UMass Boston Computer Science

CS450 High Level Languages (section2)

Abstraction

Wednesday, October 11, 2023

AN %64 PROCESSOR 16 SCREAMING ALONG AT BLUONS OF
CYCLES PER SECOND To RUN THE XNU KERNEL, WHICH IS
FRANTICALLY WORKING THROUGH ALL THE FOSIX-SPECIFED
ABSTRACTION To CREATE THE DRRWIN SYSTEM UNDERIING
05 X, WHICH INTURN IS STRAINING 1TSELF T0 RUN FIREFOX
AND IT5 GECKO RENDERER, WHICH CREATES A AASH OBTECT
WHICH RENDERS [DZENS OF VIDEQD FRAMES EVERY SELOND

BECALEE I LWANTED TO SEE A O
JUMP INTO A BOX AND FALL OVER.

O I AMA GOD.

Logistios

« HW 3 out
e due: Sun 10/15 11:59 pm EST

« HW 2 (and other) grades returned

» Use GradeScope re-grade request for
complaints or questions

AN x64 PROCES4OR 16 SCREAMING ALONG AT BILUONS OF
CYCLES PER SECOND To RUN THE XNU KERNEL, WHICH 1S
FRANTICALLY WORKING THROUGH ALL THE FOSIX-SPECIFED
ABSTRACTION To CREATE THE DRRWIN SYSTEM UNDERIING
05 X, WHICH INTURN IS STRAINING 1TSELF T0 RUN FIREFOX
AND IT5 GECKO RENDERER, WHICH CREATES A AASH OBTECT
WHICH RENDERS CDZENS OF VIDED FRANMES EVERY SECOND

BECAUSE I LWANTED TO SEE A G
JUMP INTD A BOX AND FALL OVER.

O I AMA GOD.

UGH, ITS LIKE.YOU RAN OCR ON | [IT'LOOKS LIKE SOMEDNE
IHME | |APHOD OF A SCRABBLE | | TRANSCRIBED A NAVAL UEATHER
READNG | | BOARD FROM A GAME UHERE | | FORECAST LHLE. LIOODPECKERS
YOUR(ODE. | | JPWASCRIT RESERVED LIORDS | | HAMMERED THEIR SHIFT KEYS,
I knou, | | COUNTED FOR TRIPLE POINTS. | | THEN RANDOMLY INDENTED IT

CS 450 so far ... = M@g \@

TS LIKE AN EE CUMIINGS

This class teaches: Sl
* a high-level programming “process” %

THIS LOOKS LIKE THE OUTPUT OF A MARKOV
BOT THAT'S BEEN FED BUS TIMETRBLES FROM
A CITy WHERE THE BUSES CRASH (ONSTANTLY.

\ LHATEVER, IT RUNS FINE FoRNOU.

50 DOES A @
Bumugzs; 5

* i.e., a design recipe for creating clean, readable programs

* How to do well: learn and follow the process

« How to not do well: focus only on “getting the code working”

Clean Code

A Handbook of Agile Software Craftsmanship

——

Robert C. Martin

“Perhaps you thought that “getting it working” was the first order of
business for a professional developer.

I hope by now, however, that this book has disabused you of that idea.

The functionality that you create today has a good chance of
changing in the next release, but the readability of your code will
have a profound effect on all the changes that will ever be made.”

— Robert C. Martin,
Clean Code: A Handbook of Agile Software Craftsmanship

https://www.goodreads.com/work/quotes/3779106
https://www.goodreads.com/work/quotes/3779106
https://www.goodreads.com/work/quotes/3779106

KEEP N MIND THAT TM ..\JOU. IT'S LIKE A SALAD RECIPE. | | ITS LIKE SOMEONE TOOK. A

SELF-TAUGHT, SOMY CODE | 1y 15 LKE BENG IN | WRITTEN BY A CORPORATE. | | TRANSCRIPT OF A COUPLE

MAY BEA LIILE MESSY. | 4 HOUSE BUILT BY A LAWYER USING A PHONE | | ARGUING AT IKEA AND MADE
LEMYE SEE- CHILD USING NOTHING AUTDCORRECT THAT ONLY RANDOM EDITS UNTIL IT

