UMass Boston Computer Science

CS450 High Level Languages (section 2)
Abstraction 2

Monday, October 16, 2023

Logistios
« HW 3 In
e Sur16415-11:59-pmEST

« HW 4 out
e due: Sun 10/22 11:59 pm EST

Last

~ List (Recursive) Data Definition 1

;3 A ListofInt is one of:

55 - empty
;5 - (cons Int ListofInt)

Last

—~ List (Recursive) Data Definition 1: Fn Template

Recursive call matches
recursion in data definition

;3 A ListofInt isjone of:
;5 - empty

;5 7 (cons Int ListofInt)

/)]

;3 TEMPLATE for/list-fn
;3 list-fn : -> 7
(define (list-
(cond Extract pieces of
cond clause for each [(empty? ISt) e compound data
itemization item [(cons? 1st) {first/1lst)

(list-fn (rest lst)i.::..]))

Last
/ine

Recursive List Fn Example 1: inc-1ist

Function design recipe:
Name

Signature
Description
Examples

Template

Ll RY e =

))

))

(check-equal?
(inc-1list (list 1 2 3))
(list 2 3 4))

; inc-list : ListofInt -> ListofInt
; increments each list element by 1
(define (inc-1st 1st)

(cond
[(empty? 1st)]
[(cons? 1st) (first 1st)

(inc-1st (rest 1st))

1))

Last

- Recursive List Fn Example 1: inc-1ist

(define (inc-1st 1st)
(cond

;5 inc-1list : ListofInt -> ListofInt
;5 increments each list element by 1

Empty input produces empty output
(look at signature for help if needed)

[(empty? 1st) empty]
[(cons? 1st) (first 1st) e
(inc-1st (rest 1st))]))

Last
[ine

Recursive List Fn Example 1: inc-1ist

))

; inc-1list : ListofInt
;5 increments each list element by 1
(define (inc-1st 1st)

(cond
[(empty? 1st) empty]

[else (addl (first 1st))
(inc-1st (rest 1st))]))

-> ListofInt

Call another function to process
(first) (Int) list element

Last

- Recursive List Fn Example 1: inc-1ist

;5 inc-1list : ListofInt -> ListofInt
;5 increments each list element by 1

(define (inc-1st 1st) Figure out how to “combine” with
(cond (rleculrsi;/e.calltresuflt DT
ook at signature for help if neede
[(empty? 1st) empty]

[else (cons (addl (first 1st))
(inc-1st (rest 1st))]))

Last
/ine

L1st (Recursive) Data Definition 2

;; A ListofBall is one of:

55 - empty
;5 - (cons Ball ListofBall)

10

Last

~ List (Recursive) Data Definition 2: Fn Template

Recursive call matches
recursion in data definition?

;; A ListofBall is one of:

55 - empty
;5 - (cons Ball ListofBall)

;5 TEMPLATE for list-fn
;3 list-fn : ListofBall -> ???
(define (list-fn 1st)

(cond Extract pieces of
P compound data?
cond clause for each [(empty. ISt) ceee] . Pou
itemization item? [(cons? 1st) (first 1st)

(list-fn (rest lst)i.::..]))

Last
/ine

Recursive List Fn Example 2: next-world

Function design recipe:
Name

Signature
Description
Examples

Template

Ll RY e =

;35 hext-world: ListofBall -> ListofBall
;5 Updates position each ball by one tick
(define (next-world 1lst)
(cond
[(empty? 1st)]
[(cons? 1st) (first 1st) e
(next-world (rest 1st))]))

Last
/ine

Recursive List Fn Example 2:

hext-world

(define (next-world 1lst)
(cond
[(empty? 1st) empty]

;5 hext-world: ListofBall -> ListofBall
;5 Updates position each ball by one tick

Empty input produces empty output
(look at signature for help if needed)

[(cons? 1st) (first 1st) e
(next-world (rest 1lst)) "'T]))

Last
/ine

Recursive List Fn Example 2: next-world

(check-equal? (next-world (list (make-ball © © 1 1)))
(list (next-ball (make-ball 0 0 1 1)))

;3 hext-world:

(cond

lelse

[(empty? 1lst) empty] Ball

ListofBall -> ListofBall

;3 Updates position each ball by one tick

(define (next-world 1st) Call another function to

process (first) list element?

