UMass Boston Computer Science

CS450 High Level Languages (section 2)
Interpreting Recursion,

with Mutation!
Monday, December 4, 2023

Logistios
« HW 8 In
e Sunr-12/3-159pm-EST

e HW 9 out
e due: Sun 12/10 11:59 pm EST

Last [ine

“bind” in “CS450)s" Lang

;5 A Variable (Var) is a Symbol

;5 A 450]jsExpr (Expr) is one of:

35 e e Reference a variable binding

;5 - Var
;5 - (list ‘bind_[Var Expr] Expr¥—

new binding is in-scope
(can be referenced) here

- / ® ‘\\

Create new —
variable binding new binding is not

in-scope here

Last [ine

bind examples

73 A 4503sExpr (Expr) 1s one of: (check-equal? B
o (evaldso

o ‘(bind [x (+ x 20)]

;5 - (list ‘bind [Var Expr] Expr) %))

bind examples, with functions

S |

o

, , (XY}

“lambda”
function

, , (XY}

(cons Expr List<Ex€P>)

;5 A 450]jsExpr (Expr) is one of:

&liég;fn List<Var> Expr)

function call

(check-equal?
(eval4so
‘(bind [f (fn (x) (+

X
(f 6))) \
)

4))]

function

arguments

\

f not in-scope here
(function can't be recursive!)

“bind/rec” In “CS450)s” Lang

;5 A 450]jsExpr (Expr) is one of:

;3 - (list ‘bind/rec [Var Expr] Expr¥—T |

|

new binding is in-scope
(can be referenced) here

Create new
variable binding

new binding is also
in-scope here!

Racket recursive function examples

Recursive call (letrec RACKET
([fac<
(define (fac n) S (A (n)
(if (= n 0) (if (= n 9)
1 1
(* n (fac (- n 1))))) Equivalentto.. (* n (fac (- n 1))))])

bind/rec examples

B |

) oy -

S |

o

)) (XY}

; A 450jsExpr (Expr) is one of:

- (list ‘bind/rec [Var Expr] Expr)
- (list “iffy Expr Expr Expr)

JS “truthy” if (hw?)

(letrec
([fac

(A (n)
(if (= n 09)

RACKET

1
(* n (fac (- n 1))))])

(fac B = —»
Equivalent to ...

120

(bind/rec
[fac

(fn (n)

CS450)sLANG

(iffy n Zero is “truthy” false (hw?7)

(* n (fac (- n 1)))

1))]

(fac 5)) ; => 120

Running bind/rec programs

;3 A 450jsExpr (Expr) is one of:

) oy -

)

- (list ‘bind/rec [Var Expr] Expr)

, , [XX

parse

;3 A 450jsAST (AST) is one of:
-

;3 - (recb Symbol AST AST)
-

(struct recb [var expr body])

run l

;3 A 450jsResult (Result) is a:

’yy -

Running bind/rec programs

TEMPLATE ?

;3 run: AST -> Result
;5 Computes result of

;3 A 450jsAST (AST) is one of:
running CS450js AST 33 e

;5 - (recb Symbol AST AST)

(struct recb [var expr body])

run l

;3 A 450jsResult (Result) is a:

’yy -

Running bind/rec

TEMPLATE : extract pieces

;3 run: AST -> Result

;3 A 450jsAST (AST) is one of:
.
;5 - (recb Symbol AST AST)

(define (run/e p) 35
(match p (struct recb{var expr body])

(define (run p)

[(recb x e body) ?? ¥ eé////”§§//////;;%;/;;;]

)
)

13

Running bind/rec

TEMPLATE : recursive call

;3 run: AST -> Result

53 A 450jsAST (AST)f is Jone of:

(define (run p
55 - (Pecb Symbol AST AST)

(define (run/e p) 35
(match p (strudt recb [var expr body])
[(recb x e body) ?? x ?? (e ??) ?? (body »?)))]
)

)

14

Running bind/rec, using environment

;5 An Environment (Env) is one of:

