Non-CFLs

Wednesday, March 27, 2024
Announcements

- HW 6
 - Due Monday 4/1 12pm noon
Flashback: Pumping Lemma for Regular Langs

• **Pumping Lemma** describes how strings repeat

• **Regular language** strings repeat using **Kleene star** operation
 • Key: 3 substrings $x y z$ independent!

• A non-regular language: $\{0^n1^n \mid n \geq 0\}$
 - Kleene star can’t express this pattern: 2nd part depends on (length of) 1st part

• **Q:** How do CFLs repeat?
Repetition and Dependency in CFLs

Parts before/after repetition point linked (not independent)

\[A \rightarrow 0A1 \]
\[A \rightarrow B \]
\[B \rightarrow \# \]

\(\{0^n\#1^n \mid n \geq 0\} \)

Repetition

0 0 0 0 1 1 1 1

\[A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 000A111 \Rightarrow 000B111 \Rightarrow 000\#111 \]
How Do Strings in CFLs Repeat?

• Strings in regular languages repeat states

• Strings in CFLs repeat subtrees in the parse tree

NFA can take loop transition any number of times, to process repeated y in input

One repeated subtree means that it can be repeated any number of times

5 substrings

Linked parts

Linked parts repeat together
Pumping Lemma for CFLS

Pumping lemma for context-free languages If A is a context-free language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into five pieces $s = uvxyz$ satisfying the conditions:

1. for each $i \geq 0$, $uv^ixyz \in A$,
2. $|vy| > 0$, and
3. $|vxy| \leq p$.

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into three pieces, $s = xyz$ satisfying the conditions:

1. for each $i \geq 0$, $xy^iz \in A$,
2. $|y| > 0$, and
3. $|xy| \leq p$.

Two pumpable parts. But they must be **pumped together**!
A Non CFL example

\[\text{language } B = \{ a^n b^n c^n \mid n \geq 0 \} \text{ is not context free} \]

Intuition

• Strings in CFLs can have **two parts** that are “pumped” together
• Language \(B \) requires **three parts** to be “pumped” together
• So it’s not a CFL!

Proof?
Want to prove: \(a^n b^n c^n\) is not a CFL

Proof (by contradiction):

- **Assume:** \(a^n b^n c^n\) is a CFL
 - So it must satisfy the pumping lemma for CFLs
 - I.e., all strings \(\geq\) length \(p\) are pumppable
- **Counterexample =** \(a^p b^p c^p\)

Now we must find a contradiction ...

Contradiction if:
- A string in the language ✔️
- \(\geq\) length \(p\) ✔️
- Is not splittable into \(uvxyz\) where \(v\) and \(y\) are pumpable

Reminder: CFL Pumping lemma says:
all strings \(a^n b^n c^n \geq p\) are splittable into \(uvxyz\) where \(v\) and \(y\) are pumpable
Want to prove: $a^n b^n c^n$ is not a CFL

Possible Splits

Proof (by contradiction):

• **Assume:** $a^n b^n c^n$ is a CFL
 • So it must satisfy the pumping lemma for CFLs
 • i.e., all strings \geq length p are pumpable

• **Counterexample:**

• **Possible Splits** (using condition # 3: $|vxy| \leq p$)
 • vxy is all as
 • vxy is all bs
 • vxy is all cs
 • vxy has as and bs
 • vxy has bs and cs
 • $(vxy$ cannot have as, bs, and cs)

So $a^n b^n c^n$ is not a CFL
(justification: contrapositive of CFL pumping lemma)
Another Non-CFL \[D = \{ww | w \in \{0,1\}^*\} \]

Be careful when choosing counterexample \(s \): \(0^p10^p1 \)
This \(s \) can be pumped according to CFL pumping lemma:

\[
\begin{array}{c}
\text{000…000} & \text{0} & \text{1} & \text{000…0001} \\
\text{u} & \text{v} & \text{x} & \text{y} & \text{z}
\end{array}
\]

Pumping \(v \) and \(y \) (together) produces string still in \(D \)!

- CFL Pumping Lemma conditions:
 - \(1 \). for each \(i \geq 0 \), \(uv^i xy^i z \in A \),
 - \(2 \). \(|vy| > 0 \), and
 - \(3 \). \(|vxy| \leq p \).

So this attempt to prove that the language is not a CFL failed. (It doesn’t prove that the language is a CFL!)
Another Non-CFL \(D = \{ww \mid w \in \{0,1\}^*\} \)

• Need another counterexample string \(s \):

 If \(vyx \) is contained in first or second half, then any pumping will break the match.

\[
\begin{array}{c}
0^p 1^p 0^p 1^p \\
\end{array}
\]

So \(vyx \) must straddle the middle
But any pumping still breaks the match because order is wrong.

• CFL Pumping Lemma conditions:
 1. for each \(i \geq 0 \), \(uv^i xy^i z \in A \),
 2. \(|vy| > 0 \), and
 3. \(|vxy| \leq p \).

Now we have proven that this language is not a CFL!
A Practical Non-CFL

• **XML**
 - \(\text{ELEMENT} \to <\text{TAG}>\text{CONTENT}</\text{TAG}> \)
 - Where \(\text{TAG} \) is any string

• **XML also looks like this non-CFL:** \[D = \{ww | w \in \{0,1\}^*\} \]

• This means XML is **not context-free**!
 - **Note:** HTML is context-free because ...
 - ... there are only a finite number of tags,
 - so they can be embedded into a finite number of rules.

In practice:
• XML is parsed as a CFL, with a CFG
• Then matching tags checked in a 2\(^{nd}\) pass with a more powerful machine...
Next: A More Powerful Machine ...

\[M_1 \text{ accepts its input if it is in language: } B = \{ w \# w \mid w \in \{0,1\}^* \} \]

\[M_1 = \text{“On input string } w: \]
1. Zig-zag across the tape to corresponding positions on either side of the \# symbol to check whether these positions contain the same symbol. If they do not, or if no \# is found, reject. Cross off symbols as they are checked to keep track of which symbols correspond.

Infinite memory (initial contents are the input string)

Can move to, and read/write from arbitrary memory locations!