UMass Boston Computer Science

CS450 High Level Languages (section 2)
Recursion in the Lambda Calculus

[WUY T VBWE NO FRIENDS, REPSON #1734 1]
UNIMPRESSIVE MINDBLOWING FACTS

DID YOU WNOW THRKT
THE WORD "RECWS\ON:‘CON‘(A\NQ
THE WORD *RECURIION
W /7SELF?

Monday, October 23, 2023

Wk OGOA .~
THATE AMAZ...
YOU'RE AN

Recursion in the Lambda Calculus

UMass Boston Computer Science
CS450 High Level Languages (section 2)

Recursion in the Lambda Calculus

[WHY T WAVE NO Frienbs, REASON #1734
UNIMPRERSWE MINDBLOWING FACTS

Monday, October 23, 2023

DID YOL KNOW THUAT
THE WORD “RECURS\ON” CONTAWNG
THE WORD “RECURS\ON”
W /7SELEF?

Logistios
* HW 4 In

_.- (]]

* HW 5 out
e due: Sun 10/29 11:59 pm EST

[WUY T VAVE NO FRIENDS, REASON #1731 |
UNIMPRESLSWVE MINDBLOWING FT

DID YOU KNOW “THAT
THE WORD “RECURSION” CONTAWS |
THE WORD “RECURSION ,
WN /7SELF?

Wk OGOA .~
[THATS AMAZ...
YOU'RE BN
. PESUOLE.

Freom
Lecture 7

“Computation” =
“arithmetic” of
expressions

“high” level
(easier for humans
to understand)

“declarative” —

Core model: Lambda Calculus

sequence of
instructions /
statements

“Computation” =

“imperative” —

Core model: Turing Machines

“low” level
(runs on cpu)

NOTE: This hierarchy is approximate

English
Specification langs
Markup (htm1, markdown)
Database (sov)
Logic Program (prolog)
Lazy lang (Haskell, Rr)

Functional lang (racket)

JavaScript, Python

C# [Java
C++
C
Assembly Language

Machine code

Types? pre/post cond?

tags

queries

This class: how to

program in a high-

level more “human
friendly” way

relations

Delayed computation

Expressions (no stmts)

lleva l"

GC (no alloc, ptrs)

Classes, objects

Scoped vars, fns

Named instructions

0s and 1s

“Nicer” for
humans to use

™ The Lambda (A) Calculus

« A “programming language” consisting of only:
« Lambda functions
« Function application

« Equivalent in “computational power” to
« Turing Machines
 Your favorite programming language!

Last

~ Church Numerals

55 A ChurchNum is a function with two arguments:
;5 “f” : a function to apply
;5 “base” : a base ("zero") value to apply to

;5 For a specific number, its "Church" representation
;; applies the given function that number of times

(define czero - i .
(lambda (f base) base)) applied zero times

(define cone
(lambda (f base) (f base)))

f applied one time

(define ctwo

f applied two times
(lambda (f base) (f (f base))))

(define cthree f applied three times

(lambda (f base) (f (f (f base)))))

Church “Add?”

;5 cplusl : ChurchNum -> ChurchNum
;5 “Adds” 1 to the given Church num

(define cplusl _—— Input ChurchNum
(lambda (n}——" |
(lambda (f basey Returns ChurchNum that ...
(f (n_f base)))))

(define czero \\\ — .
(lambda (f base) base)) (we know “n” will apply £ n times)

(define cone ... adds an extra application of £
(lambda (f base) (f base)))

(define ctwo
(lambda (f base) (f (f base))))

(define cthree
(lambda (f base) (f (f (f base)))))

Church Addition

;5 cplus : ChurchNum ChurchNum -> ChurchNum
;5 “Adds” the given ChurchNums together

(define cplus __— Input ChurchNums
(lambda (m n) «— |
(lambda (f base)< Returns a ChurchNum that ...
(m £ (n f base)))))

(define czero "\ — .
(lambda (f base) base)) (we know “n” will apply £ n times)

] ”n

(define cone ... adds “m” extra applications of f
(lambda (f base) (f base)))

(define ctwo
(lambda (f base) (f (f base))))

(define cthree
(lambda (f base) (f (f (f base)))))

Last

~ Church Booleans

;5 A ChurchBool is a function with two arguments,
;5 where the representation of:

55 “true” returns the first arg, and

;5 “false” returns the second arg

(define ctrue .
(lambda (a b) a)) Returns first arg

(define cfalse
(lambda (a b) b))

Returns second arg

Foview: “A 1 d ¥

The truth table of A A B:

A B AAB

True True True When 4 = True,
True False False | NenAnd(4, B)=5
False True False When A = False,

False False False e Aund| 2,) = A4

Church “And”

;5 cand: ChurchBool ChurchBool-> ChurchBool
;5 “ands” the given ChurchBools together

The truth table of A A B:

A B AANB
True True True
True False False
False True False
False False False

(define cand
(lambda (A B)

(A B A)))
\

(define‘ctrue
(lambda (a b) a))

When A = True,
want And(4, B) =B

AN

(Returns first arg)