T'M SURE BUT A HATCHET AND A | KNEW EXCEL FORMULAS. | | COMPILED WITHOUT ERRORS.
2 r e C a p ITS FiME. PICTURE OF A HOUSE. OKaAY TU REFD
Q

A STYLE GUIDE.

aiite 10l Is)]

Many submissions only focused on: “getting the code working”

Many submissions ignored:
. all other steps of programming design recipe This hw will be graded accordingly:

e style guide » correctness (9 pts)

« Other instructions in hw e design recipe (20 pts)

» style (5 pts)
» README (1 pt)

Total: 35 points

KEEP IN MIND THAT T™M
SELF-TAUGHT, 50 MY CODE
MAY BEA LITILE. MESSY,

LEMME SEE-

HW 2 solution (part 2) A
ST

\WJOL

[
THIS 15 LIKE BEING IN
A HOUSE BUILT BY A
CHILD USING NOTHING
BUT A HATCHET AND A
PICTURE OF A HOUSE.

2

IT'S LIKE A SALAD RECIPE
WRITTEN BY A CORPORATE
LAWYER DSING A PHONE
PUTOCORRECT THAT ONLY
KNEW EXCEL FORMULAS,

5

ITS LIKE. SOMEONE TOOK A
TRANSCRIPT OF A COUPLE
ARGUING AT IKEA AND MADE
RANDOI EDITS UNTIL IT
COMPILED WITHOUT ERRORS.

OKAy TUREFD
A STYLE GUIDE.

21

“world state” now needs two

uposn"S! L

» To practice reading code, save the big-bang program from lecture 6 to a file
named hw2-bigbang.rkt, and change it so when the user clicks the left-mouse
button, a copy of the image is pinned to the canvas. (The original image should
continue to move with the cursor.) Subsequent clicks should move the pinned

image so that only one image is pinned at any time.

HW 2 recap — key design points

;3 A WorldState 1s a:

(struct world [cursor pinned]) “world state” now needs two “posn”s!

;3 where one of them “maybe” will not have a value
;3 cursor : Posn - IMG location that moves with mouse cursor

;5 pinned : MaybePosn - IMG location that is pinned (if there 1is one)

;3 A Posn is a

(struct posn [x y])

;3 where

;5 X: Integer - represents x coordinate in big-bang animation
;5 Y: Integer - represents y coordinate in big-bang animation

;5 constants and predicates for MaybePosn
;5 A MaybePosn is a (define NO-POSN #false)
;5 - Posn (define (no-posn? x) (equal? x NO-POSN))
;3 - NO-POSN (define (maybe-posn? x) (or (posn? x) (no-posn? Xx)))

;5 represents a position, if there is one 10

NOTE: skipped Examples Step

Mouse handler

;3 mouse-handler : WorldState Coordinate Coordinate MouseEvent -> WorldState

Returns a WorldState where:

)

;3 - 'cursor"™ = current mouse loc
;5 - "pinned" = current mouse loc (if mevt = "button-down")
;5 TEMPLATE fn for MouseEvent : MouseEvent -> ??? Function splitting rule:
define (mevt-fn mevt ~ e
(() One (data definition
(cond) :
i | ., processing) task, one function
[(string=? mevt "button-down")]
ceee)

When a function has more than
one argument, you choose
which template to use

11

Mouse handler

;3 mouse-handler : WorldState Coordinate Coordinate MouseEvent -> WorldState
;3 Returns a WorldState where:

