UMass Boston Computer Science

CS450 High Level Languages

List Fns2, More Abstraction

Tuesday, March 4, 2025

map, filter, and reduce
explained with emoji @&
map([F, A4, @, ¥], cook)
=> [2) *l!?, (\) M]

filter([®, ®, *», W], isvegetarian)

=> [®, 0]

reduce([®, ®, 6 , M7, eat)

=> &

Logistios
e HW 4 In
+ dye-Tues 3 4-11am-EST

« HW 5 out
e due: Tues 3/11 11am EST

map, filter, and reduce
explained with emoji @&

map([®, A, ¥, ¥], cook)
:> [s) $7 “) m]

filter([®, ®, *», W], isvegetarian)

=> [®, 0]

reduce([®, ®, 5, M7, eat)

=> &

big-bang stop-when

(stop-when last-world?) syntax

last-world? : (-> WorldState boolean?)

tells DrRacket to call the last-world? function at the start of the world program and
after any other world-producing callback. If this call produces #true, the world
program is shut down. Specifically, the clock is stopped; no more tick events,
KeyEvents, or MouseEvents are forwarded to the respective handlers. The big-bang
expression returns this last world.

(stop-when last-world? last-picture) / gamE‘Over? predlcate

last-world? : (-> WorldState boolean?)

last-picture : (-> WorldState Scene?)N X
render-1last function

tells DrRacket to call the 73 r1d? function at the start of the world
after any other world-producing callbatdsdf this call produces #true, thj (define (main)

program is shut down after displaying the worl t time, this timg (big-bang INIT-WORLDSTATE

image rendered with last-picture. Specifically, the clock is ed; n [on-tick next-WorldState 1]

events, KeyEvents, or MouseEvents are forwarded to the respective han[~~g. [stop-when game-over? render-last]
bang expression returns this last world. [on-key handle-key]

[to-draw WorldState->Image]))

Last

~List (Recursive) Data Definition 1

;3 A ListofInt is one of:
55 - empty
;5 - (cons Int ListofInt)

Last

—~ List (Recursive) Data Definition 1: Fn Template

Recursive call matches
recursion in data definition

;3 A ListofInt isjone of:
;5 - empty |

;5 7 (cons Int ListofInt)

/)]]

;3 TEMPLATE for/list-fn
;3 list-fn : -> 7
(define (lis¥-th 1st)
(cond Extract pieces of
cond clause for each [(empty? ISt) T compound data
itemization item [(cons? 1st) {first/1lst)

(list-fn (rest lst);.::..]))

Last
/ine

Recursive List Fn Example 1: inc-1ist

Function design recipe:
Name

Signature
Description
Examples

Template

Ll RY e =

))

))

(check-equal?
(inc-1list (list 1
(list 2

2 3))
3 4))
|

; inc-list : ListofInt -> ListofInt
; increments each list element by 1
(define (inc-1st 1st)

(cond
[(empty? 1st)]
[(cons? 1st) (first 1st)

(inc-1st (rest 1st))

1))

Last
/ine

Recursive List Fn Example 1: inc-1ist

(define (inc-1st 1st)
(cond

;5 inc-1list : ListofInt -> ListofInt
;5 increments each list element by 1

Empty input produces empty output
(look at signature for help if needed)

[(empty? 1st) empty]
[(cons? 1st) (first 1st) e
(inc-1st (rest 1st))]))

Last
[ine

Recursive List Fn Example 1: inc-1ist

))

; inc-1list : ListofInt
;5 increments each list element by 1
(define (inc-1st 1st)

(cond
[(empty? 1st) empty]

[else (addl (first 1st))
(inc-1st (rest 1st))]))

-> ListofInt

Call another function to process
(first) (Int) list element

Last

- Recursive List Fn Example 1: inc-1ist

;5 inc-1list : ListofInt -> ListofInt
;5 increments each list element by 1

(define (inc-1st 1lst) Figure out how to “combine” with
(cond (rlecukrsi;/e.calltresuflt DN
OOK at signature 10r nelp IT neede
[(empty? 1st) empty]

[else (cons (addl (first 1st))
(inc-1st (rest 1st))]))

Last

~ List (Recursive) Data Definition 2

;; A ListofBall is one of:
55 - empty
;5 - (cons Ball ListofBall)

Last

~ List (Recursive) Data Definition 2: Fn Template

Recursive call matches
recursion in data definition?