When A = False,

want And(4, B) = A

A = ctrue J’
(A B A) =[B|[V]
(cand A B) = B

(define cfalse
(lambda (a b) b))

;; 1if A = cfalse

/

;5 then (A B A) =

A

(Returns second arg)

;5 want (cand A B) = A »

Last
/ine

Church Pairs (Lists)

;5 A ChurchPair<X,Y> 1l-arg function, where

;; the arg fq is applied to (i.e., :selects") the X and Y data values

\ /

;5 ccons: X Y’¥> ChurchPa;p<§;Y>

(define ccons
(lambda (x y)
(lambda (ge
(get x y¥)))

1 “Gets” the first item

(define cfirst
(lambda (cc)
(cc (lambda (x y) X))))

4 “Gets” the second item

(define csecond
(lambda (cc) 5/////
(cc (lambda (x y) y))))

13

™ The Lambda (A) Calculus

« A “programming language” consisting of only:
« Lambda functions
« Function application

* “Language” has:

Numbers

Booleans and conditionals
Lists

Recursion?

Recursion in the Lambda Calculus

Q: How can we write recursive programs with no-name lambdas?

Q: Is there a way for a lambda program to reference itself?

From Lecture 2

Lambda Program that Knows “ltself”

 Program that runs “itself” repeatedly (i.e,, it infinite loops):

Function (takes one argument)

((A (x) (x x)3 Function applies argument (function) to itself

(A (x) (x x))) |

Argument (is also function)

Resultis: | The same program (i.e., the program “itself”)

« Can we do something else besides loop?

Lambda Program that Prints “ltself”

« Program that prints “itself”:

Function (takes one argument)

((A (x) (print2x x)3 Alpplyfunction print2x to string argument
“(M (x) (print2x x))”) |

Argument (string) Result is: | The same program (i.e., the program “itself”)

(define (print2x str)

Line break —‘
(pPintf “(Na\n NV)\n” str Str)))

(could have inlined this)

Function Argument

Lambda Program that Prints “ltself”

« Program that prints “itself”:

Also “itself” (part of program)

((A (x) (print2x x))
“(N (x) (print2x x))”)

“Itself”
(whole program)

« Q: Which part of the program is “itself”?

Lambda Program that Knows “ltself”

 Program that runs “itself” repeatedly (i.e., it infinite loops):

Also “itself” (part of program)

“the recursive call” Insight:
((A (x) (x x)) 1 “Iitself” = “the recursive call”
(A (%) (x x)))

“Itself”
(whole program)

« Q: Which part of the program is “itself”?
« Can we do something more useful with “the recursive call”?

Delay “the recursive call”

What do we do
with this?

Delayed
“recursive call” “the recursive call”

“the recursive call”

((A (x) (x x)) = (A (%) (A (v) ((x x) v)))
(A (x) (x x))) (A (x) (A (v) ((x x) v))))

Add a function @ Give “the recursive call” to
parameter = another function that needs it
(A (F)
What function “needs” a ((AN (x) (F (A (v) ((xx)wVv)))
recursive call? (A () (F (A (v) ((x) v)))))
A Recursive function!

A Recursive Function

(define (factorial n)
(if (zero? n)
1
(* n (factorial (subl n)))))

A Recursive Function, as lambda

(define factorial
(A (n)
(if (zero? n)
1
(* n (factorial (subl n))))))

A Recursive Function without recursion

(define factorial
(A (n)
(if (zero? n)
1
(* n (THE-RECURSIVE-CALL (subl n))))))

Where does this come from?

Make it a parameter!

A Recursive Function without recursion

(define factorial
(A (THE-RECURSIVE-CALL) |Make “the recursive call” a parameter
(A (n)
(if (zero? n)
1
(* n (THE-RECURSIVE-CALL (subl n)))))))

A Recursive Function without recursion

(define factorial factorial-maker
(A (THE-RECURSIVE-CALL) [|Make “the recursive call” a parameter
(A (n)
(if (zero? n)
1
(* n (THE-RECURSIVE-CALL (subl n)))))))

Delay “the recursive call”

“the recursive call”

(A (x) (x x))
(A (x) (x x)))

Delayed
“recursive call” “the recursive call”

(A (x) (A (v) ((x xJ v)))
(A (x) (A (v) ((x x) v))))

Function that needs

f could be “fact-maker”

L1

T f// “recursive call”
/<§A (x) (fﬁ) ((x x) v))))

(A (x) (f (A (v) ((x x) v)))))

26

Y Combinator

“the recursive call”

(A (x) (x x))
(A (x) (x x)))

Y Combinator “creates”
recursive functions

Delayed
“recursive call” “the recursive call”

(A (x) (A (v) ((x xJ v)))
(A (x) (A (v) ((x x) v))))

f could be “fact-maker”

L1

(A ()
(A (x) (f (A (v) ((x x) V)

)))
(A (x) (f (A (v) ((x x) v)))))

27

Code Demo

Check-In Quiz 10/23

on gradescope

(due 1 minute before midnight)

30