(??? (first 1st))
(next-world (rest 1lst))]))

Last

- Recursive List Fn Example 2: next-world

(define (next-world 1lst)
(cond
[(empty? 1st) empty]

;5 hext-world: ListofBall -> ListofBall
;5 Updates position each ball by one tick

Call another function to process
(first) (Ball) list element

[else (next-ball (first 1st))
(next-world (rest 1lst))]))

Last

~ Recursive List Fn Example 2:

hext-world

(define (next-world 1lst)
(cond
[(empty? 1st) empty]

;5 hext-world: ListofBall -> ListofBall
;5 Updates position each ball by one tick

Figure out how to “combine” with
recursive call result
(look at signature for help if needed)

[else (cons (next-ball (first 1st))
(next-world (rest 1lst))]))

Last
/ine

Comparison 1

Differences?

;3 1nc-1st: ListofInt -> ListofInt
;3 Returns list with each element incremented
(define (inc-1lst 1st)
(cond
[(empty? 1lst) empty]
[else (cons (addl (first 1st))
(inc-1st (rest 1st)))]))

;3 next-world : ListofBall -> ListofBall
;35 Updates position of each ball by one tick
(define (next-world 1st)
(cond
[(empty? 1lst) empty]
[else (cons (next-ball (first 1st))
(next-world (rest 1st)))]))

18

Last
[ine

Abstraction: Common List Function

Make the difference a
parameter of a
(function) abstraction

(define (1st-fnl fn 1lst)
(cond
[(empty? 1st) empty]

[else (cons (fn (first 1st))
(1st-fnl (rest 1st)))]))

Abstraction Recipe

1. Find similar patterns in a program
« Minimum: 2
 |deally: 3+
2. ldentify differences and make them parameters

3. Create a reusable abstraction with the discovered parameters
* E.g., afunction(al) abstraction

Abstraction: Common List Function #1

35 lst-fnl: (?? -> ??) Listof?? -> Listof??
;5 Applies the given fn to each element of given 1st

(define (1st-fnl fn 1lst)
(cond
[(empty? 1lst) empty]
[else (cons (fn (first 1lst))
(1st-fnl (rest 1st)))]))

21

Abstraction of Data Definitions

)
)

))

A ListofInt is one of
- empty
- (cons Int ListofInt)

)
)

)

: A ListofBall is one of

- empty
- (cons Ball ListofBall)

Abstraction Recipe

1. Find similar patterns in a program
e Minimum: 2
* |deally: 3+
=2. ldentify differences and make them parameters

3. Create a reusable abstraction with the discovered parameters
e E.g, afunction(al) abstraction

23

Abstraction of Data Definitions

)
)

))

A ListofInt is one of
- empty
- (cons Int ListofInt)

)
)

)

: A ListofBall is one of

- empty
- (cons Ball ListofBall)

24

Abstraction Recipe

1. Find similar patterns in a program
 Minimum: 2
* |deally: 3+
2. ldentify differences and make them parameters

==»3. Create a reusable abstraction with the discovered parameters
* E.g., afunction(al) abstraction
=) ¢ E.g., a data abstraction

25

Abstraction of Data Definitions

)
)

))

A ListofInt is one of

/ parameter

- empty
- (cons Int ListofInt)

)
)

)

: A ListofBall is one of

=

55 A Listof<i§ is one of

5, - empty
;5 - (cons X Listof<X>)

- empty
- (cons Ball ListofBall)

26

Abstraction: Common List Function #1

NOTE: textbook writes it like this
(both are ok, just follow data definition)

;5 lst-fnl: [X -> Y] [Listof X] -> [Listof Y]
;5 Applies the given fn to each element of given 1lst

