CS450

sectlon 2

High Level Languages

UMass Boston Computer Science

Monday, September 18, 2023

AT ONCE, JUST LIKE THEY SAID, I FELT A
GREAT ENLIGHTENMENT. T SAW THE NAKED
STRUCTURE OF LISP CoDE: UNFOLD BEFORE ME-

TRULY, THIS WAS
THE LANGURGE
FROM. WHICH THE
(GODS WROUGHT™
THE UNIVERSE.

IT5 NOT?

R

e /A‘\ﬂ
THE PATTERNS AND HITJIPWERNS DANCED. = —— T MEAN, OSTENSIRLY, YES.

SUDDENLY I WAS BATHED || [{SYNTAY FADED, AND I SWAM IN THE PURITY OF] HONESTLY, WE HACKED MosT
IN A SUFFUSION OF BLUE. || HQUANTIFIED CONCEPTION. OF IDEAS MANJFEST.

OF IT TOGETHER WITH PERL.

Logistios
« HW 0 Iin

* HW 1 out
e due: Sun 9/24 11:59 pm EST

Do not send hw questions by email! (I wont see it)
« Post to piazza (use private or anonymous if unsure) (I may change)
« Makes it easier for me to check one place

* “Why is the autograder erroring?”
« Ask for help before you get to this point! E—
» Must test code independently of SradeSCOPe [we avspom [suermvmn e v

« Don’t submit until HW is complete

\) THE PATTERNS AND METAPATTERNS DANCED.
SUDDENLY, I 'WAS BATHED f| | SyntAx FADED, AND I SWAM INTHE PURITY OF

« Course web site:
« Added Design Recipe section

IN A SUFFUSION BLUE. || |QUAVTIFIED CONCEPTION. OF IDEAS MANIFEST. |

« Lecture code (see lecture03.rkt) may occasionally be posted

TRULY, THIS WS [

THE LANGUAGE [BA
FROV WHICH THE. |

(GODS WROUGHT
THE UNIVERSE.

IS NoT?

2

L~

P
|trr
Nzt
R
T MEAN, OSTENSIBLY, YES.

HONESTLY, WE HACKED MosT
OF IT TOGETHER WITH PERL.

Last

-~ Design Recipe Intro: Data Design

Create Data Definitions
* Describes the types of data that the program operates on

* Has 3 parts:
1. A defined Name
2. Description/of all possible values of the data
3. An Interpfetation explains/the real world concepts the data represents

;5 A WorlJdState is a Non-negative Integer Aworld (=] 6 (&3

;3 Interp: Represents the y Coordinate of the center of a
i ball in a "big-bang animation.

Design Recipe, Step 1: Data Design

Create Data Definitions
* Describes the types of data that the program operates on

* Has 3-&4 parts:
1. A defined Name
2. Description of all possible values of the data
3. An Interpretation explains the real world concepts the data represents

=) 4. A predicate returns true if a given value is in the data definition

;3 A WorldState is a Non-negative Integer

;3 Interp: Represents the y Coordinate of the center of a

o ball in a "big-bang animation.

(define (WorldState? x)
(exact-nonnegative-integer? x))

neertude: Ntdp universe coordinates

(place-1image image x y scene) — image? procedure

(0,0)

y coordinate

image : image?

x coordinate =) x i real?

y : real?

scene . image?

Places image onto scene with its|center at the coordinates (x,y)|and crops the resulting
image so that it has the same size as scene. The coordinates are relative to the top-left of

scene.

(circle radius mode color) — image?
radius : (and/c real? (not/c negative?))
mode : mode?

color : image-color?

(square side-len mode color) — image?
side-len : (and/c real? (not/c negative?))
mode : mode?

color : image-color?