;3 - 'cursor"™ = current mouse loc
;5 - "pinned" = current mouse loc (if mevt = "button-down")
efine (mouse-handler w x y mev efine (mouse-handler w x y mev
(defi (handl t) (defi (handl t)
(define current-mouse-pos (posn X y))
(cond (cond
[(string=? mevt "button-down") [(string=? mevt "button-down")
(world (posn x y) (posn x y))] # (world [current-mouse-pos _
[else cur‘rent—mouse—pos)];m;;';ld
(world (posnhx y) (world-pinned w))])) [else the same
AN (world |current-mouse-pos
Current mouse loc (world-pinned w))]))
(let's include this info in the code as a variable name) -

Mouse handler

;3 mouse-handler :
;3 Returns a WorldState W
;5 - "cursor" = current n (world
;5 - pinned" = current n

Worldy (define (mouse-handler w x y mevt)

(define current-mouse-pos (posnh X y))

current-mouse-pos

WAIT! Function split rule is:

One (data definition
processing) task,

one function

(cond

[(string=? mevt "button-down") current-mouse-pos)]

e

[else (world-pinned 1)) f

AN\

Do we need a
separate (world-
processing) function?

(define (mousexhandler w X y mevt)
(define current-mouse-pos (posn X y))
(cond

[(string=? mevt\'button-down")
(world |current-mouse-pos

current-mouse-pos) |
[else

(world [current-mouse-pos
(world-pinned w))]))

On when to create a new function ..

“The first rule of functions is that they should be small.

The second rule of functions is that they should be smaller than that.”

— Robert C. Martin,
Clean Code: A Handbook of Agile Software Craftsmanship

Clean Code In this class:

AHandbookongileSoﬁwareCrattsmanship. | Create One function per
o (data definition processing) task

https://www.goodreads.com/work/quotes/3779106
https://www.goodreads.com/work/quotes/3779106

NOTE: skipped Contracts, and Tests Step

Mouse handler

;3 mouse-handler

. Worldy (define (mouse-handler w x y mevt)
;5 Returns a WorldState w (define current-mouse-pos (posn X y))

WAIT! Function split rule is:

One (data definition
processing) task,

one function

;5 - "cursor" = current n (world
55 - 'plnned"” = current nm current-mouse-pos
(cond

[(string=? mevt "button-down") current-mouse-pos)]
[else ;world—pinned w))]))

/

Do we need a
separate (world-
processing) function?

YES. (But in this case,
It would just get the
world-pinned value)

16

Render world

;5 render-world : WorldState -> Image
;3 draws IMG at the "cursor" and "pinned" posn (if there is one)

;5 TEMPLATE fn for WorldState: WorldState -> ???
(define (world-fn w)
... (world-cursor w) (world-pinned w))

NS

These are posns. Should we also extract posn fields here?

NO. They should be handled by a “posn”
function (which follows “posn” template)

create one function per
(data definition processing) task

Render world

;5 render-world : WorldState -> Image
;3 draws IMG at the "cursor" and

pinned" posn (if there is one)

(define (world-fn w)

;3 TEMPLATE fn for WorldState:

.... (world-cursor w) (world-pinned w))

WorldState -> ??°?

(define (render-world

“render-posn

"myme(world—pinned W)

W)

(render-posn ™

But this is a “maybe” posn

Wish list:

render-posn
maybe-render-posn

(world-cursor w)
EMPTY-SCENE)))

19

Render posn

;5 render-posn : Posn Image -> Image
;5 draws IMG into given image at given posn;

;3 TEMPLATE fn for Posn fn: Posn-> ???
(define (posn-fn p)

(posn-x p) (posn-y p))

(define (render-posn p img)
(place-image IMG (posn-x p) (posn-y p) img))

20

Maybe Render posn

;5 maybe-render-posn : MaybePosn Image -> Image
;5 draws IMG into given image at given posn;
;5 1f posn is NO-POSN, return img unchanged

;5 TEMPLATE fn for MaybePosn fn: MaybePosn-> ???
(define (maybeposn-fn p)
(cond
[(posn? p) (posn-x p) (posn-y p))]
[(no-posn? p)]))

(define (maybe-render-posn p img)
(cond

/

[(posn? p) (place-image IMG (posn-x p) (posn-y p) img)]

[else img]))

Same as render-posn

21

Maybe Render posn

;5 maybe-render-posn : MaybePosn Image -> Image
;5 draws IMG into given image at given posn;
;5 if posn is NO-POSN, return img unchanged

(define (maybeposn-fn p)

(cond
[(posn? p) (posn-x p) (posn-y p) ...
[(no-posn? p)]))

.)]