;3 lst-fnl: (X -> Y) Listof<X> -> Listof<Y>
;5 Applies the given fn to each element of given 1lst

(define (1lst-fnl fn 1st)
(cond
[(empty? 1lst) empty]
[else (cons (fn (first 1st))
(1st-fnl (rest 1st)))]))

Abstraction Recipe

1. Find similar patterns in a program
e Minimum: 2
* |deally: 3+
2. ldentify differences and make them parameters
3. Create a reusable abstraction with the discovered parameters

- E.g, afunction(al) abstraction
« E.g, a data abstraction

=) 4. Use the abstraction by giving concrete “arguments” parameters

28

Abstraction: Common List Function #1

;5 lst-fnl: (X -> Y) Listof<X> -> Listof<Y>
;5 Applies the given fn to each element of given 1st

(define (1st-fnl fn 1lst)
(cond
[(empty? 1lst) empty]
[else (cons (fn (first 1lst))
(1st-fnl (rest 1st)))]))

(define (inc-1lst 1st) (lst-fnl addl 1st)
(define (next-world 1st) (lst-fnl next-ball 1st)

29

Q: Do these functions follow the design recipe (template)?

A: They do. Because “arithmetic” is always allowed.

(define (inc-1lst 1st) (lst-fnl addl 1st)
(define (next-world 1st) (lst-fnl next-ball 1st)

Common List Function #1

;3 Ist-fnl: (X -> Y) Listof<X> -> Listof<Y>
;5 Applies the given fn to each element of given 1st

(define (1lst-fnl fn 1lst)
(cond
[(empty? 1lst) empty]
[else (cons (fn (first 1lst))
(1st-fnl (rest 1st)))]))

(define (inc-1lst 1st) (lst-fnl addl 1st)
(define (next-world 1st) (lst-fnl next-ball 1st)

31

Common List Function #1: map

;3 map: (X -> Y) Listof<X> -> Listof<Y>
;5 Applies the given fn to each element of given 1st

(define (map fn 1lst)
(cond
[(empty? 1lst) empty]
[else (cons (fn (first 1lst))
(map (rest 1st)))]))

(define (inc-1st 1st) (map addl 1lst)
(define (next-world 1st) (map next-ball 1lst)

32

Abstraction Recipe

1. Find similar patterns in a program Abstractions should
e« Minimum: 2 have a “clear, concise”
e |deally: 3+ functionality

2. ldentify differences and make them parameters

3. Create a reusable abstraction with the discovered parameters
- E.g, afunction(al) abstraction
« E.g, a data abstraction

== « The abstraction must have a short, clear name and “be logical”
4. Use the abstraction by giving concrete “arguments” parameters

33

- — & & & — — & &y & 7 A e a &y &
) , N \ g 3 . 20 b \ 3 2o Y \ f
Y & 4 & : Y 4 Ay N N ‘ - B G T 5
i A A : AT A 3 N . SR :
[° el ! i S T 1\ g A Ty e)\ . !
" AR T R . Ao 1) e - S R T ¥ R
= o % ¢ i oS v v, . i it v v, X ¢ i ot ¥
v, F S S T
g 17 .*,'):'-:;a‘-?r, 4y gl -\‘ﬁﬁl‘-‘?’, Y R b
) o g o < AT e A
m o - Y & 4 W s y &
& & & 4 & 4 & iy £ 4 & 4 & i & / & &
) oy 4 &) iy 4 &) oy 4

1. Find similar patterns in a program
 Minimum: 2
* |deally: 3+

2. ldentify differences and make them parameters

Not all “similar patterns” should be abstracted

3. Create a reusable|_Creating Bad Abstractions is Dangerous

e E.g, afunction(al) abstrar-“

. The abstraction must have a short, clear name and “be loglcal"
4. Use the abstraction by giving concrete “arguments” parameters

34

£ 000
@pims - Follow

This, a million times this! “@BonzoESC: “Duplication is far

A bStra Ctl O n Wa rn | n g Sto ry cheaper than the wrong abstraction” @sandimetz

@rbonales ”

| came to see the following pattern:

1. Programmer A sees duplication.

2. Programmer A extracts duplication and gives it a name.
This creates a new abstraction.

3. Programmer A replaces the duplication with the new abstraction.
Ah, the code is perfect. Programmer A trots happily away.

