UMass Boston Computer Science

CS450 High Level Languages (section2)

Recursive Data Definitions

Monday, October 2, 2023

WHAT ARE YOU WORKING ON?

TRYING TO FiX THE PROBLEMS T
CREATED WHEN T TRIED T FiX
THE PROBLEMS I CREATED \JHEN
LTRIEDTO Fix THE PROBLEMS

% T CREATED LJHEN...

/

L

Logistios
« HW 2 in
s—ce-Sun-104+-1H59-prm-EST

 HW 3 delayed
e out: tomorrow
+ due: Sun 10/15 11:59 pm EST (ihat's wrong with this recursion?)
(2 weeks) LHAT ARE YOO LIORKING ON?

TRYING TO FiX THE PROBLEMS T
CREATED WHEN I TRIED TO FixX

THE PROBLEMS I CREATED \JHEN
LTRIEDTO FiX THE PROBLEMS

* No class: next Monday 10/9 / LCREAEDLNEN..
: ")
* Indigenous Peoples Day No base case!

Last

-~ Bou ncing Ball

Last

%I\/\ulti—ball Animation

Design a big-bang animation that:
« Start: a single ball, moving with random x and y velocity

e If a ball “hits” an edge:
« for vertical edge, flip x velocity direction
 for horizontal edge, flip y velocity direction

Randomness

(random k [rand-gen
k : (integer-in 1 4294967087)

rand-gen : pseudo-random-generator?

= (current-pseudo-random-generator) «——

[bracketed args] = optional

— exact-nonnegative-integer?

When called with an integer argument k, returns a random exact

integer in the range 0 to k-1.

Optional arg Default value

(random min max [rand-gen]) — exact-integer? When called with two integer arguments min and max, returns a
random exact integer in the range min to max-1.

min . exact-integer?

max : (integer-in (+ 1 min) (+ 4294967087 min))

rand-gen . pseudo-random-generator?

= (current-pseudo-random-generator)
A pseudorandom number generator (PRNG), also known as a deterministic random bit

What is “random”???

generator (DRBG),[” is an algorithm for generating a sequence of numbers whose properties

Not secure!
e.g., for generating
passwords

approximate the properties of sequences of random numbers. The PRNG-generated sequence is

> not truly random, because it is completely determined by an initial value, called the PRNG's seed

VS

A

cryptographically secure

pseudorandom number generator (CSPRNG) or

cryptographic pseudorandom number generator (CPRNG) is a pseudorandom

number generator (PRNG) with properties that make it suitable for use in cryptography.

Random Functions: Same Recipe (almost)!

;5 A Velocity is a non-negative integer
;5 Interp: reresents pixels/tick change in a ball coordinate
(define MAX-VELOCITY 10)

;3 random-velocity : -> Velocity
;5 returns a random velocity between © and MAX-VELOCITY
(define (random-velocity)

(random MAX-VELOCITY)) Random functions have
no examples

Functions can
have zero args

(check-true (< (random-velocity) MAX-VELOCITY))
(check-true (>= (random-velocity) 0))
(check-true (integer? (random-velocity)))

(check-pred (A (v) (and (integer? v) Can still test! ;3 random-x : -> ?P?
(< v MAX-VELOCITY) |Justless precise ;; random-y @ -> ???
(>= v 9))) ;; random-ball : -> ???

(random-velocity))

Last
[ine

Multi-ball Animation

Design a big-bang animation that:

Start: a single ball, moving with random x and y velocity

On aclick:add a ball at random location with random velocity

If a ball “hits” an edge:
« for vertical edge, flip x velocity direction
 for horizontal edge, flip y velocity direction

é‘i‘j Arbitrary Size Data - Lists

In C

struct node
{int data;

struct node *next; } *head:;

This is a self-referential
(i.e., recursive!) definition!

Racket List Data Definition Example

;5 A ListofInts is onefjof
;5 - empty Empty (base) case
;5 - (cons Int ListofInts) Non-empty (recursive) case

cons = “node”

TEMPLATE??

Recursive!
(using a definition to define itself)

(how can we use a list of ints
to define a list of ints?!?)

Recursion is only valid if there is both
- A base case
- A recursive case

Racket List Data Definition Example

;3 A ListofInts is one of

;5 - empty Empty (base) case
;5 - (cons Int ListofInts) Non-empty (recursive) case
This is both itemization and The shape of the function
compound data, so template : matches the shape of the
has both cond and getters~_> TEMPLATE for list-fn data definition!
TEMPLATE ? > yo~list-fn : ListofInts -> ???
\ define (list-fn 1lst) Wait, where is the
(cond recursion???

Empty (base) case —> [(empty?

| N
Non-empty (recursive) case —> [(cons? 1st) (first 1st)
ce.. (rest 1st)]))

10

Racket List Data Definition Example

;3 A ListofInts is onefof

55 - empty
;5 - (cons Int ListofInts

TEMPLATE??

The shape of the function

... Is also recursive!

))

))

(define (list-fn 1st)

: list-fn

; TEMPLATE for Jlist-f

(cond
[(empty? 1st)
[(cons? 1st)

ce.. (list-

matches the shape of the
data definition!

