Announcements

- **HW 1**
 - **Due:** Wed 2/7 Mon 2/12 12pm (noon)

- **TAs and (new!) office hours**

 Office hours will be held weekly **in-person**, in McCormack, 3rd Floor, at these times:
 - Thu 2:00-3:30pm EST (Jean Gerard), room 0139
 - Thu 3:30-5:00pm EST (Richard Chang), room 0139
 - Fri 2:00-3:30pm EST (Prof Chang), room 0201-03

 Office hours will be held weekly **via Zoom** during these times:
 - Thu 3:30-5:00pm EST (Prof Chang) (see Blackboard for Zoom link)
 - Sat 12:00-1:30pm EST (Anna Bosunova) (see Blackboard for Zoom link)

 Drop-ins are fine, but emailing in advance if you can would be helpful.

 These will usually be group meetings, but one-on-ones are available upon request.
Computation with DFAs (JFLAP demo)

- DFA:

- Input: “1101”

HINT: always work out concrete examples to understand how a machine works
DFA Computation Rules

Informally

Given

• A DFA (~ a “Program”)
• and Input = string of chars, e.g. “1101”

To run the automata / “program”:

• Start in “start state”

• Repeat:
 • Read 1 char from input;
 • Change state according to the transition table

• Result of computation =
 • Accept if last state is Accept state
 • Reject otherwise
DFA Computation Rules

Informally

Given
- A DFA (~ a “Program”)
- and **Input** = string of chars, e.g. “1101”

To run the automata / “program”:
- **Start** in “start state”
- **Repeat:**
 - Read 1 char from input;
 - Change state according to the transition table

Formally (i.e., mathematically)

- $M =$
- $w =$

Definition
A finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where
1. Q is a finite set called the states,
2. Σ is a finite set called the alphabet,
3. $\delta : Q \times \Sigma \rightarrow Q$ is the transition function,
4. $q_0 \in Q$ is the start state, and
5. $F \subseteq Q$ is the set of accept states.
DFA Computation Rules

<table>
<thead>
<tr>
<th>Informally</th>
<th>Formally (i.e., mathematically)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given</td>
<td>$M = (Q, \Sigma, \delta, q_0, F)$</td>
</tr>
<tr>
<td>• A DFA (~ a “Program”)</td>
<td>• $w = w_1 w_2 \cdots w_n$</td>
</tr>
<tr>
<td>• and Input = string of chars, e.g. “1101”</td>
<td>A run is represented by variables r_0, \ldots, r_n,</td>
</tr>
<tr>
<td></td>
<td>the sequence of states in the computation, where:</td>
</tr>
<tr>
<td>To run the automata / “program”:</td>
<td>• $r_0 = q_0$</td>
</tr>
<tr>
<td>• Start in “start state”</td>
<td>M accepts w if</td>
</tr>
<tr>
<td>• Repeat:</td>
<td>sequence of states r_0, r_1, \ldots, r_n in Q exists \ldots</td>
</tr>
<tr>
<td>• Read 1 char from input;</td>
<td>with $r_n \in F$ [81]</td>
</tr>
<tr>
<td>• Change state according to the transition table</td>
<td>• M accepts w if</td>
</tr>
<tr>
<td>• Result of computation =</td>
<td>sequence of states r_0, r_1, \ldots, r_n in Q exists \ldots</td>
</tr>
<tr>
<td>• Accept if last state is Accept state</td>
<td>with $r_n \in F$ [81]</td>
</tr>
<tr>
<td>• Reject otherwise</td>
<td>M accepts w if</td>
</tr>
</tbody>
</table>

Informally

Given
• A DFA (~ a “Program”)
• and Input = string of chars, e.g. “1101”

To run the automata / “program”:
• Start in “start state”

• Repeat:
 • Read 1 char from input;
 • Change state according to the transition table

• Result of computation =
 • Accept if last state is Accept state
 • Reject otherwise

Formally (i.e., mathematically)

• $M = (Q, \Sigma, \delta, q_0, F)$
• $w = w_1 w_2 \cdots w_n$

A run is represented by variables r_0, \ldots, r_n, the sequence of states in the computation, where:

• $r_0 = q_0$

• $r_i =$
 • if $i=1$, $r_1 = \delta(r_0, w_1)$
 • if $i=2$, $r_2 = \delta(r_1, w_2)$
 • if $i=3$, $r_3 = \delta(r_2, w_3)$

• M accepts w if sequence of states r_0, r_1, \ldots, r_n in Q exists … with $r_n \in F$
DFA Computation Rules