;; A ListofBall is one of:

55 - empty
;5 - (cons Ball ListofBall)

;5 TEMPLATE for list-fn
;3 list-fn : ListofBall -> ???
(define (list-fn 1lst)

(cond Extract pieces of
P compound data?
cond clause for each [(empty. ISt) e] . Pou
itemization item? [(cons? 1st) (first 1st)

(list-fn (rest lst);.::..]))

Last
/ine

Recursive List Fn Example 2: next-world

Function design recipe:
Name

Signature
Description
Examples

Template

Ll RY e =

;35 hext-world: ListofBall -> ListofBall
;5 Updates position each ball by one tick
(define (next-world lst)
(cond
[(empty? 1st)]
[(cons? 1st) (first 1st) e
(next-world (rest 1st))]))

Last
/ine

Recursive List Fn Example 2:

hext-world

(define (next-world lst)
(cond
[(empty? 1st) empty]

;5 hext-world: ListofBall -> ListofBall
;5 Updates position each ball by one tick

Empty input produces empty output
(look at signature for help if needed)

[(cons? 1st) (first 1st) e
(next-world (rest 1st))]))

Last

- Recursive List Fn Example 2: next-world

(define (next-world lst)
(cond
[(empty? 1st) empty]

;3 hext-world: ListofBall -> ListofBall
;3 Updates position each ball by one tick

Call another function to
process (first) list element?

Ball

[else (??? (first 1st))
(next-world (rest 1lst))]))

Last

- Recursive List Fn Example 2: next-world

;5 hext-world: ListofBall -> ListofBall
;5 Updates position each ball by one tick

(define (next-world lst) Call another (Ball) function to
(cond process (first) list element

[(empty? 1st) empty]
[else (next-ball (first 1st))
(next-world (rest 1lst))]))

Last

~ Recursive List Fn Example 2:

hext-world

(define (next-world lst)
(cond
[(empty? 1st) empty]

;5 hext-world: ListofBall -> ListofBall
;5 Updates position each ball by one tick

Figure out how to “combine” with
recursive call result
(look at signature for help if needed)

[else (cons (next-ball (first 1st))
(next-world (rest 1lst))]))

Last Differences?

-~ Ccomparison 1

;3 1nc-1st: ListofInt -> ListofInt
;3 Returns list with each element incremented
(define (inc-1lst 1st)
(cond
[(empty? 1lst) empty]
[else (cons (addl (first 1st))
(inc-1st (rest 1st)))]))

;3 next-world : ListofBall -> ListofBall
;35 Updates position of each ball by one tick
(define (next-world 1st)
(cond
[(empty? 1lst) empty]
[else (cons (next-ball (first 1st))
(next-world (rest 1st)))]))

Last
[ine

Abstraction: Common List Function

Make the difference a
parameter of a
(function) abstraction

(define (1st-fnl fn 1lst)
(cond
[(empty? 1st) empty]

[else (cons (fn (first 1st))
(1st-fnl (rest 1st)))]))

Abstraction Recipe

1. Find similar patterns in a program
 Minimum: 2
 |deally: 3+
2. ldentify differences and make them parameters

3. Create a reusable abstraction with the discovered parameters
- Eg, afunction(al) abstraction

Abstraction: Common List Function #1

35 lst-fnl: (?? -> ??) Listof?? -> Listof??
;5 Applies the given fn to each element of given 1st

(define (1st-fnl fn 1lst)
(cond
[(empty? 1st) empty]
[else (cons (fn (first 1lst))
(1st-fnl (rest 1st)))]))

