UMass Boston Computer Science

CS450 High Level Languages

Recursive Data Definitions

Tuesday, February 25, 2025

i
=

WHAT ARE YOU WORKING ON?

TRYING TO FiX THE PROBLEMS T
CREATED WHEN T TRIED T FiX
THE PROBLEMS I CREATED \JHEN
LTRIEDTO Fix THE PROBLEMS
I CREATED LJHEN....

/

L

Logistios
* HW 3 in

due-Fue2/25-Ham-EST

e HW 4 out
e due: Tue 3/4 11am EST

(What's wrong with this recursion?)

WHAT ARE YOO WORKING ON?

TRYING To FiX THE PROBLEMS T
CREATED WHEN I TRIED To EiX
THE PROBLEMS I CREATED \JHEN
T TRIED TO FiX THE PROBLEMS
% T CREATED LJHEN...

/

No base case!

Last
7. Falling “Ball” Example

) world b= @ S

LA
|

€= What if: the ball can also move side-to-side? ‘»

WorldState would need:
two pieces of data - the x and y coordinates

Last
[ine

Falling “Ball” Example

) World b= B [

]
|
= @ =

What if: the ball can also move side-to-side?

What if: there are multiple balls?

WorldState would need:
two pieces of data - the x and y coordinates

WorldState would need:
multiple (compound) x and y coordinates

DEMO

lpﬁw/ba&é
Kinds of Data Definitions

 Basic data
« E.g, numbers, strings, etc
* Intervals
» Data that Is from a range of values, e.g,, [0, 100)

* Enumerations
« Data that is one of a list of possible values, e.g, “green”, “red”, “yellow”

* Itemizations
« Data value that can be from a list of possible other data definitions
e E.g, either a string or number (Generalizes enumerations)

;3%u~ba&é%

K]

nds of Data Definitions

e Basic data

« E.g, numbers, strings, etc

e Intervals

» Data that is from a range of values, e.g., [0, 100)

e Enumerations

* |t

== « Compound Data

Last
time

« Data that is one of a list of possible values, e.g,, “green”, “red”, “yellow”

emizations
 Data value that can be from a list of possible other data definitions

e E.g, either a string or number (Generalizes enumerations)
2?9

e Data that is a combination of values from other data definitions

Bundom
Ball Animation

Design a big-bang animation that:
e Start: a single ball, moving with random x and y velocity

(not needed for hw)

Randomness

[bracketed args] = optional

(random k [rand-gen]) — exact-nonnegative-integer?

k : (integer-in 1 4294967087) When called with an integer argument k, returns a random exact

rand-gen : pseudo-random-generator? integer in the range 0 to k-1.

= (current-pseudo-random-generator) «—— Optional arg Default value

(random min max [rand-gen]) — exact-integer? When called with two integer arguments min and max, returns a
min : exact-integer? random exact integer in the range min to max-1.

max : (integer-in (+ 1 min) (+ 4294967087 min))

rand-gen . pseudo-random-generator?

“random” is not random???

= (current-pseudo-random-generator)
A pseudorandom number generator (PRNG), also known as a deterministic random bit

generator (DRBG),[” is an algorithm for generating a sequence of numbers whose properties

Not secure! approximate the properties of sequences of random numbers. The PRNG-generated sequence is
e.g., for generating — nottruly random, because it is completely determined by an initial value, called the PRNG's seed

passwords

Alcryptographically secure|pseudorandom number generator (CSPRNG) or

VS | cryptographic pseudorandom number generator (CPRNG) is a pseudorandom

number generator (PRNG) with properties that make it suitable for use in cryptography.

Random Functions: Same Recipe (almost)!

;5 A Velocity is a non-negative integer
;5 Interp: reresents pixels/tick change in a ball coordinate
(define MAX-VELOCITY 10)

;3 random-velocity : -> Velocity
;5 returns a random velocity between © and MAX-VELOCITY
(define (random-velocity)

(random MAX-VELOCITY)) Random functions have
no examples

Functions can
have zero args

(check-true (< (random-velocity) MAX-VELOCITY))
(check-true (>= (random-velocity) 0))
(check-true (integer? (random-velocity)))

(check-pred (A (v) (and (integer? v) Can still test! ;3 random-x : -> ?P?
(< v MAX-VELOCITY) |Justless precise ;; random-y @ -> ???
(>= v 9))) ;; random-ball : -> ???