(define (maybe-render-posn p img)
(cond
[(posn? p) (render-posn p img) |
[else img]))

22

Render world

;5 render-world : WorldState -> Image

;3 draws IMG at the "cursor”

and

pinned" posn (if there is one)

(define (render-world w)
(maybe-render-posn
(world-pinned w)
(render-posn
(world-cursor w)
EMPTY-SCENE)))

Wish list:

render-posh
maybe-render-posn

23

Render wo

rld: alternate choice

;5 render-world : WorldState -> Image

;3 draws IMG at the

"cursor" and "pinned" posn (if there is one)

(define (render-world
(maybe-render-posn
(world-pinned w)
(maybe-render-posn
(world-cursor w)

EMPTY-SCENE)))

W) e
Wish list:

Works for both! FEREER e
maybe-render-posh

Using the same function could be
more readable when there are an

arbitrary number of balls ...

24

HW 2 recap - other points

« GitHub repos must be added to cs450f23 organization (not your own account)
 Otherwise | cant see it

e (see directions in hw) COMMENT DATE
CREATED MAIN LOOP & TIMING CONTROL.
ENABLED CONFIG FILE PARSING
MISC BUGFIXES
CODE ADDITIONS/EDIT
. . . MORE CODE
* GIt commit messages must be meaningful HERE HAVE CODE.
ADKFISLKDFISOKLET
© MY HANDS ARE TYPING LJORDS
O HARARAAAAANDS

o000

AS A PROTECT DRAGS ON, MY GIT COMMIT
DO not ... MESGAGES GET LESS AND LESS INFORMATIVE.

« Add to temp files to repo
 Leave commented out code
e Leave “TODOQO"s in code

Lists and List Functions Review

/D/‘w/ba&é . o
Racket List Data Definition Example

;3 A ListofInt is one @f

;5 - empty Empty (base) case

;5 - (cons Int ListofInt) Non-empty (recursive) case
cons = “node” Recursive!

(using a definition to define itself)

TEMPLATE?? (how can we use a list of ints
to define a list of ints?!?)

Recursion is a valid concept (from math), but only if there is both
- A base case
- A recursive case

;%w%m%?

Racket Recursive List Fn Template

;3 A ListofInt is one @f
5y, - empty

;5 - (cons Int ListofInt)

(cond

;3 TEMPLATE
;3 list-fn ¢
(define (list-fn 1st)

ListofIn

[(empty? 1st)
[(cons? 1st)

1st-

-> 2?7

first 1st)
(list-fn (rest 1lst))])?

Racket Recursive List Fn: inc-1ist

;3 TEMPLATE for list-fn
;3 list-fn : ListofInt -> ???
(define (list-fn 1st)
(cond
[(empty? 1st)]
[(cons? 1st) (first 1st)
(list-fn (rest 1st))]))

Racket Recursive List Fn: inc-1ist

(check-equal?
(inc-1list (list 1
(list 2

2 3))
3 4))
|

: inc-1list : ListofInt -> ListofInt

;5 increments each list element by 1
(define (inc-1st 1st)

(cond
[(empty? 1st)]
[(cons? 1st) (first 1st)

(inc-1st (rest 1st))

1))

Racket Recursive List Fn: inc-1ist

;3 inc-1list : ListofInt -> ListofInt
;5 1ncrements each list element by 1
(define (inc-1st 1st)
(cond
[(empty? 1st) empty]
[(cons? 1st) (first 1st) e
(inc-1st (rest 1st))]))

