, alternate (contrapositive): if $w \notin A$ then $f(w) \notin B$

A function $f: \Sigma^* \rightarrow \Sigma^*$ is a **computable function** if some Turing machine M, on every input w, halts with just $f(w)$ on its tape.
Thm: A_{TM} is mapping reducible to HALT_{TM}

To show: $A_{TM} \leq_{m} \text{HALT}_{TM}$

Step 1: create computable fn f: $<M, w> \rightarrow <M', w>$ where:

Step 2: show $<M, w> \in A_{TM}$ if and only if $<M', w> \in \text{HALT}_{TM}$

The following machine F computes a reduction f.

$F =$ “On input $<M, w>$:

1. Construct the following machine M'.
 $M' =$ “On input x:
 1. Run M on x.
 2. If M accepts, accept.
 3. If M rejects, enter a loop.”
2. Output $<M', w>$.”

M' is like M, except it always loops when it doesn’t accept

Output new M'

Step 2:

M accepts w

if and only if

M' halts on w
⇒ If M accepts w, then M' halts on w

- M' accepts (and thus halts) if M accepts

⇐ If M' halts on w, then M accepts w

The following machine F computes a reduction f.

$F =$ “On input $<M, w>$:

1. Construct the following machine M'.
 M' = “On input x:
 1. Run M on x.
 2. If M accepts, accept.
 3. If M rejects, enter a loop.”

2. Output $<M', w>$.”

Step 2: M accepts w if and only if M' halts on w
⇒ If \(M \) accepts \(w \), then \(M' \) halts on \(w \)
 • \(M' \) accepts (and thus halts) if \(M \) accepts

⇐ If \(M' \) halts on \(w \), then \(M \) accepts \(w \)

⇐ (Alternatively) If \(M \) doesn’t accept \(w \), then \(M' \) doesn’t halt on \(w \) (contrapositive)
 • Two possibilities for “doesn’t accept”:
 1. \(M \) loops: \(M' \) loops and doesn’t halt
 2. \(M \) rejects: \(M' \) loops and doesn’t halt

The following machine \(F \) computes a reduction \(f \).
\[
F = \text{“On input } \langle M, w \rangle \text{:}
\]
1. Construct the following machine \(M' \).
 \(M' = \text{“On input } x \text{:}
 \]
 1. Run \(M \) on \(x \).
 2. If \(M \) accepts, accept.
 3. If \(M \) rejects, enter a loop.”
2. Output \(\langle M', w \rangle \).”

Step 2:
\(M \) accepts \(w \) if and only if \(M' \) halts on \(w \)

If \(M \) loops, then \(M' \) loops

If \(M \) rejects, then \(M' \) loops

Now we know what mapping reducibility is, and how to prove it for two languages; but what is it used for?
Uses of Mapping Reducibility

• To prove Decidability

• To prove Undecidability
Thm: If $A \leq_m B$ and B is decidable, then A is decidable.

Proof We let M be the decider for B and f be the reduction from A to B. We describe a decider N for A as follows.

$N = \text{"On input } w:\n1. \text{ Compute } f(w).\n2. \text{ Run } M \text{ on input } f(w) \text{ and output whatever } M \text{ outputs."}$

Why is it true that: If M accepts $f(w)$ then N should accept w?? i.e., $f(w)$ in B guarantees that w in A??

Language A is **mapping reducible** to language B, written $A \leq_m B$, if there is a computable function $f: \Sigma^* \rightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B.$$

The function f is called the **reduction** from A to B.

We know this is true bc of the iff (specifically the reverse direction)
Corollary: If $A \leq_m B$ and A is undecidable, then B is undecidable.

- **Proof** by contradiction.
- **Assume** B is decidable.
- **Then** A is decidable (by the previous thm).
- **Contradiction:** we already said A is undecidable.
Summary: Showing Mapping Reducibility

Language \(A \) is **mapping reducible** to language \(B \), written \(A \leq_m B \), if there is a **computable function** \(f: \Sigma^* \rightarrow \Sigma^* \), where for every \(w \),

\[w \in A \iff f(w) \in B. \]

The function \(f \) is called the **reduction** from \(A \) to \(B \).

Step 1:
Show there is computable fn \(f \) ... by creating a TM

Step 2:
Prove the \(\iff \) is true

Step 2a: “forward” direction (\(\Rightarrow \)): if \(w \in A \) then \(f(w) \in B \)

Step 2b: “reverse” direction (\(\Leftarrow \)): if \(f(w) \in B \) then \(w \in A \)

Step 2b, alternate (contrapositive): if \(w \notin A \) then \(f(w) \notin B \)

A function \(f: \Sigma^* \rightarrow \Sigma^* \) is a **computable function** if some Turing machine \(M \), on every input \(w \), halts with just \(f(w) \) on its tape.
Summary: Using Mapping Reducibility

To prove decidability...