Abstraction of Data Definitions

)
)

)

A ListofInt is one of
- empty
- (cons Int ListofInt)

)
)

)

: A ListofBall is one of

- empty
- (cons Ball ListofBall)

Abstraction Recipe

1. Find similar patterns in a program
 Minimum: 2
* |deally: 3+
=2. ldentify differences and make them parameters

3. Create a reusable abstraction with the discovered parameters
- E.g., a function(al) abstraction

Abstraction of Data Definitions

)
)

)

A ListofInt is one of
- empty
- (cons Int ListofInt)

)
)

)

: A ListofBall is one of

- empty
- (cons Ball ListofBall)

Abstraction Recipe

1. Find similar patterns in a program
 Minimum: 2
* |deally: 3+
2. ldentify differences and make them parameters

=»3. Create a reusable abstraction with the discovered parameters
- Eg, afunction(al) abstraction
=) ¢ E.g., a data abstraction

Abstraction of Data Definitions

)
)

)

A ListofInt is one of

/ parameter

- empty
- (cons Int ListofInt)

)
)

)

: A ListofBall is one of

=

55 A Listof<i§ is one of

5, - empty
;5 - (cons X Listof<X>)

- empty
- (cons Ball ListofBall)

Abstraction: Common List Function #1

NOTE: textbook writes it like this
(both are ok, just follow data definition)

;5 lst-fnl: [X -> Y] [Listof X] -> [Listof Y]
;5 Applies the given fn to each element of given lst

;3 lst-fnl: (X -> Y) Listof<X> -> Listof<Y>
;5 Applies the given fn to each element of given 1lst

(define (1lst-fnl fn 1lst)
(cond
[(empty? 1lst) empty]
[else (cons (fn (first 1st))
(1st-fnl (rest 1st)))]))

Abstraction Recipe

1. Find similar patterns in a program
 Minimum: 2
* |deally: 3+
2. ldentify differences and make them parameters
3. Create a reusable abstraction with the discovered parameters

- E.g., a function(al) abstraction
« E.g, a data abstraction

=) 4. Use the abstraction, by giving concrete arguments for parameters

Abstraction: Common List Function #1

;5 lst-fnl: (X -> Y) Listof<X> -> Listof<Y>
;5 Applies the given fn to each element of given 1st

(define (1st-fnl fn 1lst)
(cond
[(empty? 1st) empty]
[else (cons (fn (first 1lst))
(1st-fnl (rest 1st)))]))

(define (inc-1lst 1st) (lst-fnl addl 1st)
(define (next-world 1st) (lst-fnl next-ball 1st)

Q: Do these functions follow the design recipe (template)?

A: They do. Because “arithmetic” is always allowed.

(define (inc-1lst 1st) (lst-fnl addl 1st)
(define (next-world 1st) (lst-fnl next-ball 1st)

Common List Function #1

;3 Ist-fnl: (X -> Y) Listof<X> -> Listof<Y>
;5 Applies the given fn to each element of given 1st

(define (1lst-fnl fn 1lst)
(cond
[(empty? 1st) empty]
[else (cons (fn (first 1lst))
(1st-fnl (rest 1st)))]))

(define (inc-1lst 1st) (lst-fnl addl 1st)
(define (next-world 1st) (lst-fnl next-ball 1st)

Not allowed in HW5!

Common List Function #1: map

;3 map: (X -> Y) Listof<X> -> Listof<Y>
;5 Applies the given fn to each element of given 1st

(define (map fn 1lst)
(cond
[(empty? 1st) empty]
[else (cons (fn (first 1lst))
(map (rest 1st)))]))

(define (inc-1st 1st) (map addl 1lst)
(define (next-world 1lst) (map next-ball 1lst)

Abstraction Recipe

1. Find similar patterns in a program Abstractions should
« Minimum: 2 have a “clear and
e Ideally: 3+ concisely defined task”

2. ldentify differences and make them parameters

3. Create a reusable abstraction with the discovered parameters
- E.g., a function(al) abstraction
« E.g, a data abstraction