4. Time passes ...

https://sandimetz.com/blog/2016/1/20/the-wrong-abstraction

£ 000
@pims - Follow

. o h , ” : h . “:(i :,, | : : f
Abstraction Warning Story Iaimerime e oo oo s

@rbonales ”

4. Time passes ...

5. A new requirement appears for which the current abstraction is almost perfect.
6. Programmer B gets tasked to implement this requirement.

Programmer B tries to retain the existing abstraction, but it’s not perfect, so they alter the code
to take a parameter, and then add extra logic that is conditionally based on the value of that parameter.

https://sandimetz.com/blog/2016/1/20/the-wrong-abstraction

£ 000
@pims - Follow

* * 2 , ” : h ! e k:L :“ | : . f
Abstraction Warning Story [z ime s oot ouicton s fo

@rbonales ”

How to avoid?

Always be thinking about the data

Programmer B

add extra logic
7. Another new requirement arrives. And a new Programmer X, who adds an additional parameter and a
new conditional. Loop until code becomes incomprehensible.

8. You appear in the story about here, and your life takes a dramatic turn for the worse.

https://sandimetz.com/blog/2016/1/20/the-wrong-abstraction

Program Design Recipe

> Data Designs

N

Function Designs

o/

39

£ 000
@pims - Follow

Abstraction Warning Story e ims e oo et s

@rbonales ”

How to avoid?

Always be thinking about the data

Don't focus only on “getting the code working”

Programmer B <— These programmers only cared about “getting the code working”
add extra logic
7. Another new requirement arrives. And a new Programmer X,’Who adds an additional parameter and a
new conditional. Loop until code becomes incomprehensible.

8. You appear in the story about here, and your life takes a dramatic turn for the worse.

https://sandimetz.com/blog/2016/1/20/the-wrong-abstraction

Last

~ Common List Function #2: 777

Last
[ine

Comparison #2

;3 sum-1lst:

(cond

(define (sum-1lst 1st)

[(empty? 1lst) O]
[else (+ (first 1lst)

ListofInt -> Int

(sum-1st (rest 1st)))]))

(cond

;5 render-world : ListofBall -> Image
(define (render-world 1lst)

[(empty? 1st) EMPTY-SCENE]
[else (place-ball (first 1st)

(render-world (rest 1st)))]))

42

Abstraction Recipe

1. Find similar patterns in a program
« Minimum: 2
 |deally: 3+
=)2. ldentify differences and make them parameters

3. Create a reusable abstraction with the discovered parameters
- E.g, a function(al) abstraction
« E.g, a data abstraction

« The abstraction must have a short, clear name and “be logical”
4. Use the abstraction by giving concrete “arguments” parameters

43

Last
[ine

Comparison #2

;3 sum-1lst:

(cond

(define (sum-1lst 1st)

[(empty? 1lst) O]
[else (+ (first 1st)

ListofInt -> Int

(sum-1st (rest 1st)))]))

(cond

;5 render-world : ListofBall -> Image
(define (render-world 1lst)

[(empty? 1st) EMPTY-SCENE]
[else (place-ball (first 1st)

(render-world (rest 1st)))]))

by

Common List Function #2

X = Type of list element N

'Y =Result Type

V4

;s list-fn2 : (X Y -> Y) Y Listof<X> -> Y

(define (1st-fn2 fn initial 1lst)
(cond
[(empty? 1st) initial]
[else (fn (first 1lst) (lst-fn2 fn initial (rest 1lst)))]))

