UMass Boston Computer Science
CS450 High Level Languages (section 2)
Compound Data Definitions

Monday, September 25, 2023
Logistics

• HW 1 in
 • due: Sun 9/24 11:59 pm EST
 • Files should not start `big-bang` loop automatically

• HW 2 out
 • due: Sun 10/1 11:59 pm EST

• **STYLE** notes
 • Use comments to explain code if needed, BUT ...
 • ... the best code needs no comments
 • Redundant comments makes code harder to read
 • More comments ≠ “better”
 • Also, no commented-out code
Kinds of Data Definitions

- Basic data
 - E.g., numbers, strings, etc

- Intervals
 - Data that is from a range of values, e.g., [0, 100]

- Enumerations
 - Data that is one of a list of possible values, e.g., “green”, “red”, “yellow”

- Itemizations
 - Data value that can be from a list of possible other data definitions
 - E.g., either a string or number (Generalizes enumerations)
Itemization Caveats

;; A MaybeInt is one of:
(define NaN "Not a Number")
;; or, Integer
;; Interp: represents a number with a possible error case

NaN is a property of the *global object*. In other words, it is a variable in global scope.

In modern browsers, NaN is a non-configurable, non-writable property. Even when this is not the case, avoid overriding it.

There are five different types of operations that return NaN:

- Failed number conversion (e.g. explicit ones like `parseInt("blabra")`, `Number(undefi ned)`, or implicit ones like `Math.abs(undefi ned)`)
- Math operation where the result is not a real number (e.g. `Math.sqrt(-1)`)
- Indeterminate form (e.g. `0 * Infinity`, `1 ** Infinity`, `Infinity / Infinity`, `Infinity - Infinity`)
- A method or expression whose operand is or gets coerced to NaN (e.g. `7 ** NaN`, `7 / "blabra"`) — this means NaN is contagious
- Other cases where an invalid value is to be represented as a number (e.g. an invalid `Date` new `Date("blabra").getTime()`, "").

NaN and its behaviors are not invented by JavaScript. Its semantics in floating point arithmetic (including that NaN !== NaN) are specified by [IEEE 754](https://en.wikipedia.org/wiki/IEEE_754). NaN’s behaviors include:

- If NaN is involved in a mathematical operation (but not bitwise operations), the result is NaN. It is also NaN. (See [counter-example](https://en.wikipedia.org/wiki/Counter_example) below.)
- When NaN is one of the operands of any relational comparison (`,`, `>`, `>=`, `<`, `<=`), the result is always `false`.
- NaN compares unequal (via `==`, `!=`, `===`, and `!==`) to any other value — including to and NaN value.
Itemization Caveats

;; A MaybeInt is one of:
(define NaN "Not a Number")
;; or, Integer
;; Interp: represents a number with a possible error case
(define (NaN? x)
 (string=? x "Not a Number"))

;; WRONG predicate for MaybeInt
#;(define (MaybeInt? x)
 (or (NaN? x)
 (integer? x)))

;; WRONG TEMPLATE for MaybeInt
#;(define (maybeInt-fn x)
 (cond
 [(NaN? x)]
 [(integer? x)]))

;; OK predicate for MaybeInt
(define (MaybeInt? x)
 (or (and (string? x) (NaN? x))
 (integer? x)))

Inside the function, we
only need to distinguish
between valid input cases

;; OK TEMPLATE for MaybeInt
(define (maybeInt-fn x)
 (cond
 [(string? x)<.....]
 [(integer? x)]})
Falling Ball Example

;; A WorldState is a Non-negative Integer
;; Interp: Represents the y Coordinate of the center of a
;; ball in a `big-bang` animation.

What if the ball can also move side-to-side?

WorldState would need two pieces of data:
the x and y coordinates

We need a way to create compound data
i.e., a new data definition that combines
values from other data defs

;; A WorldState is an Integer ...
;; ... and another Integer???
Kinds of Data Definitions

• Basic data
 • E.g., numbers, strings, etc

• Intervals
 • Data that is from a range of values, e.g., [0, 100]

• Enumerations
 • Data that is one of a list of possible values, e.g., “green”, “red”, “yellow”

• Itemizations
 • Data value that can be from a list of possible other data definitions
 • E.g., either a string or number (Generalizes enumerations)

• Compound Data
 • Data that is a combination of values from other data definitions
Falling Ball Example

;; A WorldState is a
(struct world [x y])
;; where
;; x: Integer - represents x coordinate of ball in animation
;; y: Integer - represents y coordinate of ball

(a struct definition creates a
new kind of compound data)

(Instances of the struct are
values of that kind of data)

(define INITIAL-STATE (world 0 0))
Parts of a `struct` definition

(Implicitly) defines:

- A **constructor** function → `world`
 - Creates instances of the struct
- **Accessor** functions → `world-x, world-y`
 - Get an instance’s field value
- A **predicate** → `world?`
 - Returns true for struct instances
Function Design Recipe

1. **Name**

2. **Signature** – types of the function input(s) and output

3. **Description** – explain (in English prose) the function behavior

4. **Examples** – show (using rackunit) the function behavior

5. **Code** – implement the rest of the function (arithmetic)

6. **Tests** – check (using rackunit) the function behavior
Function Design Recipe

1. Name

2. **Signature** – types of the function input(s) and output

3. **Description** – explain (in English prose) the function behavior

4. **Examples** – show (using rackunit) the function behavior

5. **Template** – sketch out the function structure (using input’s Data Definition)

6. **Code** – implement the rest of the function (arithmetic)

7. **Tests** – check (using rackunit) the function behavior
Template for Compound data

- A function that consumes compound data must
 - **extract** the individual pieces, using accessors
 - **combine** them, with arithmetic

```scheme
;; A WorldState is a
(struct world [x y])
;; where
;; x: Integer - represents x coordinate of ball in animation
;; y: Integer - represents y coordinate of ball

;; TEMPLATE for world-fn: WorldState -> ???
(define (world-fn w)
  .... (world-x w) ....
  .... (world-y w) ....)
```
Code demo

- Moving ball
 - Both x and y coordinate can change
 - With mouse movement
 - (and keyboard directions?)
Check-In Quiz 9/25
on gradescope

(due 1 minute before midnight)