(random-velocity))

Multi-ball Animation

Design a big-bang animation that:
e Start: a single ball, moving with random x and y velocity
 On click: add a ball at a random location, with random velocity

e If any ball “hits” an edge:
« if it's a vertical edge, the x velocity should flip direction
« If it's a horizontal edge, the y velocity should flip direction

Kinds of Data Definitions

e Basic data
« E.g, numbers, strings, etc

* Intervals
» Data that is from a range of values, e.g., [0, 100)

 Enumerations
« Data that is one of a list of possible values, e.g,, “green”, “red”, “yellow”

* Itemizations
 Data value that can be from a list of possible other data definitions
- E.g, either a string or number (Generalizes enumerations)

« Compound Data - Combines values from other data definitions

today

* Fixed size (e.g, struct)

== « Arbitrary size

Arbitrary Size Data - Lists

In C

Where's base case??
struct node H \

{ int data; OEOEEaE™E

struct node *next; } *head:;

This is a terrible
data definition ®

This is a self-referential

(i.e., recursive!) definition!

Recursion is only valid if there is both
- A base case
- A recursive case (that is “smaller”)

Racket List Data Definition Example

;3 A ListofInts is onefof

;5 - empty Empty (base) case

;5 - (cons Int ListofInts) Non-empty (recursive) case
cons = “node” constructor Recursive!

(using a definition to define itself)

(how can we use a list of ints
to define a list of ints?!?)

Recursion is only valid if there is both
- A base case
- A recursive case (that is “smaller”)

Racket List Data Definition Example

;3 A ListofInts is one of

;5 - emply
;5 - (cons Int ListofInts)

TEMPLATE??

(what kind of data
definition is this?)

Racket List Data Definition Example

))

))

A ListofInts is one of

- empty

;5 - (cons Int ListofInts)

Empty (base) case

This is an
itemization,

so template has cond__

Non-empty (recursive) case

))

TEMPLATE??

(

Empty (base) case

Non-empty (recursive) case

cond

;3 TEMPLATE for list-fn
; list-fn :

ListofInts

\(ggfine (list-fn 1st)

— [(empty? 1st)]
- [(cons? 1st)

The shape of the function
matches
The shape of the data definition!

-2 rrr

1))

Racket List Data Definition Example

;3 A ListofInts 1s one of

55 - empty /“first"

“re

e
;5 - (cons Int ListofInts)

This is| both
itemization,

compound data,

so template has “getters” |

(define (list-fn 1st)
§ cond

.) 53 TEMPLATE for list-fn
t t : i
sotemplate has cond and | . 1ict-fn : ListofInts

[(em 2 1st)]
[(cons? 1st) .T——(first 1st)
... (rest 1st)]))

The shape of the function
matches

The shape of the data definition!

v P r
e o o

Walit, where Is the
recursion???

Racket List Data Definition Example

))

))

A ListofInts is oneljof
- empty
;5 - (cons Int ListofInts

TEMPLATE??

N\

The shape of the function

... Is also recursive!

))

))

(define (list-fn 1st)

: list-fn

; TEMPLATE for Jlist-f

(cond
[(empty? 1st)
[(cons? 1st)

ce.. (list-

matches
The shape of the data definition!

-2 rrr

So recursion in the data definition
... means recursion in the
(template) function!

first 1st)
fn (rest 1st))]))

Racket Recursive List Fn Example: sum

Given a singly linked list. The task is to find the sum of

nodes of the given linked list. \

Description!

‘/Head
C T TP IHE T
Data MNext

Taskistodo A+ B+ C+D.

Examples:

geeksforgeeks.com

s e ;5 TEMPLATE for list-fn

Sum of nodes:

A ;3 list-fn : ListofInts -> ???
st 17 ess (define (list-fn 1st)
Output: 36 \ (Cond

Examples!

[(empty? 1st)]
[(cons? 1st) (first 1st)
ce.. (list-fn (rest 1st))]))

Racket Recursive List Fn Example: sum

Design Recipe:
Now fill in

template!
(with arithmetic)

;3 Returns sum of list of ints
;3 sum-1st: ListofInts -> Int
(define (sum-1lst 1st)

(cond
[(empty? 1st)]
[else (first 1st)

.... (sum-1st (rest 1lst)) ...