Abstraction Recipe

1. Find similar patterns in a program
 Minimum: 2
* |deally: 3+
2. ldentify differences and make them parameters

==3. Create a reusable abstraction with the discovered parameters

* E.g., afunction(al) abstraction
« E.g, a data abstraction

« The abstraction must have a short, clear name and “be logical”
4. Use the abstraction by giving concrete “arguments” parameters

Common List Function #2: foldr

Also called “reduce”

Because a list of values is
“reduced” to one value

;5 foldr: (XY ->Y) Y Listof<X> -> Y

(define (foldr fn initial 1lst)
(cond
[(empty? 1st) initial]
[else (fn (first 1lst) (foldr fn initial (rest 1lst)))]))

Abstraction Recipe

1. Find similar patterns in a program
 Minimum: 2
 |deally: 3+
2. ldentify differences and make them parameters

3. Create a reusable abstraction with the discovered parameters
* E.g., afunction(al) abstraction
« E.g, a data abstraction

« The abstraction must have a short, clear name and “be logical”
=) 4. Use the abstraction by giving concrete “arguments” parameters

48

Common List Function #2: foldr

(define (foldr fn initial 1lst)
(cond
[(empty? 1lst) initial]
[else (fn (first 1lst) (foldr fn initial (rest 1lst)))]))

;5 sum-1st: ListofInt -> Int
(define (sum-1lst 1st) (foldr + © 1st))
;5 render-world: ListofBall-> Image

(define (render-world 1lst) (foldr place-ball EMPTY-SCENE 1st))

49

Do we always want to start at the right?

For some functions, order doesn’t matter, but for others, it does?

(foldr + @ (list 1 2 3)) = (1 + (2 + (3 + 9)))

(1 + (2+ (3+0))) = (((1L+0) +2) + 3) (Addition is associative)

(1- (- (3 - e>>>®? (((1 - @) - 2) - 3)

Need LlSt FU ﬂCtIOﬂ 2b 'FOldl (start from left)

Challenge:

* Change foldr to foldl
* 50 that the function is applied from the left (first element first)

(define (foldr fn initial 1lst) (1 + (2 + (3 +0)))
(cond '
[(empty? 1st) initial] (1 -(2=(3-29)))
[else (fn (first 1st) (foldr fn initial (rest 1st)))]))
(define (foldl fn initial 1lst) (((1 +0) +|2) * 3)
(cond (((1-0) - 2) - 3)

[(empty? 1st)]
[else (first 1st) (foldl fn initial (rest 1lst)))]))

NQleJStFunCUCW] 2b:f01dl(mHMmMU

/ Y = Result Type

: 7
;5 foldr: (XY -> V) Y Listof<X> -> ¥ Expressions with needed “result” type:

(define (foldr fn initial 1st) —initial
(cond - fn call

[(empty? 1st) initia - recursive call itself

[else (fn irst 1st) (foldr fn initial (rest 1st)))])) (look at signature to help)

;5 foldl: (XY ->Y) Y Listof<X> -> Y

(define (foldl fn initial 1st)
(cond
[(empty? 1st)]
[else (first 1st) (foldl fn initial (rest 1lst)))]))

52

NQ@leStFunCUCW] 2b:f01dl(mHMmMU

/ Y = Result Type

;; foldr: (XY ->)

Y Listof<X> -> Y

Expressions with needed “result” type:

(define (foldr fn initial 1st) - initial

(cond
[(empty? 1lst) initial]
[else (fn (first 1st)

- fn call
- _recursive call itself

(foldr fn initial (re§;/1§f)))])) (look at signature to help)

;; foldl: (XY ->Y)

Y/}i§f6f<x> ->Y

(define (foldl fn initi

1st)

(cond
[(empty? 1lst

.]

