UMass Boston Computer Science

CS450 High Level Languages (section2)

How To Design ... 00 Programs?
Monday, December 11, 2023

THE WORLD SEEN BY AN "OBTECT-ORENTED " PROGRAMMER.

Logistios

« HW 9 In

. (]

« HW 10 out (Shapes!)
e due: Sun 12/17 11:59 pm EST

THE LIFE OF OO SOFTWARE

MUCH LATER... |
ENGINEER .

CLEAN

SLATE. SouiD

OH MY. 1’VE
FOUNDATIONS. THIS TiME

Dong

iIT AGAIN,
HAVEN'T T 7

T will BUILD THINGS THE
RIGHT WAY.

THE WORLD SEEN BY AN "OBTECT-ORENTED " PROGRAMMER.

Privacy Man obdoa.h

E‘u-(m’md Provider 5;..3@

A Simple OO Example: Shapes

interface Shape
Image render();

T

class Circle class Rectangle
Num radius; Num width; Num height;
Color col; Color col;
Image render() { Image render() {
return circ-img (radius, col); return rect-img (width, height, col);
} }

A Simple OO Example: Terminology

(abstract) method
(concrete class implements)

T

Interface / abstract class

interface Shape
Image render();

—— implements

. concrete) class
class Circle ()

Num radius; (compound) Data definition!
Color col; ftields

Image render() {
return circ-img (radius, col);

implements

class Rectangle

Num width;

Color col; fields (compound) Data definition!

Image render() {
return rect-img (width, height, col);

}

(concrete) method
implementation

(concrete) class

Num height;

(concrete) method
implementation

CS450 vs OO Comparison

CS 450 Design Recipe 00 Programming

« Compound data (struct) have - Compound data (class) group
fields, separate fns process data fields and methods together!

A Simple OO Example: Compare to CS450

interface Shape
Image render();

T

|
(itemization) Data definition item |

(itemization) Data definition function signature

class Circle class Rectangle (itemization) Data definition item
Num radius; .\ Num width; Num height;
’ (compound) Data definition ’ ’ ..

Color col; ez) Color col; (compound) Data definition
Image render() { Image render() {

return circ-img (radius, col); return rect-img (width, height, col);
} function implementation } function implementation

(one cond clause) for (one cond clause) for

Shape data Shape data

CS450 vs OO Comparison

CS 450 Design Recipe

» Compound data (struct) have
fields, separate fns process data

* Itemization Data Defs explicitly
defined

00 Programming
« Compound data (class) group
flelds and methods together!

* Itemization Data Defs implied by
interface / class definitions

11

CS450 vs OO Comparison

CS 450 Design Recipe 00 Programming

« Compound data (struct) have « Compound data (class) group
fields, separate fns process data fields and methods together!

* Itemization Data Defs explicitly < Itemization Data Defs implied by
defined interface / class definitions

 Functions organized by the kind < Methods organized by the kind of
of data they process! data they process!

12

A Simple OO Example: Compare to CS450

;5 A Shape is one of:
interface Shape | ' (rect Num Num Color)
Image render(); |55 /Mterp: fields are width, height, color
;5 - (circ Num Color)
T ;3 Interp: fields are radius and color

;5 Represents a shape to be drawn on a canvas
| |

class Circle class Rectangle

(struct rect [w h col])
Num width;ijjfﬁlm height; <

Num radius;

(struct circ [r col])

Color col; Color col;
Image render() { Image render() {
return circNQg— / g (width, height, col);

< r‘ender‘ Shape -> Image/
L render sh) method “dispatch"
“concrete”

v
(render-rect sh)]< il :
ementations
render-circ sh)3yy | 2 13

}

“abstract” _—

implementation

[(circ? sh)

CS450 vs OO Comparison

CS 450 Design Recipe 00 Programming

- Compound data (struct) have « Compound data (class) group
fields, separate fns process data fields and methods together!