-1))

Racket Recursive List Fn Example: sum

;5 - empty

;3 A ListofInts is one of

(cons Int ListofInts)

;5 Returns sum of list of ints

;5 sum-1st: ListofInts -p|Int

(define (sum-1lst 1st)
(cond

[(empty? lst) 0] !

[else (first 1lst) .{.

. (sum-1st (rest lst))

NEXT: How to

“combine” pieces?

Think about
data types!

.- 1))

Racket Recursive List Fn Example: sum

;5 Returns sum of list of ints
;3 sum-1st: ListofInts -> Int
(define (sum-1lst 1st)
(cond
[(empty? 1lst) O]
[else (+ (first 1st)
(sum-1st (rest 1st)))]))

LIst contracts

shallow check ;3 Returns sum of list of ints

butaBo(ddaw;B\\\\ define/contract (sum-1lst 1st)
“deeper check” (->X1istof integer?) integer?)
(only when needed) (cond

[(empty? 1st) O]
[else (+ (first 1st)
(sum-1st (rest 1st)))]))

Multi-ball Animation

Design a big-bang animation that:
e Start: a single ball, moving with random x and y velocity
« On aclick: add a ball at random location, with random velocity

e If any ball “hits” an edge:
« if it's a vertical edge, the x velocity should flip direction
« If it's a horizontal edge, the y velocity should flip direction

* A WorldState 1c¢ an 1inknown nimher nf hallcl

;3 A WorldState is .. a 1list of balls!

nertute: Data Definitions (ch 5.7)

All possible data values

- Hrrue Hfalse
Hrrue Hfalse

A data definition
= (a named) subset of all
possible values

We are defining which data values are valid for our program!

All programs are data manipulators ...

So this must be the first step of programming!

Also makes “error handling” easy

nertute: Data Definitions (ch 5.7)

All possible basic data values

(make-posn "helloe" 0)
(make-posn "world" 1)
(make-posn "good" 2)
(make-posn "bye" 3)
(make-posn (make-posn 0 1) 2)
(make-posn 0 3)
(make-posn 1 3)
(make-posn 2 3)
(make-posn 3 3)

(makea-ball -1 0)
(maka-hall -1 1)
(make-ball -1 2)
(make-bhall -1 3)
(maka-ball "bye" #t)

"good"
i bye i

Possible to expand the universe
of values, e.g., new compound

data definitions (struct,
or other data structure)

Multi-ball Animation

Design a big-bang animation that:
e Start: a single ball, moving with random x and y velocity
« On aclick: add a ball at random location, with random velocity

e If any ball “hits” an edge:
« if it's a vertical edge, the x velocity should flip direction
« If it's a horizontal edge, the y velocity should flip direction

* A WorldState 1c¢ an 1inknown nimher nf hallcl

;3 A WorldState is .. a 1list of balls!

33 A WO is a
(struct w [X y xvel yvel] #:transparent)

i3 Wherl pall

33 X: X represents x coordinate of ball center in animation
;5 Y: YCoord - represents y coordinate of ball center in animation
;3 Xvel: Integer - represents x velocity, where

H postive = to the right, negative = to the left
;5 yvel: Integer - represents y vel, where
55 positive = down, negative = up

;3 A ListofBall is one of:

55 - empty
;5 - (cons Ball ListofBall

;3 A WorldState is a ListofBall

(define (main)
(big-bang (list (random-ball))

on-mouse handle-mouse] Thc(ajse ndeedﬁo b(;el

i _+ _ updated to handle new
:On tick next-World] WorldState data def
to-draw World->Image])

;3 A WorldState is a ListofBall

“next World”

List template!

;; list-fn: WorldState -> ???
;5 list of Ball template
(define (list-fn w)

(cond
[(empty? w)]
[else (first w)

c... (list-fn (rest w))]))

“next World”

List template!

;3 hext-World : WorldState -> WorldState
;3 Computes the next world state on a tick
(define (next-World w)

(cond
[(empty? w)]
[else (first w)

... (next-World (rest w))]))

‘next World” example

A

A

A

function does

task which processes
kind of data

(define (next-World w)

Ball

(cond
[(empty? w)%/////
[else (first w) .