Racket Recursive List Fn: inc-1ist

;5 1nc-1list : ListofInt -> ListofInt
;5 increments each list element by 1
(define (inc-1st 1st)

(cond
[(empty? 1st) empty]
[else (addl (first 1st))

(inc-1st (rest 1st))]))

Racket Recursive List Fn: inc-1ist

;3 inc-1list : ListofInt -> ListofInt
;5 1ncrements each list element by 1
(define (inc-1st 1st)
(cond
[(empty? 1st) empty]
[else (cons (addl (first 1st))
(inc-1st (rest 1st))]))

34

2 /‘w/mf{%

Multi-ball Animation

Design a big-bang animation that:
« Start: a single ball, moving with random x and y velocity
« On aclick: add a ball at random location, with random velocity

35 A Ball is a

(struct ball [x y xvel yvel] #:transparent)

;3 Where

35 X: XCoord - represents x coordinate of ball center in animation
;5 Y: YCoord - represents y coordinate of ball center in animation
;3 Xvel: Integer - represents x velocity, where

H postive = to the right, negative = to the left
;5 yvel: Integer - represents y vel, where
55 positive = down, negative = up

;3 A ListofBall is one of

55 - empty
;5 - (cons Ball ListofBall)

;3 A WorldState is a ListofBall

37

next-world

List template!

;5 hext-world : WorldState -> WorldState
;5 Updates position of all balls by one tick
(define (next-world w)

(cond
[(empty? w)]
[else (first w)

.... (next-world (rest w))]))

38

next-world

;5 hext-world : WorldState -> WorldState
;5 Updates position of all balls by one tick
(define (next-world w)

(cond Ball
[(empty? w) empt%}////
[else (first w)

.... (next-world (rest w))]))

Create one
function
per “task”

(check-equal? (next-world (list (make-ball © © 1 1)))
(list (next-ball (make-ball © © 1 1)))

39

next-world

;5 hext-world : WorldState -> WorldState
;5 Updates position of all balls by one tick
(define (next-world w)

(cond
[(empty? w) empty]
[else (next-ball (first w))

.... (next-world (rest w))]))

40

next-world

;5 hext-world : WorldState -> WorldState
;5 Updates position of all balls by one tick
(define (next-world w)
(cond
[(empty? w) empty]
[else (cons (next-ball (first w))
(next-world (rest w)))]))

41

next-world

;3 hext-world : ListofBall -> ListofBall
;3 Updates position of all balls by one tick
(define (next-world 1lst)
(cond
[(empty? 1lst) empty]
[else (cons (next-ball (first 1st))
(next-world (rest 1lst)))]))

42

com

narison

)J

)J

: inc-1st: ListofInt -> ListofInt
: Returns list with each element incremented
(define (inc-1lst 1st)

(cond
[(empty? 1st) empty]
[else (cons (addl (first 1st))
(inc-1st (rest 1lst)))]))

)

) J

next-world : ListofBall -> ListofBall
Updates position of each ball by one tick

(define (next-world 1st)

(cond
[(empty? 1lst) empty]
[else (cons (next-ball (first 1st))
(next-world (rest 1st)))]))

A

Abstraction: Common List Function #1

;5 lst-fnl: (?? -> ??) Listof?? -> Listof??
;5 Applies the given fn to each element of given 1st

(define (1st-fnl fn 1lst)
(cond
[(empty? 1lst) empty]
[else (cons (fn (first 1lst))
(1st-fnl (rest 1st)))]))

(define (inc-1lst 1st) (lst-fnl addl 1st)
(define (next-world 1st) (lst-fnl next-ball 1st)

45

Abstraction: Common List Function #1

;3 lst-fnl: (X -> X) ListofX -> ListofX
;5 Applies the given fn to each element of given 1lst