;3 run: AST -> Result
55 - empty

(define (run p) ;5 - (cons (list Var Result) Env)
;3 accumulator env : Environment
(define (run/e p env)

(run/e p INIT-ENV))

Running bind/rec, using environment

;3 run: AST -> Result

(define (run p)
;3 accumulator env : Environment
(define (run/e p env)

1. Compute Result for x

[(recb x e body)
(define env/x (env-add env X (run/e e env))

]

(match p / 2. add x binding to environment \

(run/e p INIT-ENV))

Running bind/rec, using environment

;3 run: AST -> Result

(bind/rec CS450)SLANG
[fac <

(fn (n) i

(define (run p)
;3 accumulator env : Environment
(define (run/e p env)
(match p

[(recb x e body)

(define env/x (env-add env x (run/e e‘env/x

(run/e body\énv/x)]
™~

(run/e p INIT—E;% Compute body
with x In-scope

(iffy n
(*n (fac (- n 1)))

1))]
(fac 5)) ; => 120

??? | This is circular! (no base case)

PROBLEM:

x should be in-scope here too!

twtertide: MUTAtION

« Mutating a variable means to change its value after it is defined

(define x 3)
(display x)

twtertide: MUTAtION

« Mutating a variable means to change its value after it is defined

« Mutation should be rarely used, only in appropriate situations

20

twtertide: MUTAtION

« Mutating a variable means to change its value after it is defined

« Mutation should be rarely used, only in appropriate situations

Item 15, "Minimize mutability. Joshua Bloch Author, Effective Java, Second Edition

] Joshua Bloch, Google's chief Java architect, is a former Distinguished
Effective C++, Scott Meyers, 2005. Engineer at Sun Microsystems, where he led the design and implementation

of numerous Java platform features, including JDK 5.0 language

Item 3: Use const whenever possible.

enhancements and the award-winning Java Collections Framework.

Immutability
makes code
easier to read
and understand

Item 15 tells you to keep the state space of each object as simple as possible. If an
object is immutable, it can be in only one state, and you win big. You never have to
worry about what state the object is in, and you can share it freely, with no need for
synchronization. If you can't make an object immutable, at least minimize the
amount of mutation that is possible. This makes it easier to use the object correctly.

twtertide: MUTAtION

« Mutating a variable means to change its value after it is defined

« Mutation should be rarely used, only in appropriate situations

Because:

* [t makes code more difficult to read
e (just like inheritance and dynamic scope)

e [t violates “Separation of concerns”| (define x 3)
(do-something x) ; mutate x??
(display x) ; ???

22

twtertide: MUTAtION

« Mutating a variable means to change its value after it is defined

« Mutation should be rarely used

When is using mutation ok:

 Performance

e Typically not using high-level languages! (0S, AAA game i.e,, not this class!)
« Beware of pre-mature optimization!

- Shared state (in distributed programs)
« Beware of race conditions and deadlock!

e Circular data structures (e.g., circular lists) e

Running bind/rec, recursive environment items

;3 run: AST -> Result

[(brec x e body)

(44

This is circular! (no base case)

(define env/x (env-add env x (run/e ex

env/x)))

AN

x should be in-scope here too!

Compute body

(Pun/env bodx\i?v/xll\ PRQBuﬂm
)

with x in-scope

Running bind/rec, recursive environment items

;5 A 450jsResult is a:

;3 - Number

35 run: AST -> Result ;3 - FunctionResult

;5 - 450jsErrorResult

Creates mutable box / 1
Makes mutation explicit

;5 A 4507jsErrorResult is a:
[(brec X € bOdy) ;5 - UNDEFINED-ERROR

(define placeholder . ARITY-ERROR
(define env/x (env—add\enwﬂaceholde ;5 -~CIRCULAR-ERROR

Running bind/rec, recursive environment items

;5 run: AST -> Result |;;

’yy -~

55 An Environment (OLD) (Env) is one of:

[(brec x e body)

;5 An Environment (Env) is a: List<EnvVal»>

- empty 2?2? (hOW would env-add
(cons (list Var 450jsResult) Env) and env-lookup
need to change?)