Now fill in args to recursive call

[else (foldl .::..(first 1st) (rest 1st)))1]))

53

NQleJStFunCUCW] 2b:f01dl(mHMmMU

define (foldr fn initial 1st
cond
empty? lst) initial
else (fn (first 1lst foldr fn initial (rest 1lst

;5 foldl: (XY 5> Y) Y Listof<X> ->Y

(define (foldl fn initial 1st)

(cond

only argument with type of first arg is first arg itself

[(empty? 1st) ../H
[else (foldl fn (first 1lst) (rest 1st)))]))

54

NQleJStFunCUCW] 2b:f01dl(mHMmMU

Expressions with needed “result” Y type:
define (foldr fn initial 1st - 1initial
cond - fn call ¢z
empty? 1lst) initial - recursive call itself

else (fn (first 1st foldr fn initial (rest 1lst

Now just need middle arg (and need to use the “first” piece)

/

;5 foldl: (X Y -> Y) Y¥ListofcXy -> Y

(define (foldl fn initial 1st)

(cond “rest” of list has “list”
proper “list” type
[(empty? 1st)]

[else (foldl fn (first 1st) (rest 1st)))]))

55

NQleJStFunCUCW] 2b:f01dl(mHMmMU

Expressions with needed “result” Y type:
define (foldr fn initial 1lst - initial {=m
cond - fncall
D - ' Il itself
empty? lst) initial recursive ca

else (fn (first 1st foldr fn initial (rest 1lst

Now just need middle arg (and need to use the “first” piece)

/

;5 foldl: (X Yo=> Y) Y LAstof<X> -> Y

14+ 0) +2) + 3
(define (foldl fn initia ((()))

|
(c[:c()nd £y? Lst)] What goes here? (look at signature)
empty? 1ls ce

[else (foldl fn (fn (first 1st)) (rest 1lst)))] (and examples)

77 |

56

NQleJStFunCUCW] 2b:f01dl(mHMmMU

Expressions with needed “result” Y type:
define (foldr fn initial 1lst - initial {=m
cond - fncall
D - ' Il itself
empty? lst) initial recursive ca

else (fn (first 1st foldr fn initial (rest 1lst

;; foldl: (XY -> Y) Y Listof<X> -> Y

1+0)+ 2) + 3
(define (foldl fn initial 1st) ((() +2) + 3)

(cond

[(empty? 1lst) ... Y——

[else (foldl fn (fn (first 1st) initial) (rest 1st)))]))

57

NQleJStFunCUCW] 2b:f01dl(mHMmMU

Expressions with needed “result” Y type:
define (foldr fn initial 1lst - initial {=m
cond - fncall
D - ' Il itself
empty? lst) initial recursive ca

else (fn (first 1st foldr fn initial (rest 1lst

;5 foldl: (XY ->Y) Y Listof<X> -> Y

1+0)+ 2) + 3
(define (foldl fn initial 1st) ((() +2) + 3)

(cond “initial"???
[(empty? 1lst) initialf””””’—

[else (foldl fn (fn (first 1st) initial) (rest 1st)))]))

58

NQleJStFunCUCW] 2b:f01dl(mHMmMU

Expressions with needed “result” Y type:

define (foldr fn initial 1st -—initial result-so-far
Cond - fn call

empty? 1lst) initial - recursive call itself

else (fn (first 1st foldr fn initial (rest 1lst

“result so far”

;5 foldl: (XY -> Y) Y Listof<X> -> Y SETSTTS
(define (foldl fn result-so-far 1lst) ((())
(cond

[(empty? 1lst) result-so-far]
[else (foldl fn (fn (first 1lst) result-so-far) (rest 1st)))]))

59

Common list function

Your tasks Follow the design recipe!

Write the following functions: (check-equal?