(define (1lst-fnl fn 1lst)
(cond
[(empty? 1lst) empty]
[else (cons (fn (first 1st))
(1st-fnl (rest 1st)))]))

(define (inc-1lst 1st) (lst-fnl addl 1st)
(define (next-world lst) (1lst-fnl next-ball 1st)

46

Abstraction: Common List Function #1

;3 lst-fnl: (X -> Y) ListofX -> ListofY
;5 Applies the given fn to each element of given 1lst

(define (1lst-fnl fn 1lst)
(cond
[(empty? 1lst) empty]
[else (cons (fn (first 1st))
(1st-fnl (rest 1st)))]))

(define (inc-1lst 1st) (lst-fnl addl 1st)
(define (next-world lst) (1lst-fnl next-ball 1st)

47

AbStra Ct' on Data Deﬂ N |t| Ons predicates should be

)
)

)

A ListofInt is one of
- empty

- (cons Int ListofInt)

)
)

)

* yy empty
A ListofBall is one of ;5 - (cons X Listof<X>)

- empty
- (cons Ball ListofBall)

NOTE: this shows why
our Compound data

“shallow” checks, i.e.,
list?

Makes abstraction easier

;3 A Listof<X> is one of

To use this abstract data :
definition, must Listof<Int>

instantiate X with a —
concrete data definition |-|15t°f< Ball>

(concrete = opposite of abstract)

49

Abstract Data Defs common in every PL

#include<]
#includ

using n

i=1; 1 <= 18; iH)
v.push_back(i);
¥

cout << "Size @ " << v.size();

v.resize(7);

cout << "\nAfter resizing it becomes : " << v.size();

Structs define abstract data

Abstract data - “any” x and y allowed

;3 A Posn is a Z////

(struct posn [x y])

;3 where

;5 X: Integer - represents x coordinate in big-bang animation
55 Y. Integer - represents y coordinate in big-bang animation

(implicit) Instantiation

52

Common List Function #1

;3 Ist-fnl: (X -> Y) Listof<X> -> Listof<Y>
;5 Applies the given fn to each element of given 1st

(define (1lst-fnl fn 1lst)
(cond
[(empty? 1lst) empty]
[else (cons (fn (first 1lst))
(1st-fnl (rest 1st)))]))

(define (inc-1lst 1st) (lst-fnl addl 1st)
(define (next-world 1st) (lst-fnl next-ball 1st)

53

Common List Function #1: map

;3 map: (X -> Y) Listof<X> -> Listof<Y>
;5 Applies the given fn to each element of given 1st

(define (map fn 1lst)
(cond
[(empty? 1lst) empty]
[else (cons (fn (first 1lst))
(map (rest 1st)))]))

(define (inc-1st 1st) (map addl 1lst)
(define (next-world 1st) (map next-ball 1lst)

54

Common List Function #1: map

(map proc lst ...+) — list?
proc . procedure?
st : lisk?

map: (A B C .. -> Z) Listof<A> Listof Listof<C> .. -> Listof<Z>
;5 Applies the given fn to elements (at same index) of given 1lsts

(check-equal? (map + (list 1 2 3) (list 4 5 6)
(list 5 7 9))

57

Common List Function #2: 27?7

2 /‘W/Zm&{y

Racket Recursive List Fn Example: sum

))

))

: list-fn :

(cond

- TEMPLATE for list-fn

ListofInt -> ??°?

(define (list-fn 1st)

[(empty? 1st)]
[(cons? 1st) (first 1st)

ee.. (list-fn (rest 1st))]))

/D/‘w/ba&'gy
Racket Recursive List Fn Example: sum

;3 Returns sum of list of ints
;3 sum-1st: ListofInt -> Int
(define (sum-1st 1st)
(cond
[(empty? 1st) 0]
[else (+ (first 1st)
(sum-1st (rest 1st)))]))

Render World: ListofBall edition

;5 render-world : ListofBall -> Image
;5 Draws the given world as an image by overlaying each ball,
;; at 1ts position, into an initially empty scene