== « The abstraction must have a short, clear name and “be logical”
4. Use the abstraction by giving concrete “arguments” parameters

V' A £ a &y & 7 - £ o &y & V' A 475 2 &
V- 570 5 , 3 A1 - W 5 ey Ao NG 57¢ 5 »
Y. & ‘.§ &y 4 f Y. 4 ‘1.@ &y 4 Y. £ f s &Y 4 f
e y. .. > S » £ Y ' S # fe 3 » £ e V.. o S »
o R Y e N A R e R R
o o el e | i el sl 1\ 7 | : SRS e | i
et 1 R T X o R IR 5 A ! T R T \
v, VAL S ¥ oS v, ok ¥ it . AL, S ¥ Poill ™
“WAT B “NAT B "NAT B
TR, s TR, P TR, O e
DN S g DN S 0y e Sl a1y
s .\«_.'i"};:», e B .u_;ﬁ"}?f, e e 8 ’1;’ e
AR v o 2 LB v o & X Y v -
Ry &Y &y & Ry & & &y 4 Ry & &y &
& & £ & W & & & & £ N & & & & £ Y &
y oy 4 i oy 4 % i oy 4

1. Find similar patterns in a program
 Minimum: 2
* |deally: 3+

2. ldentify differences and make them parameters

Not all “repeated code” should be abstracted

3. Create a reusab[e|_(:reating Bad Abstractions is Dangerous

- E.g., a function(al) abstrar-“
e E g, a data abstraction eatlng GOOd AbStraCtlonS |S Hard

« The abstraction must have a short, clear name and “be logical”
4. Use the abstraction by giving concrete “arguments” parameters

£ 000
@pims - Follow

° o h , ” : h . “:(i :,, | : : f
Abstraction Warning Story miimerims e oo oo s

@rbonales ”

| came to see the following pattern:

1. Programmer A sees duplication ...

2. Programmer A extracts duplication and gives it a name.
This creates a new abstraction.

3. Programmer A replaces duplication with the new abstraction.
Ah, the code is perfect. Programmer A trots happily away.

4. Time passes ...

https://sandimetz.com/blog/2016/1/20/the-wrong-abstraction

'r’ ooo
B ©@pims - Follow

A bStra Cti O n \Na rn i n g StO ry This, a million times this! “@BonzoESC: “Duplication is far

cheaper than the wrong abstraction” @sandimetz
@rbonales “

4. Time passes ...

5. A new requirement appears ... for which the current abstraction is almost perfect.
6. Programmer B gets tasked to implement this requirement ...

Programmer B tries to retain the existing abstraction ...
.. but it's not perfect ... so they alter the code to take a parameter,
.. and then add extra logic that is conditionally based on the value of that parameter.

https://sandimetz.com/blog/2016/1/20/the-wrong-abstraction

f? 000 &3
B ©@pims - Follow

® ® . , sy :] ”l,’flfi X I : ; f
Abstraction Warning Story [imene oo oo s

@rbonales ”

How to avoid?

Always be thinking about the data

7. Another new requirement arrives ... and a new Programmer X, who adds an additional parameter
... and a new conditional ... Repeat until code becomes incomprehensible.

8. You appear in the story about here ... and your life takes a dramatic turn for the worse.

https://sandimetz.com/blog/2016/1/20/the-wrong-abstraction

Program Design Recipe

> Data Designs

N

Function Designs

o/

£ 000
@pims - Follow

® ° 2 , ” : h ! e k:L :“ I : . f
Abstraction Warning Story [z ime s oot ouicton s fo

@rbonales ”

How to avoid?

Always be thinking about the data

Don't focus only on “getting the code working”

Programmer B =1 These programmers only cared about “getting the code working”

add extra logic

7. Another new requirement arrives. And a new Programmer X, who adds an additional parameter and a
new conditional. Loop until code becomes incomprehensible.