-> 2?7

So recursion in the data definition
.. means recursion in the
(template) function!

first 1st)

fn (rest 1st))]})

Racket Recursive List Fn Example: sum

Given a singly linked list. The task is to find the sum of

nodes of the given linked list. \

Description!

Data MNext

Examples:

geeksforgeeks.com

s e ;3 TEMPLATE for list-fn

Sum of nodes:

A ;3 list-fn : ListofInts -> ???
st 17 ess (define (list-fn 1st)
Output: 36 \ (Cond

Examples!

[(empty? 1st)]
[(cons? 1st) (first 1st)
ee.. (list-fn (rest 1st))]))

Racket Recursive List Fn Example: sum

Design Recipe:
Now fill in

template!
(with arithmetic)

;3 Returns sum of list of ints
;3 sum-1st: ListofInts -> Int
(define (sum-1st 1st)

(cond
[(empty? 1st)]
[else (first 1st)

.... (sum-1st (rest 1lst)) ...

1))

Racket Recursive List Fn Example: sum

;3 Returns sum of list of ints
;3 sum-1st: ListofInts -> Int
(define (sum-1st 1st)
(cond
[(empty? 1lst) 0]
[else (first 1st)
.... (sum-1st (rest 1st))]))

Racket Recursive List Fn Example: sum

))

))

: Returns sum of list of ints

sum-1st: ListofInts -> Int

(define (sum-1st 1st)

(cond
[(empty? 1st) O]
[else (+ (first 1st)
(sum-1st (rest 1st)))]))

15

Racket Recursive List Fn Example: rev

;3 TEMPLATE for list-fn
;3 list-fn : ListofInts -> ???
(define (list-fn 1st)
(cond
[(empty? 1st)]
[else (first 1st)
ee.. (list-fn (rest 1st))]))

Racket Recursive List Fn Example: rev

Design Recipe:
Now fill in

template!
(with arithmetic)

;3 reverses a list of ints
;3 rev: ListofInts -> ListofInts
(define (rev 1lst)

(cond
[(empty? 1st)]
[else (first 1st)

.... (rev (rest 1st))]))

Racket Recursive List Fn Example: rev

;5 reverses a list of ints
;; rev: ListofInts -> ListofInts
(define (rev 1lst)
(cond
[(empty? 1st) empty]
[else (first 1st)
.... (rev (rest 1st))]))

18

Racket Recursive List Fn Example: rev

(rev_(rest 1st)) = (list|5 4 3 2

(check-equal? (rev (list 1.2 3 4 5)) (list|5 4 3 2

)

ffappendJ)

1))
(first 1st)

(define (rev 1lst)
(cond

;3 reverses a list of ints
;3 rev: ListofInts -> ListofInts

[(empty? 1st) empty]
[else (append (rev (rest 1lst))
(list (first 1st)))]))

19

Recursive rev tn, with “temp” vars (preview)

;3 TEMPLATE for list-fn
;3 list-fn : ListofInts -> ???
(define (list-fn 1st)
(cond
[(empty? 1st)]
[else (first 1st)
ee.. (list-fn (rest 1st))]))

Recursive rev fn, with “temp” vars (later)

;5 reverses a list of ints
;5 rev : ListofInts -> ListofInts
(define (rev 1lst)
(cond
[(empty? 1st)]
[else (first 1st)
.e.. (rev (rest 1st))1))

21

Recursive rev fn, with “temp” vars (later)

Still follows
design
recipe!

[]
)

)

* reverses a list of ints

rev : ListofInts -> ListofInts

(define (rev lst rev-1lst-so-far)

(define (rev/tmp 1lst rev-1lst-so-far)

(cond
[(empty? 1st)]
[else (first 1st)

ce.. (rev/tmp (rest 1lst) \...)
. rev-1lst-so-far ..

An internal “helper”
function adds a “temp”
variable

(main fn calls helper fn)

2 D)),

(rev/tmp 1lst empty<4) Tmp var = reversed list “so far” (initially empty)

Recursive rev fn, with “temp” vars (later)

;3 reverses a list of ints
;3 rev . ListofInts -> ListofInts
(define (rev lst rev-1lst-so-far)
(define (rev/tmp 1lst rev-1lst-so-far)
(cond
[(empty? 1st) rev-lst-so-far]

[else (first 1st) Now figure out how to

... (rev/tmp (rest 1st)|“combine” these pieces
. rev-1st-so-far|(with “arithmetic”)

(rev/tmp 1lst empty)) -

Recursive rev fn, with “temp” vars (later)

;3 reverses a list of ints
;3 rev . ListofInts -> ListofInts
(define (rev lst rev-1lst-so-far)
(define (rev/tmp 1lst rev-1lst-so-far)
(cond
[(empty? 1st) rev-lst-so-far]

[else (rev/tmp - |
(rest 1st) Add next list item to reversed list “so far”

(cons (first 1st) rev-lst-so-far))]))
(rev/tmp 1lst empty))

Multi-ball Animation

Design a big-bang animation that:
« Start: a single ball, moving with random x and y velocity
« On aclick: add a ball at random location, with random velocity

e If any ball “hits” an edge:
e if it's a vertical edge, the x velocity should flip direction
* If it's a horizontal edge, the y velocity should flip direction

* A WorldState 1c¢ an 1inknown nimher nf hallcl

;3 A WorldState is .. a 1list of balls!

nertute: Data Definitions (ch 5.7)

All possible data values

- Hrrue Hfalse
Hrrue Hfalse

A data definition
= (a named) subset of all
possible values

We are defining which data values are valid for our program!