* Itemization Data Defs explicitly < Itemization Data Defs implied by

defined interface / class definitions
 Functions organized by the kind « Methods organized by the kind of
of data they process! data they process!

 Explicit itemization dispatch (cond) * Implicit itemization dispatch

14

A Simple OO Example: Constructors

interface Shape
Image render();

i)

Circle ¢ = Circle(10, blue);
Image img = c.render();

class Circle

Num radius; Color col;
/] ..
Circle(r, c) {

radius = r;

col = c;
;

Q: Where are method implementations
for an obj instance “stored”?

class Rectangle

Num width; Num height;

height =

/] ..

Rectangle(w, h, c) {
width = w;
col = ¢

}

h;

Color col;

A: It's another (hidden) field (see “method table”)!

CS450 vs OO Comparison

CS 450 Design Recipe

- Compound data (struct) have
fields, separate fns process data

* Itemization Data Defs explicitly
defined

 Functions organized by the kind
of data they process!

 Explicit itemization dispatch (cond)

« Struct Constructor explicitly
Includes method defs ???

00 Programming

« Compound data (class) group
fields and methods together!

* [temization Data Defs implied by
interface / class definitions

« Methods organized by the kind of
data they process!

e Implicit itemization dispatch

« Object Constructor implicitly
Includes method defs

18

OO-style Constructors ... with structs!

Shape “dispatch” function

;5 render : Shape -> Image
(define (render sh)
(cond
[(rect? sh) (render-rect sh)]

[(circ? sh) (render-circ—sh)l))

Method

Shape “interface” definition implementation
(as a field)

(struct Shape [render-method]) |

/
(struct circ Shapé [r col])
(struct rect Shape [w h col])

— / Shape constructors

(make method an optional
argument, with default)

Q: Where are method implementations
for an obj instance “stored”?

A: It's another (hidden) field:!

(de1CEEE‘?mk?1:-:'Hec‘n\ggls_f?ﬂ9 default
[circ-render- render-circ])

(circ circ-render-fn r col)

(define (mk-rect w h col
[rect-render-fn render-rect])
(rect rect-render-fn w h col)

CS450 vs OO Comparison

CS 450 Design Recipe 00 Programming

« Compound data (struct) has - Compound data (class) group
(possibly function) fields! fields and methods together!

e [temization Data Defs explicitly < Itemization Data Defs implied by
defined interface / class definitions

 Functions organized by the kind < Methods organized by the kind of
of data they process! data they process!

« Explicit itemization dispatch (cond) ¢ Implicit itemization dispatch

« Struct Constructor explicitly « Object Constructor implicitly

Includes method defs includes method defs

20

OO-Style Dispatch ... with structs!

Shape 00-style “interface and

450-style “dispatch” function “class” definitions

;; render : Shape -> Image (struct Shape [render-method])

(?igige (render sh) (struct circ Shape [r col])
[(rect? sh) (render-rect sh)] (struct rect Shape [w h col])
[(circ? sh) (render-circ sh)]))

00-Style “dispatch” @ / Q: But object itself must be argument to methods?

:: render : Shape -> Image A: In 00 langs, it's a hidden argument (see “this”)!
(define (render sh)

((shape-render-method sh) sh))

(dE'Fine C (mk—cir‘c 10 rrblue»)) ‘ ‘Cir‘cle Cc = Cif‘ClE(10, blue)

(define img (render c)) S Image img = c.render();|// equivto render(c) !

OO-Style Dispatch ... with structs!

450-style “dispatch” function

;5 render : Shape -> Image
(define (render sh)
(cond
[(rect? sh) (render-rect sh)]
[(circ? sh) (render-circ_sh)]))
e ————

—_—T5» render-circ : Circle -> Image
00-Style “dispatch” ‘

(define (render-circ_this)
(match-defin irc r col) this)
(circl ‘solid” col)) ; 2htdp/image fn
;5 render : Shape -> Image

-~
(define (render sh) | ;5 render-rect : Rectangle -> Image
((shape-render-method sh) sh))

(define (render-rect this)
(match-define (rect w h col) this)
(rectangle w h “solid” col)) ; 2htdp/image fn

CS450 vs OO Comparison

CS 450 Design Recipe

» Compound data (struct) has
(possibly function) fields!