(define placeholder (box CIRCULAR-ERROR)

(define env/x

nv-add env x placeholder)

X

L

;3 An EnvVal is one of:
;5 - 450jsResult
;5 - Box<450jsResult>

L env/Xx

CIRCULAR-ERROR

Running bind/rec, recursive environment items

;3 run: AST -> Result

(bind/rec [f f] f)
; => CIRCULAR-ERROR

CS450)sLANG

Non-function, circular recursive
references (no base case)
produce error results!

[(brec x e body)

(define env/x_(env-add env x placeholder)
(define x-result (run/env e env/Xx)

Compute x’s
| Result with
X In-scope

X

env/x

CIRCULAR-ERROR

Running bind/rec, recursive environment items

;3 run: AST -> Result

Close the (circular data structure)
[(brec x e body) loop, with mutation!

— (define x-result_(run/env e env/x)
Explicitly ;)
mutate—>. s€t-box! placeholder” x-result)

mutable]
box

env/x

X CIRCULAR-ERROR x-result

) |

Running bind/rec, recursive environment items

;5 run: AST -> Result

[(brec x e body)

(define env/x (env-add env X

(bind/rec
[fac

(fn (n)
(iffy n

M

CS450)sLANG

(*n (fac (- n 1)))

1))]

(fac 5)) ; => 120

)

(define x-result (run/env e env/x)

(set-box! placeholder x-result)

(run/env bodx\i?v/xll\
)

Compute body
with x in-scope

env/x

X CIRCULAR-ERROR x-result

HW 9 Preview: Recursion!

Use “CS450)s LANG"! ... to write recursive programs:

Recursion review

« Most recursion is structural (comes from data definitions)!

(define (1lst-fn 1lst)
(cond
[(empty? 1st) ..]

[else .. (first 1st) .. (1st-fn (rest 1st)) ..]))

;3 A List<X> 1is
;5 - empty |

;5 - (cons X List<X»>)

33

A Different Kind of Recursion!

« Not all recursion is structural (comes from data definitions)!

(define (1lst-fn 1lst)
(cond
[(empty? 1st) ..]

[else .. (first 1st) .. (1st-fn (rest 1st)) ..]))

)
)

)

s A List<X> 1is
- empty

; - (cons X List<X>)

34

A Different Kind of Recursion!

« Not all recursion is structural (comes from data definitions)!

;5 gcd : Nat Nat -> Nat
;5 computes greatest common divisor, using Euclid’s algorithm

What template is this
following??

(define (;}d nm)
(if (=/ m 9)

n

(gcd m (modulo n m))

A Different Kind of Recursion!

e Non-structural recursion (doesn’t come from data definitions
IS called generative recursion

* no template, but requires Termination Argument
« Explains why the function terminates!

;5 gcd @ Nat Nat -> Nat
;5 computes greatest common divisor, using Euclid’s algorithm

(define (gcd n m)
(if (= m 9)
n Recursive call must be on “smaller”
(gcd m (modulo n m)) version of the problem

HW 9 Preview: Recursion!

Use “CS450)s LANG"! ... to write recursive programs:

(Extra primitives will be added to
INIT-ENV, ask if you need more)

* Look it up if you don't know any of these
« Using any resources, e.g., ChatGPT, Co-pilot, is allowed
e (still can’t submit else’s hw, obv)

 Repo: ¢s450f23/lecture25-inclass

» File: recursive-examples-<your last name>.rkt

In-class Coding 12/4: recursion

Use “CS450)s LANG"! ... to write recursive programs:

e fac (factorial)
e filt (filter)

: - (Ext imiti ill be added t
» gsort (functional quicksort) 1y N ask it you need more)
* gcd
« sierpinski (fractal)

* Look it up if you don't know any of these
« Using any resources, e.g., ChatGPT, Co-pilot, is allowed
e (still can’t submit else’s hw, obv)

No More Quizzes!

but push your in-class work to:
Repo: cs450f23/lecture25-inclass

39