8. You appear in the story about here, and your life takes a dramatic turn for the worse.

https://sandimetz.com/blog/2016/1/20/the-wrong-abstraction

Last

~ Common List Function #2: 777

Last

- Comparison #2

;53 sum-1st: ListofInt -> Int
(define (sum-1lst 1st)
(cond
[(empty? 1lst) 0]
[else (+ (first 1st)
(sum-1st (rest 1st)))]))

;5 render-world : ListofBall -> Image
(define (render-world 1lst)
(cond
[(empty? 1st) EMPTY-SCENE]
[else (place-ball (first 1st)
(render-world (rest 1st)))]))

Abstraction Recipe

1. Find similar patterns in a program
 Minimum: 2
 |deally: 3+
=)2. ldentify differences and make them parameters

3. Create a reusable abstraction with the discovered parameters
» E.g., a function(al) abstraction
« E.g, a data abstraction

« The abstraction must have a short, clear name and “be logical”
4. Use the abstraction by giving concrete “arguments” parameters

Last

- Comparison #2

;53 sum-1st: ListofInt -> Int
(define (sum-1lst 1st)
(cond
[(empty? 1st) 0]
[else (+ (first 1st)
(sum-1st (rest 1st)))]))

;5 render-world : ListofBall -> Image
(define (render-world 1lst)
(cond
[(empty? 1st) EMPTY-SCENE]
[else (place-ball (first 1st)
(render-world (rest 1st)))]))

Common List Function #2

X = Type of list element N

'Y =Result Type

V4

;s list-fn2 : (X Y -> Y) Y Listof<X> -> Y

(define (1st-fn2 fn initial 1lst)
(cond
[(empty? 1st) initial]
[else (fn (first 1lst) (1lst-fn2 fn initial (rest 1lst)))]))

Abstraction Recipe

1. Find similar patterns in a program
 Minimum: 2
* |deally: 3+
2. ldentify differences and make them parameters

=»3. Create a reusable abstraction with the discovered parameters

» E.g., afunction(al) abstraction
« E.g, a data abstraction

« The abstraction must have a short, clear name and “be logical”
4. Use the abstraction by giving concrete “arguments” parameters

Common List Function #2: foldr

Also called “reduce”

Because a list of values is
“reduced” to one value

;5 foldr: (XY ->Y) Y Listof<X> -> Y

(define (foldr fn initial 1lst)
(cond
[(empty? 1st) initial]
[else (fn (first 1lst) (foldr fn initial (rest 1lst)))]))

Abstraction Recipe

1. Find similar patterns in a program
 Minimum: 2
 |deally: 3+
2. ldentify differences and make them parameters

3. Create a reusable abstraction with the discovered parameters

» E.g., a function(al) abstraction
« E.g, a data abstraction

« The abstraction must have a short, clear name and “be logical”
=) 4. Use the abstraction by giving concrete “arguments” parameters

Common List Function #2: foldr

(define (foldr fn initial 1st)
(cond
[(empty? 1st) initial]
[else (fn (first 1lst) (foldr fn initial (rest 1lst)))]))

;3 sum-1st: ListofInt -> Int

(define (sum-1st 1st) (foldr + © 1st))

;5 render-world: ListofBall-> Image

(define (render-world 1lst) (foldr place-ball EMPTY-SCENE 1st))

Do we always want to start at the right?

For some functions, order doesn’t matter, but for others, it does?

(foldr + @ (list 1 2 3)) = (1 + (2 + (3 + 9)))

(1+ (24 (3+0))) = (((1L+0) +2)+ 3) (Addition is associative)

(1- (- (- e>>>®? (((1 - @) - 2) - 3)

NQleJStFunCUCW] Zb:fOldl(WHMmMU

Challenge:

* Change foldr to foldl
» 5o that the function is applied from the left (first element first)

(define (foldr fn initial 1lst) (1 + (2 + (3 +0)))
(cond '
[(empty? 1st) initial] (1 -(2=(3-29)))
[else (fn (first 1st) (foldr fn initial (rest 1st)))]))
(define (foldl fn initial 1lst) (((1 +0) +|2) * 3)
(cond (((1 - 0) -2) - 3)