Informally

Given
- A DFA (~ a “Program”)
- and Input = string of chars, e.g. “1101”

To run the automata / “program”:
- Start in “start state”

Repeat:
- Read 1 char from input;
- Change state according to the transition table

Result of computation =
- Accept if last state is Accept state
- Reject otherwise

Formally (i.e., mathematically)

\[M = (Q, \Sigma, \delta, q_0, F) \]
- \(w = w_1 w_2 \cdots w_n \)
 - A run is represented by variables \(r_0, \ldots, r_n \),
 the sequence of states in the computation, where:
- \(r_0 = q_0 \)
- \(r_i = \delta(r_{i-1}, w_i) \), for \(i = 1, \ldots, n \)

\[M \text{ accepts } w \text{ if } \]
- sequence of states \(r_0, r_1, \ldots, r_n \) in \(Q \) exists . . .
 with \(r_n \in F \)
DFA Computation Rules

Informally

Given
- A DFA (~ a “Program”)
- and **Input** = string of chars, e.g. “1101”

To run the automata / “program”:
- **Start** in “start state”

• **Repeat:**
 - Read 1 char from input;
 - Change state according to the transition table

• Result of computation =
 - Accept if last state is **Accept state**
 - Reject otherwise

Formally (i.e., mathematically)

- \(M = (Q, \Sigma, \delta, q_0, F) \)
- \(w = w_1w_2 \cdots w_n \)

A run is represented by variables \(r_0, \ldots, r_n \), the sequence of states in the computation, where:

- \(r_0 = q_0 \)

- \(r_i = \delta(r_{i-1}, w_i), \text{ for } i = 1, \ldots, n \)

- \(M \) accepts \(w \) if the sequence of states \(r_0, r_1, \ldots, r_n \) in \(Q \) exists ... with \(r_n \in F \)
An Extended Transition Function

Define **extended transition function:**

- **Domain:**
 - Input state \(q \in Q \) (doesn’t have to be start state)
 - Input string \(w = w_1w_2 \cdots w_n \) where \(w_i \in \Sigma \)
- **Range:**
 - Output state (doesn’t have to be an accept state)

(Defined recursively)

- **Base case:** ...

\[\delta : Q \times \Sigma \longrightarrow Q \] is the **transition function**

\[\hat{\delta} : Q \times \Sigma^* \longrightarrow Q \]

\(\Sigma^* = \text{set of all possible strings!} \)

\(* = \text{“0 or more”} \)

set of pairs
Interlude: Recursive Definitions

```javascript
function factorial(n)
{
    if (n == 0)
        return 1;
    else
        return n * factorial(n - 1);
}
```

- **Why is this allowed?**
 - It’s a “feature” (i.e., an axiom!) of the programming language

- **Why does this “work”?** (Why doesn’t it loop forever?)
 - Because the recursive call always has a “smaller” argument ...
 - ... and so eventually reaches the base case and stops
Recursive Definitions

A **Natural Number** is either:
- Zero, or
- the **Successor** of a **Natural Number**

Examples
- Zero
- **Successor** of Zero (= “one”)
- **Successor** of **Successor** of Zero (= “two”)
- **Successor** of **Successor** of **Successor** of Zero (= “three”) ...
Recursive Data Definitions

Recursive definitions have:
- base case and
- recursive case
 (with a “smaller” object)

```cpp
/* Linked list Node*/
class Node {
  int data;
  Node next;
}
```

This is a recursive definition: Node is used before it is fully defined (but must be “smaller”)
Strings Are Defined Recursively

A String is either:
- the **empty string** (ε), or
- xa (non-empty string) where
 - x is a **string**
 - a is a “char” in Σ

Base case

Recursive case

Remember: all strings are formed with “chars” from some **alphabet** set Σ

$\Sigma^* = \text{set of all possible strings!}$
Recursive Data ⇒ Recursive Functions

A Natural Number is either:
• Zero, or
• the Successor of a Natural Number

```java
function factorial( n )
{
    if ( n == 0 )
        return 1;
    else
        return n * factorial( n - 1 );
}
```

- **Base case** if \(n = 0 \)
- **Recursive case** otherwise

Recursive functions are recursive because its input data is recursively defined!
An Extended Transition Function

Define **extended transition function:**

- **Domain:**
 - Input state: \(q \in Q \) (doesn’t have to be start state)
 - Input string: \(w = w_1 w_2 \cdots w_n \) where \(w_i \in \Sigma \)
- **Range:**
 - Output state (doesn’t have to be an accept state)