(place-image

(circle 10 "solid" "red") ,,,
0 0 H EH B
(square 40 "solid" "yellow"))

20 3 . 4,

Design Recipe

1. Data Design
2. Function Design

Last : : :
~Designing Functions
1 Name
2. Signature

3. Description
4. Examples
5. Code

6. Tests

Designing Functions
1 Name

2. Signature - types of the function input(s) and output
« Use Data Definitions (or create new data defs, if needed)

Designing Functions
1 Name

2. Signature - types of the function input(s) and output
« Use Data Definitions (or create new data defs, if needed)

3. Description - explain (in English prose) how the function works

Designing Functions

;5 render: WorldState -> Image
;5 Draws a WorldState as a 2htdp/image Image

R 2

4. Examples - show (using rackunit) how the function works

o : ' PR (check-equal?
(DUt Wlth fUﬂCthﬂ deﬂﬂltlon) (define (render w) (render INITIAL-WORLDSTATE)

(place-image (place-image

BALL-IMG <j::] BALL-IMG

FAQ: What about “error-checking”? | ‘i scene)) BALL-X INITIAL-WORLDSTATE

EMPTY-SCENE))

Examples come before (and help to write) Code!

This declares that the function cannot
be given a non-WorldState argument!

Designing Functions

;5 render: WorldState -> Image
;5 Draws a WorldState as a 2htdp/image Image

2. Signature - types of the function input(s) and output
 Use Data Definitions (or create new data defs, if needed)

The Signature is error-checking

... but we can make it more robust

> (render "bad arg") It's the user’s fault if they call the function incorrectly

© O place-image:lsexpects a real number as third arqument, given "bad arg"

BUT: This is a bad error message because ...

... it reveals internal details that the
user doesn’t (and shouldn't have to)

FAQ: What about “error-checking”? | know about

NOTE:
Different languages have different “signature” or

M O re RO b u St Slgn atu rE feréc;rrlrriréf;ing” mechanisms

;5 render: WorldState -> I - Types

;3 Draws a WorldState as a|- Asserts

2. Signature - types of the function ii. TY-Catch-Throw

 Use Data Definitions (or create new data de But the Design Recipe is
 Use define/contract and predicates! language-agnostic

It can be used no matter what language you're programming in

AR

FrEel EolilEE \Qeﬁfine/contract (render w)
> WorldState? image?)

> (render "bad arg")

© € render: contract violation 1 .
expected: WorldState? Good error message: (ggifi;gage
given: "bad arg” precise, and no BALL-X W

in: the 1st argument of : .
Internal details! _
(-> WorldState? image?, EMPTY-SCENE))

contract from: (function render)
blaming: C:\Users\stchang\Documents\teaching\CS450\Fall23\lectureo4.rkt
(assuming the contract is correct)
at: C:\Users\stchang\Documents\teaching\CS450\Fall23\lectureo4.rkt:37:18 12

Designing Functions

6. Tests - check (using rackunit) that the function works
* put in separate test-suite (file)

Homework Testing

All HW submissions must include
tests.rkt, which:

* requires the hw code file, e.g,,
hwo . rkt

e defines a rackunit test-suite
called TESTS

e provide TESTS

* includes sufficient test-cases
(from the Design Recipe) for
every hw function definition

e runs without error!

hwO-start / tests.rkt

1
2
3
4

6
-
8

10

11

Al
20

21
22
23
24
25
26
27
28
30
31

#lang racket

(require rackunit
"hw@.rkt")

Used by

(provide TESTS)
autograder

(define TESTS
(test-suite

"hw@ test suite”

;3 (test-case
"Exercise 11: distance function”
(check-equal? (exercisell 5 12) 13))
(See rackunit docs for
;5 (test-case | more testing functions)

"Exercise 12: cvolume”

(check-equal? (cvolume 10) 1000))

e.g., check-exn for fail test cases!

(module+ main Used for your

(require rackunit/text-ui) own testing
(run-tests TESTS 'verbose))

In-class Office Hours

« Get HWO working

e Add test-suite to HWO

« 2 per function
| might run against other submissions and award bonus pts

e Start HW1

Check-In Quiz 9/18

on gradescope

(due 1 minute before midnight)

23