- Itemization Data Defs explicitly
defined

 Functions organized by the kind
of data they process!

« Explicit itemization dispatch (cond)

 Constructor explicitly includes
method defs

 Data to process is explicit arg

00 Programming

» Compound data (class) group
flelds and methods together!

- Itemization Data Defs implied by
interface / class definitions

« Methods organized by the kind of
data they process!

e Implicit itemization dispatch

 Constructor implicitly includes
method defs

* Data to process (‘this”) is Implicit arg

How to Design ... OO0-Style Programs

e For Itemization Data Definition

1. List Iltem Data Defs (and other prev data def parts)

2. Specify required methods

3. Defin;/‘abstract" struct (with # fields = # of methods)

\

4, Define/explicit dispatch function(s) (one per method)\

;5 A Shape is Jone of:

;5 - Rectangl

;3 - Circle

;3 Interp: Represents shape to draw on a canvas

(struct Shape [render-meth])

\

;5 Required/methods:
;5 - render : Shape -> Image 35

; render
(define (render sh)
((shape-render-meth sh) sh))

Shape -> Image

How to Design ... OO0-Style Programs

e For Itemization Data Definition

1.

List Item Data Defs (and other prev data def parts)

2. Specify required methods

3.
4,

Define “abstract” struct (with # fields = # of methods)
Define explicit dispatch function(s) (one per method)

e For each item:

1

2.
3.
4,

Define separate Data def

Define a struct, as substruct of “abstract” struct

Define required methods

Define constructor that includes method implementations

28

How to Design ... OO0-Style Programs

;5 A Rectangle is a: . .
;3 (rect width : Num)\ata Definitio

;5 render-circ : Circle -> Image
(define (render-circ this)

H height : Num Defs (and othef (match-define (circ r col) this)
55 color : Color) L4 methods (circle r “solid” col)) ; 2htdp/image fn
;5 A Circle 1s a: ct” struct (w| ;5 render-rect : Rectangle -> Image

;5 (circ radius : Num '\\C“Spaich_ﬂj(define (render-rect this)

55 color : Color) (match-define (rect w h col) this)
e For each 1tem: \ (rectangle w h “solid” col)) ; 2htdp/image fn

1. Def!ne separate Data def ;3 constructors create shape “objects”
2. Define a struct, as substruct of “ab(de}gmk-rect w h col

[render-meth render-rect])

3. [Define required methods
4. | Define constructori—hafmclu%r (rect render-meth w h col))

(define (mk-circ r col)

(struct redt Shape [w h col]) [render-meth render-circ])
(struct circ Shape [r col]) (circ render-meth r col))

HW 10 Preview: Drawing Shapes!

Use RACKET to create an OO-Style shape drawing app.

Supports
» Rectangles!
e Circles!

* Repo: cs450f23/lecture27-inclass

» File: hwile-<your last name>.rkt

In-class Coding 12/11: start hw10

Use RACKET to create an OO-Style shape drawing app.

Shape

Image place-shape(Image canvas);

|

(struct Shape [place-method])
(struct rect Shape [w h topleft])
(struct circ Shape [r center])

Circle

Num r;
Posn center; // center coordinate

// places circle into given canvas
Image place-shape(Image canvas) {
return
place-image(circ-img(r, ..),
. center
. canvas);

Rectangle

Num w; Num h;

Posn offset;

// places rect into given canvas
Image place-shape(Image canvas) {

return

place-image (rect-img(w, h, ..)

// topleft corner

. offset
. canvas);

Submit your in-class work to github