(define (render-world 1lst)
(cond
[(empty? 1st)]
[else (first 1st).... (render-world (rest 1lst))]))

61

Render World: ListofBall edition

;5 render-world : ListofBall -> Image
;5 Draws the given world as an image by overlaying each ball,
;; at 1ts position, into an initially empty scene

(define (render-world 1lst)
(cond
[(empty? 1lst) EMPTY-SCENE]
[else (first 1st).... (render-world (rest 1lst))]))

62

Render World: ListofBall edition

;5 render-world : ListofBall -> Image
;5 Draws the given world as an image by overlaying each ball,
;; at 1ts position, into an initially empty scene

(define (render-world 1st)
(cond
[(empty? 1lst) EMPTY-SCENE]

[else (place-ball (first lst) (render-world (rest 1st)))]))

Create one
function
per “task”

5 place—bgﬁl : Ball Image -> Image
;5 Draws a ball, using its pos as the offset, into the given image
(define (place-ball b scene)

(place-image BALLIMG (ball-x b) (ball-y b) scene))

63

Comparison #2

;3 sum-1lst:

(cond

(define (sum-1lst 1st)

[(empty? 1lst) O]
[else (+ (first 1st)

ListofInt -> Int

(sum-1st (rest 1st)))]))

(cond

;5 render-world : ListofBall -> Image
(define (render-world 1lst)

[(empty? 1st) EMPTY-SCENE]
[else (place-ball (first 1st)

(render-world (rest 1lst)))]))

65

Common List Function #2

X = Type of list element N

'Y =Result Type

V4

;s list-fn2 : (X Y -> Y) Y Listof<X> -> Y

(define (lst-fn2 fn initial 1st)
(cond
[(empty? 1lst) initial]
[else (fn (first 1lst) (1st-fn2 fn initial (rest 1st)))]))

;3 sum-1st: ListofInt -> Int

(define (sum-1st 1st) (list-fn2 + © 1lst))

;5 render-world: ListofBall-> Image

(define (render-world 1lst) (list-fn2 place-ball EMPTY-SCENE 1st))

66

Common List Function #2: foldr (start at right)

;5 foldr: (XY ->Y) Y Listof<X> -> Y

(define (foldr fn initial 1lst)

(cond Function recurs and builds up fn calls until it gets to the end

[(empty? 1lst) initial]

[else (fn (first 1st) (foldr fn initial (rest 1st)))]))

Then they are evaluated, last one first

;3 sum-1st: ListofInt -> Int
(define (sum-1lst 1st) (foldr + © 1st))
;5 render-world: ListofBall-> Image

(define (render-world 1st) (foldr place-ball EMPTY-SCENE 1lst))

67

Common List Function #2: foldr

;; foldr: (X .. Y ->Y) Y Listof<X> .. -> Y

(foldr proc init Ist ...+) — any/c
proc : procedure?
init : any/c

I[st : list?
Racket version can also take multiple lists

68

s 1t ok to always start at the right?

For some functions, order doesn’t matter, but for others, it does?
(foldr + @ (list 1 2 3)) = (1 + (2 + (3 + ©)))

(1 + 2+ (3+0))) =(((1+0)+2)+3)

(1-(2-(3-0)))=(((1-0)-2)-3)®

Need LlSt FU ﬂCtIOﬂ 2b 'FO].dl (start from left)

Challenge:
* Change foldr to foldl
* 50 that the function is applied from the left (first element first)

(define (foldr fn initial 1st)
(cond
[(empty? 1st) initial]
[else (fn (first 1st) (foldr fn initial (rest 1st)))]))

$

(define (foldl fn initial 1st)
(cond
[(empty? 1st)]
[else (first 1st) (foldl fn initial (rest 1lst)))]))

Next time: Other common list functions

e Filter

* Find

* Reverse
« append

Check-In Quiz 10/11
on gradescope

(due 1 minute before midnight)

79