(Defined recursively)

- Base case: \(\hat{\delta}(q, \varepsilon) = \)
An Extended Transition Function

Define **extended transition function:**

- **Domain:**
 - Input state $q \in Q$ (doesn’t have to be start state)
 - Input string $w = w_1w_2 \cdots w_n$ where $w_i \in \Sigma$
- **Range:**
 - Output state (doesn’t have to be an accept state)

(Defined recursively)

- **Base case**
 $$\hat{\delta}(q, \varepsilon) = q$$

- **Recursive Case**
 $$\hat{\delta}(q, w'w_n) = \delta(\hat{\delta}(q, w'), w_n)$$
 where $w' = w_1 \cdots w_{n-1}$

A String is either:
- the **empty string** (ε), or
- xa (non-empty string) where
 - x is a **string**
 - a is a “char” in Σ
An Extended Transition Function

Define **extended transition function**:

- **Domain:**
 - **Input state** \(q \in Q \) (doesn’t have to be start state)
 - **Input string** \(w = w_1w_2 \cdots w_n \) where \(w_i \in \Sigma \)
- **Range:**
 - **Output state** (doesn’t have to be an accept state)

(Defined recursively)

- **Base case** \(\hat{\delta}(q, \varepsilon) = q \)
- **Recursive Case**
 \[
 \hat{\delta}(q, w_1 \cdots w_n) = \delta(\hat{\delta}(q, w_1 \cdots w_{n-1}), w_n)
 \]

\(\hat{\delta} : Q \times \Sigma^* \to Q \)

\(\delta : Q \times \Sigma \to Q \) is the transition function
DFA Computation Rules

Informally

Given
- A DFA (~ a “Program”)
- and **Input** = string of chars, e.g. “1101”

To run the automata / “program”:
- **Start** in “start state”

• **Repeat:**
 - Read 1 char from input;
 - Change state according to the transition table

• **Result of computation =**
 - Accept if last state is **Accept state**
 - Reject otherwise

Formally (i.e., mathematically)

- \(M = (Q, \Sigma, \delta, q_0, F) \)
- \(w = w_1 w_2 \cdots w_n \)

A run is represented by variables \(r_0, \ldots, r_n \), the sequence of states in the computation, where:

- \(r_0 = q_0 \)

- \(r_i = \delta(r_{i-1}, w_i), \text{ for } i = 1, \ldots, n \)

- \(M \) accepts \(w \) if sequence of states \(r_0, r_1, \ldots, r_n \) in \(Q \) exists such that \(r_n \in F \).
DFA Computation Rules

<table>
<thead>
<tr>
<th>Informally</th>
<th>Formally (i.e., mathematically)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given</td>
<td>$M = (Q, \Sigma, \delta, q_0, F)$</td>
</tr>
<tr>
<td>A DFA (~ a “Program”)</td>
<td>$w = w_1w_2 \cdots w_n$</td>
</tr>
<tr>
<td>and Input = string of chars, e.g. “1101”</td>
<td>A run is represented by variables r_0, \ldots, r_n, the sequence of states in the computation, where:</td>
</tr>
<tr>
<td>To run the automata / “program”:</td>
<td>$r_0 = q_0$</td>
</tr>
<tr>
<td>Start in “start state”</td>
<td>$r_i = \delta(r_{i-1}, w_i)$, for $i = 1, \ldots, n$</td>
</tr>
<tr>
<td>Repeat:</td>
<td>M accepts w if $\hat{\delta}(q_0, w) \in F$</td>
</tr>
<tr>
<td>• Read 1 char from input;</td>
<td>sequence of states r_0, r_1, \ldots, r_n in Q exists with $r_n \in F$</td>
</tr>
<tr>
<td>• Change state according to the transition table</td>
<td>100</td>
</tr>
<tr>
<td>Result of computation =</td>
<td></td>
</tr>
<tr>
<td>• Accept if last state is Accept state</td>
<td></td>
</tr>
<tr>
<td>• Reject otherwise</td>
<td></td>
</tr>
</tbody>
</table>
Definition of Accepting Computations

An accepting computation, for DFA $M = (Q, \Sigma, \delta, q_0, F)$ and string w:

1. starts in the start state q_0

2. goes through a valid sequence of states according to δ

3. ends in an accept state

M accepts w if $\hat{\delta}(q_0, w) \in F$

All 3 must be true for a computation to be an accepting computation!
Accepting Computation or Not?