(smaller-than (list 1 3 45 9) 4)

;3 smaller-than: ListofInt Int -> ListofInt (list 1 3))

;5 Returns a list containing elements of given list
;5 that are less than the given int

(check-equal?
(greater-than (list 1 3 4 5 9) 4)

;3 larger-than: ListofInt Int -> ListofInt (list 5 9))

;5 Returns a list containing elements of given list
;5 that are greater than the given int

;5 quicksort: ListofInt -> ListofInt
;; sorts a given list (with no dups) in ascending order
(define (quicksort 1lst)
(define pivot (random 1st))
(append (quicksort (smaller-than lst pivot)) pivot (quicksort (greater-than lst pivot))))

Your tasks

(define (smaller-than 1lst x)
(cond

(Repeated here is ok-ish, because it will only get run once)

[(empty? 1lst) empty]

[else (if (< (first 1lst) x)
(cons (first 1lst) (smaller-than (rest 1lst) x))
(smaller-than (rest 1st) x))]))

(define (larger-than lst x)
(cond
[(empty? 1lst) empty]
[else (if (> (first 1st) x)
(cons (first 1lst) (larger-than (rest 1lst) x))
(smaller-than (rest 1lst) x))]))

63

Abstraction Recipe

1. Find similar patterns in a program
 Minimum: 2
 |deally: 3+
=)2. |dentify differences and make them parameters

3. Create a reusable abstraction with the discovered parameters
e E.g, afunction(al) abstraction
« E.g, a data abstraction

* The abstraction must have a short, clear name and “be logical”
4. Use the abstraction by giving concrete “arguments” parameters

64

Your tasks

(define (smaller-than 1lst x)
(cond
[(empty? 1lst) empty]
[else (if (< (first 1lst) x)
(cons (first 1lst) (smaller-than (rest 1lst) x))
(smaller-than (rest 1st) x))]))

(define (larger-than lst x)
(cond
[(empty? 1lst) empty]
[else (if (> (first 1lst) x)
(cons (first 1lst) (larger-than (rest 1lst) x))
(larger-than (rest 1st) x))]))

65

Common list function #37

Is this a “good” abstraction?

;5 1st-fn3: ListofInt Int (Int Int -> Boolean) -> ListofInt
;5 Returns a list containing elements of given list
;5 that are 2?2 than the given int

(define (1lst-fn3 1lst x fn?)
(cond
[(empty? 1lst) empty]
[else (if (fn? (first 1lst) x)
(cons (first 1lst) (1st-fn3 (rest 1lst) x))
(1st-fn3 (rest 1lst) x))]))

66

Abstraction Recipe

1. Find similar patterns in a program
e Minimum: 2
* |deally: 3+
2. ldentify differences and make them parameters

3. Create a reusable abstraction with the discovered parameters
- E.g, afunction(al) abstraction
« E.g, a data abstraction

== « The abstraction must have a short, clear name and “be logical”
4. Use the abstraction by giving concrete “arguments” parameters

67

Abstraction Recipe

1. Find similar patterns in a program
e Minimum: 2
* |deally: 3+
2. ldentify differences and make them parameters

3. Create a reusable abstraction with the discovered parameters
- E.g, afunction(al) abstraction
« E.g, a data abstraction

* The abstraction must have a short, clear name and “be logical”
=) 4. Use the abstraction by giving concrete “arguments” parameters

68

Common list function #37

Is this a “good” abstraction?

What are possible use cases?

Should be more than just the two
examples we are abstracting

;5 1st-fn3: ListofInt Int (Int Int -> Boolean) -> ListofInt
;5 Returns a list containing elements of given list
;5 that are 2?2 than the given int

(define (1lst-fn3 1lst x fn?)
(cond
[(empty? 1lst) empty]
[else (if (fn? (first 1lst) x)
(cons (first 1lst) (1st-fn3 (rest 1lst) x))
(1st-fn3 (rest 1lst) x))]))

69

More tasks
(check-equal?

Write the following functions: (shorter-than (List "a" bc “3bc”) 2)
ist “a”

)
)

))

; that have length less than the given int

shorter-than: ListofString Int -> ListofString
Returns a list containing elements of given list

(check-equal?
(shorter-than-str (list “a” “bc” “abc”) “xy”)
(list “a”))

)
)

)

; that have length less than the given string

shorter-than-str: ListofString String -> ListofString
Returns a list containing elements of given list

70

53 1st-fn3: ListofInt Int (Int Int -> Boolean) -> ListofInt
;5 Returns a list containing elements of given list
;; that are 2?? than the given int

Write the ’rollowmg functions:

)
)

))

; that have length less than the given int

shorter-than: ListofString Int -> ListofString
Returns a list containing elements of given list

Could these be implemented with our new abstraction?