... (next-World (rest w))]))

;3 hext-World : WorldState -> WorldState
;3 Computes the next world state on a tick

(check-equal?

(next-World (list (mk-Ball @ 6 1 1)))

(list (next-Ball (mk-Ball © © 1 1)))

Last
[ine

‘next Ball”

This was the previous “next-World” function!

;3 computes n{ Ball

(nevt-Torld w)
ine (Workd X y xv yv) w)

(defin
(mat

(mk-WortdState

(next-x x xv)

Ball

ition and vel of ball after 1 tick

ball

(next-y y ...)
(next-xv xv ..

(next-yv yv ..

)
.)))

“next World” Think about
data types!

Fill in template ... ;3 A WorldState is a ListofBall

;3 hext-World : WorldState -> WorldState
;3 Computes the next world state on a tick
(define (next-World w)

(cond
[(empty? w)]
[else (first w)

. ... (next-World (rest w))]))

“next World” Think about
data types!

;3 hext-World : WorldState -> WorldState
;3 Computes the next world state on a tick
(define (next-World w)

(cond Ball
[(empty? w) empty]
[else (first w)
.... (next-World (rest w))]))

\

function does

task which processes
kind of data

\

A

“next World”

;3 hext-World : WorldState -> WorldState

;3 Computes the next world state on a tick

. NEXT: How to
(define (next-World w) “combine” pieces?
(cond -
[else (next-Ball (first w)) [datatypes!
...;7(next—World (rest w))1]))
— :
Want: 1 function does

Ball + ListofBall
-> ListofBall

\

task which processes
kind of data

A

“next World”

;3 hext-World : WorldState -> WorldState

;3 Computes the next world state on a tick

. NEXT: How to
(d?flnz (next-World w) “combine” pieces?
con
[(empty? w) empty] Thinkabmft
[else (cons (next-Ball (first w)) data typest

(next-World (rest w)))]))

“Render World”

List template!

;3 list-fn : list-fn -> ???
;3 TEMPLATE for list functions
(define (list-fn 1st)
(cond
[(empty? 1st)]
[else
c... (first 1st)
c... (list-fn (rest 1st)) 1))

“Render World”

;5 World->Image : World -> Image
;5 Draws Ball images into a scene
(define (World->Image w)
(cond
[(empty? w)]
[else
ce.. (first w)
... (World->Image (rest w)) 1))

“Render World”

;5 World->Image : World -> Image
;5 Draws Ball images into a scene
(define (World->Image w)
(cond
[(empty? w) EMPTY-SCENE]
[else
... (first w)éTTTT//_Ball

.... (World->Image (rest w)) 1))

“Combine” the pieces

“Render World”

;5 World->Image : World -> Image
;5 Draws Ball images into a scene
(define (World->Image w)
(cond
[(empty? w) EMPTY-SCENE]
[else
(Ball->Image (first w)
.... (World->Image (rest w)) 1))
Want: oo - '
Ball -> Image and: - “Combine” the pieces
Image + Image -> Image

“Render World”

;5 World->Image

(cond

: World -> Image
;5 Draws Ball images into a scene
(define (World->Image w)

[(empty? w) EMPTY-SCENE]
[else (add-Ball-to-scene
(first w)
(World->Image (rest w)))]))

Or:
Ball +Image -> Image

7

“Combine” the pieces

“handle Mouse”

For multi-arg function, choose which (argument’s) template to use

Enumeration

/

;3 Inserts new random ball onclick
(define (handle-mouse w X y mevt)

;3 handle-mouse : WorldState Xcoord Ycoonrd Mouse%vent

Enumeration

/

;3 handle-mouse : WorldState Xcoord Ycoonrd Mouse%vent
-> WorldState

;3 Inserts new random ball onclick
(define (handle-mouse w X y mevt)
(cond
[(click? mevt)]
[else w])

Enumeration template
(collapsed)

\

function does

task which processes
kind of data

\

A

Multi-ball Animation: more?

Design a big-bang animation that:
« Start: a single ball, moving with random x and y velocity

« On aclick: add a ball at random location, with random velocity

« And random size?
e And random color?

o If any ball “hits” an edge:
« if it's a vertical edge, the x velocity should flip direction
 If it's a horizontal edge, the y velocity should flip direction

;3 A WorldState is .. a 1list of balls!

In-class exercise 2/25
on gradescope