DFA:

\[\hat{\delta}(q_1, 1101) \]
- Yes

\[\hat{\delta}(q_1, 110) \]
- No (doesn’t end in accept state)

\[\hat{\delta}(q_2, 101) \]
- No (doesn’t start in start state)
Alphabets, Strings, Languages

• **An alphabet** is a **non-empty finite set** of symbols
 \[\Sigma_1 = \{0,1\} \]
 \[\Sigma_2 = \{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z\} \]

• A **string** is a **finite sequence** of symbols from an alphabet

 01001 abracadabra \(\varepsilon \)

• A **language** is a **set** of strings

 \[A = \{ \text{good}, \text{bad}\} \]
 \[\emptyset \{ \} \]

 Empty set is a language

 Languages can be infinite

 “the set of all ...”

 “such that ...”

Alphabet specifies “all possible strings”

(impossible to have strings with non-alphabet chars)
Computation and Languages

• The **language** of a machine is the **set** of all strings that it **accepts**

• E.g., A DFA M **accepts** w if $\delta(q_0, w) \in F$

• Language of $M = L(M) = \{w | M$ accepts $w\}$
Machine and Language Terminology

DFA \(M \) accepts \(w \) \[\text{string}\]

\(M \) recognizes language \(A \) \[\text{Set of strings}\]

If \(A = \{ w \mid M \text{ accepts } w \} \)
Computation and Classes of Languages

• The **language** of a machine = **set of all strings** that it accepts

 • E.g., every DFA is associated with a language

• A **computation model** = **set of machines** it defines

 • E.g., all possible DFAs are a computation model

• Thus: a **computation model** = **set of languages**
Regular Languages: Definition

If a **deterministic finite automata (DFA)** recognizes a language, then that language is called a **regular language**.
A Language, Regular or Not?

• If given: a DFA M
 • We know: $L(M)$, the language recognized by M, is a regular language

 If a DFA recognizes a language, then that language is called a regular language.
 (modus ponens)

• If given: a Language A
 • Is A a regular language?
 • Not necessarily!
 • How do we determine, i.e., prove, that A is a regular language?
An Inference Rule: Modus Ponens

Premises
- If P then Q
- P is true

Conclusion
- Q must also be true

Example Premises
- If there is an DFA recognizing language A, then A is a regular language
- There is an DFA M where $L(M) = A$

Conclusion
- A is a regular language!
A Language, Regular or Not?

- If given: a DFA M
 - We know: $L(M)$, the language recognized by M, is a regular language

 If a DFA recognizes a language, then that language is called a regular language.

- If given: a Language A
 - Is A a regular language?
 - Not necessarily!
 - How do we determine, i.e., prove, that A is a regular language?

 Prove there is a DFA recognizing A!
Language: strs with odd # 1s

<table>
<thead>
<tr>
<th>Example</th>
<th>In the language?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>0</td>
<td>No</td>
</tr>
<tr>
<td>01</td>
<td>Yes</td>
</tr>
<tr>
<td>11</td>
<td>No</td>
</tr>
<tr>
<td>1101</td>
<td>Yes</td>
</tr>
<tr>
<td>ε</td>
<td>no</td>
</tr>
</tbody>
</table>

$\Sigma = \{0,1\}$

If a DFA recognizes a language, then that language is called a regular language.

HINT: always work out concrete examples to understand a language

How to prove the language is regular?

Prove there’s a DFA recognizing it!
Designing Finite Automata: Tips

• Input is read only once, one char at a time

• Must decide accept/reject after that

• States = the machine’s **memory**!
 • # states must be decided in advance
 • Think about what information must be remembered.

• Every state/symbol pair must have a transition (for DFAs)

• Come up with examples!
Design a DFA: accept strs with odd # 1s

• **States:**
 - 2 states:
 - seen even 1s so far
 - seen odds 1s so far

• **Alphabet:** 0 and 1

• **Transitions:**

• **Start / Accept states:**
“Prove” that DFA recognizes a language

<table>
<thead>
<tr>
<th>Example</th>
<th>In the language?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>0</td>
<td>No</td>
</tr>
<tr>
<td>01</td>
<td>Yes</td>
</tr>
<tr>
<td>11</td>
<td>No</td>
</tr>
<tr>
<td>1101</td>
<td>Yes</td>
</tr>
<tr>
<td>ε</td>
<td>no</td>
</tr>
</tbody>
</table>

\[\Sigma = \{0, 1\} \]
Submit 2/5 in-class work to gradescope