Should we be able to?

)
)

)

; that have length less than the given string

shorter-than-str: ListofString String -> ListofString
Returns a list containing elements of given list

71

Abstraction Recipe

1. Find similar patterns in a program
e Minimum: 2
* |deally: 3+
2. ldentify differences and make them parameters

3. Create a reusable abstraction with the discovered parameters
- E.g, afunction(al) abstraction
« E.g, a data abstraction

* The abstraction must have a short, clear name and “be logical”
= 4. Use the abstraction by giving concrete “arguments” parameters

72

Remember:

Abstraction Recl PE |The Design Recipe (like good

software development) is iterative!

1. Find similar patterns in a program
« Minimum: 2
* |deally: 3+
2. ldentify differences and make them parameters

3. Create a reusable abstraction with the discovered parameters
e E.g, afunction(al) abstraction
« E.g, a data abstraction

* The abstraction must have a short, clear name and “be logical”
4. Use the abstraction by giving concrete “arguments” parameters

73

Common list function #37

Is this a “good” abstraction?

;5 1st-fn3: ListofInt Int (Int Int -> Boolean) -> ListofInt
;5 Returns a list containing elements of given list
;5 that are 2?2 than the given int

(define (1lst-fn3 1lst x fn?)
(cond
[(empty? 1lst) empty]
[else (if (fn? (first 1lst) x)
(cons (first 1lst) (1st-fn3 (rest 1lst) x))
(1st-fn3 (rest 1lst) x))]))

74

A Better common list function

;5 lst-fn3: Listof<X> (X -> Boolean) -> Listof<X>
;5 Returns a list containing elements of given list
;; for which the given predicate returns true

(define (1lst-fn3 lst ether-int-param general-pred?)

(cond
[(empty? 1lst) empty]
[else (if (general-pred? (first 1lst))
(cons (first 1lst) (1lst-fn3 (rest 1st)))
(1st-fn3 (rest 1lst)))]))

37

75

Common list function #3: filter

;5 smaller-than: Listof<Int> Int -> Listof<Int>
;5 Returns a list containing elements of given list less than the given int

(define (smaller-than 1lst thresh)
(filter (lam?da (x) (< x thresh)) 1lst)

lambda creates an anonymous “inline” function (expression)

;; filter: Listof<X> (X -> Boolean) -> Listof<X>
;5 Returns a list containing elements of given list
;; for which the given predicate returns true

(define (filter 1lst pred?)
(cond
[(empty? 1lst) empty]
[else (if (pred? (first 1lst))
(cons (first 1lst) (filter (rest 1lst)))
(filter (rest 1st)))]))

76

Common list function #3: filter

;5 smaller-than: Listof<Int> Int -> Listof<Int>
;5 Returns a list containing elements of given list less than the given int

(define (smaller-than 1lst thresh)
(filter (lamgda (x) (< x thresh)) 1lst)

lambda creates an anonymous “inline” function (expression)

lambda rules:
- Can skip the design recipe steps,

BUT
define (filter lst pred? - name, description, and signature
COanptw 15t) empty must be “obvious”
else (if (pred? (first 1st - code Is arithmetic only
cone (firet 1et) (filter {- otherwise, create standalone

filter (rest lst function define

Your Remaining tasks

Implement with filter

)J

smaller-than: ListofInt Int -> ListofInt
Returns list containing elements of given list less than the given int

)

o o
)

; larger-than: ListofInt Int -> ListofInt

Returns list containing elements of given list greater than the given int

B |

shorter-than: ListofString Int -> ListofString
Returns list containing elements of given list with length less than given int

)

)

shorter-than-str: ListofString String -> ListofString
Returns list containing elements of given list with length less than given string

78

Check-In Quiz 10/16

on gradescope

(due 1 minute before midnight)

87