- If $A \leq_m B$ and B is decidable, then A is decidable.

To prove undecidability...

- If $A \leq_m B$ and A is undecidable, then B is undecidable.

Be careful with the direction of the reduction, i.e., what is known and what is unknown!
Alternate Proof: The Halting Problem

\[\text{HALT}_{TM} \text{ is undecidable} \]

- If \(A \leq_m B \) and \(A \) is undecidable, then \(B \) is undecidable.
- \(A_{TM} \leq_m \text{HALT}_{TM} \)
- Since \(A_{TM} \) is undecidable,
- \(\ldots \) and we showed mapping reducibility from \(A_{TM} \) to \(\text{HALT}_{TM} \),
- then \(\text{HALT}_{TM} \) is undecidable \(\blacksquare \)
Flashback: \(EQ_{\text{TM}} \) is undecidable

\[EQ_{\text{TM}} = \{ \langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \} \]

Proof by contradiction:

- **Assume** \(EQ_{\text{TM}} \) has **decider** \(R \); use it to create **\(E_{\text{TM}} \) decider:**

\[E_{\text{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \} \]

\[S = \text{“On input } \langle M \rangle \text{, where } M \text{ is a TM:} \]

1. Run \(R \) on input \(\langle M, M_1 \rangle \), where \(M_1 \) is a TM that rejects all inputs.

2. If \(R \) accepts, accept; if \(R \) rejects, reject.”
Alternate Proof: EQ_{TM} is undecidable

$EQ_{TM} = \{ \langle M_1, M_2 \rangle | M_1$ and M_2 are TMs and $L(M_1) = L(M_2) \}$

Show mapping reducibility: $E_{TM} \leq_m EQ_{TM}$

Step 1: create computable fn f: $<M> \rightarrow <M_1, M_2>$, computed by S

$S =$ “On input $\langle M \rangle$, where M is a TM:
1. Construct: $\langle M, M_1 \rangle$, where M_1 is a TM that rejects all inputs.
2. Output: $\langle M, M_1 \rangle$

Step 2: show iff requirements of mapping reducibility (hw exercise)

And use theorem ...

Undecidability Proof Technique #4: Mapping Reducibility + theorem

If $A \leq_m B$ and A is undecidable, then B is undecidable.
Flashback: \(E_{TM} \) is undecidable

\[E_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \} \]

Proof, by contradiction:

• Assume \(E_{TM} \) has decider \(R \); use it to create \(A_{TM} \) decider:

\[S = \text{"On input } \langle M, w \rangle, \text{ an encoding of a } \text{TM } M \text{ and a string } w:\]

1. Use the description of \(M \) and \(w \) to construct the \(\text{TM } M_1 \)

2. Run \(R \) on input \(\langle M_1 \rangle \).

3. If \(R \) accepts, reject; if \(R \) rejects, accept."

• So this only reduces \(A_{TM} \) to \(\overline{E_{TM}} \)

If \(M \) accepts \(w \), then \(M_1 \) accepts \(w \), meaning \(M_1 \) is not in \(E_{TM} \)!
Alternate Proof: E_{TM} is undecidable

Show mapping reducibility??: $A_{TM} \leq_m E_{TM}$

Step 1: create computable fn f: $<M, w> \rightarrow <M'>$,
computed by S

1. Use the description of M and w to construct the TM M_1

2. Output: $<M_1>$.

3. If R accepts, reject; if R rejects, accept.”

So this only reduces A_{TM} to $\overline{E_{TM}}$.

It’s good enough! Still proves E_{TM} is undecidable

- If ... undecidable langs are closed under complement

Step 2: show iff requirements of mapping reducibility
(hw exercise)
Language Complement

Complement (OPPO from hw3) of a language A, written \overline{A} ...

... is the set of all strings not in set A

Example:

$L_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}$

$\overline{L}_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \neq \emptyset \}$

$\bigcup \{ w \mid w \text{ is a string that is not a TM description} \}$
Undecidable Langs Closed under Complement

Proof by contradiction

• Assume some lang \(L \) is undecidable and \(\overline{L} \) is decidable ...
 • Then \(\overline{L} \) has a decider

• ... then we can create decider for \(L \) from decider for \(\overline{L} \) ...
 • Because decidable languages are closed under complement (hw10?)!
Next Time: Turing Unrecognizable?

Is there anything out here?

Where do these undecidable languages go?

\[E_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \} \]

\[EQ_{CFG} = \{ \langle G, H \rangle | G \text{ and } H \text{ are CFGs and } L(G) = L(H) \} \]

\[EQ_{TM} = \{ \langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \} \]
Check-in Quiz 4/19

On gradescope