All programs are data manipulators ...

So this must be the first step of programming!

Also makes “error handling” easy

nertute: Data Definitions (ch 5.7)

All possible basic data values

(make-posn "helloe" 0)
(make-posn "world" 1)
(make-posn "good" 2)

(makea-ball -1 0)
(maka-hall -1 1)

") (make-posn “"bye"” 3) (make-ball -1 2)
good (make-posn (make-posn 0 1) 2) (make-ball -1 3)
bye (make-posn 0 3) (make-ball "bya" #t)

(make-posn 1 3)
(make-posn 2 3)
(make-posn 3 3)

Possible to expand the universe
of values, e.g., new compound
data definitions (struct,

or other data structure)

Multi-ball Animation

Design a big-bang animation that:
« Start: a single ball, moving with random x and y velocity
« On aclick: add a ball at random location, with random velocity

e If any ball “hits” an edge:
e if it's a vertical edge, the x velocity should flip direction
* If it's a horizontal edge, the y velocity should flip direction

* A WorldState 1c¢ an 1inknown nimher nf hallcl

;3 A WorldState is .. a 1list of balls!

Ball
33 A WO is a

(struct
;3 wher

55 Xo X

..
A

W [X y xvel yvel] #:transparent)
ball . : N
represents x coordinate of ball center in animation

;5 Y: YCoord - represents y coordinate of ball center in animation
;3 Xvel: Integer - represents x velocity, where

postive = to the right, negative = to the left

;3 yvel: Integer - represents y vel, where

.
B

positive = down, negative = up

;3 A ListofBall is one of
33 - null
;5 - (cons Ball ListofBall)

;3 A WorldState is a ListofBall

29

(define (main)

. »
)2

(big-bang (list (random-ball))
on-mouse mouse-handler]
‘on-tick next-world]
‘to-draw render-world]))

A WorldState is a ListofBall

These need to be
updated to handle new
WorldState data def

30

next-world

List template!

;3 next-world : WorldState -> WorldState
;3 Computes the next world state on a tick
(define (next-world w)

(cond Ball
[(empty? w)%/////
[else (first w)

.... (next-world (rest w))]))

Create one
function
per “task”

(check-equal? (next-world (list (make-ball © © 1 1)))
(list (next-ball (make-ball © © 1 1)))

31

next-ball

This was the previous “next-world” function!

(define (next-ball b)

(match-define (ball x y xvel yvel) b)
(define new-xvel

(if (ball-in-scene/x? x) xvel (- xvel)))
(define new-yvel

(if (ball-in-scene/y? y) yvel (- yvel)))
(define new-x (+ X new-xvel))
(define new-y (+ y new-yvel))
(ball new-x new-y new-xvel new-yvel))

32

next-world

List template!

;3 next-world : WorldState -> WorldState
;3 Computes the next world state on a tick
(define (next-world w)

(cond Ball
[(empty? w)%/////
[else (first w)

.... (next-world (rest w))]))

Create one
function
per “task”

(check-equal? (next-world (list (make-ball © © 1 1)))
(list (next-ball (make-ball © © 1 1)))

33

next-world

;3 next-world : WorldState -> WorldState
;3 Computes the next world state on a tick
(define (next-world w)

(cond
[(empty? w) empty]
[else (first w)

.... (next-world (rest w))]))

34

next-world

;3 next-world : WorldState -> WorldState
;3 Computes the next world state on a tick
(define (next-world w)
(cond
[(empty? w) empty]
[else (cons (next-ball (first w))
(next-world (rest w)))]))

35

render-world

List template!

;5 render-world : WorldState -> Image
;; Draws the given worldstate as an image
(define (render-world w)
(cond
[(null? w) EMPTY-SCENE]
[else (place-ball (first w) (render-world (rest w)))]))

/

Separate “draw”
function for the ball

36

For multi-arg function, you choose which (argument’s) template to use

Enumeration

;3 mouseHandler : WorldState XCoord YCoord MouseEvent|-> WorldState

;3 Inserts a new ball on mouse click
(define (mouse-handler w x y mevt)

Enumeration template
(collapsed)

37

Multi-ball Animation: more?

Design a big-bang animation that:
e Start: a single ball, moving with random x and y velocity

« On aclick: add a ball at random location, with random velocity

« And random size?
e And random color?

* If any ball “hits” an edge:
« if it's a vertical edge, the x velocity should flip direction
 If it's a horizontal edge, the y velocity should flip direction

;3 A WorldState is .. a 1list of balls!

41

Check-In Quiz 10/2

on gradescope

(due 1 minute before midnight)

42