[(empty? 1st)]
[else (first 1st) (foldl fn initial (rest 1lst)))]))

NQleJStFunCﬂCW] Zb:fOldl(mHMmMU

define (foldr fn initial 1st
cond
empty? lst) initial

else (fn (first 1st) (foldr fn initial pesE_;§;,,ff—”res”“%gii;?\\\\

/

(define (foldl fn result—so—FaFfist)
(cond
[(empty? 1lst) result-so-far]

[else (foldl fn (fn (first 1lst) result-so-far) (rest 1lst)))]))

(((1 + 0) +)

=

Common list function

Tasks Follow the design recipe!

Write the following functions: (check-equal?

(smaller-than (list 1 3 45 9) 4)

;3 smaller-than: ListofInt Int -> ListofInt (list 1 3))

;5 Returns a list containing elements of given list
;5 that are less than the given int

(check-equal?
(greater-than (list 1 3 4 5 9) 4)

;3 larger-than: ListofInt Int -> ListofInt (list 5 9))
;5 Returns a list containing elements of given list
;5 that are greater than the given int

;5 quicksort: ListofInt -> ListofInt
;; sorts a given list (with no dups) in ascending order
(define (quicksort 1lst)
(define pivot (random 1st))
(append (quicksort (smaller-than lst pivot)) pivot (quicksort (greater-than 1lst pivot))))

;5 smaller-than: ListofInt Int -> ListofInt
;5 Returns a list containing elements of given list
;5 that are less than the given int

(define (smaller-than 1lst x)

(cond
[(empty? 1st) ...]
[else ... (first 1st)

... (smaller-than (rest 1st) x)) ...]))

;5 smaller-than: ListofInt Int -> ListofInt
;5 Returns a list containing elements of given list
;5 that are less than the given int

(define (smaller-than 1lst x)

(cond . .
[(empty? 1st) empty] What type of data:
[else ... (first 1st)

... (smaller-than (rest 1st) x)) ...]))

;5 smaller-than: ListofInt Int -> ListofInt
;5 Returns a list containing elements of given list
;5 that are less than the given int

(define (smaller-than 1lst x)

(cond e
[(empty? 1st) empty] int” fn
[else ... (f (first 1lst))

... (smaller-than (rest 1st) x)) ...]))

;5 smaller-than: ListofInt Int -> ListofInt
;5 Returns a list containing elements of given list
;5 that are less than the given int

(define (smaller-than 1lst x)

(cond — ?
[(empty? 1st) empty] What about x?
[else ... (f (first 1st) x)

... (smaller-than (rest 1st) x)) ...]))

;3 smaller-than: ListofInt Int -> ListofInt
;5 Returns a list containing elements of given list
;3 that are 1e§s than the given int

(define (smaller-than 1lst x)

(cond
[(empty? 1lst)/ empty]
[else ... (< (first 1st) x)

... (smaller-than (rest 1st) x)) ...]))

torty
Intertude Htdp ch23

Two-Argument Templates Allowed in HWS!

Sometimes ... two fn args are supposed to be processed together!

The function should combine the

(define (smaller-than 1lst x) templates of the two kinds of data
(cond |
[(empty? 1lst) empty] In this case:
[else ... (< (first 1lst) x) e - List ...
- ..and Int -> Bool arithmetic

... (smaller-than (rest 1st) x)) ... |
(() X)) 1)) Template for Bool is ... 1f

Rule of thumb:
- one 1f allowed per function ...

;5 smaller-than: ListofInt Int -> ListofInt
;5 Returns a list containing elements of given list
;5 that are less than the given int

(define (smaller-than 1lst x)
(cond
[(empty? 1st) empty]
[else (if (< (first 1lst) x)

‘e (é&éller—than (rest 1st) x)) ...]))

;5 smaller-than: ListofInt Int -> ListofInt
;5 Returns a list containing elements of given list
;5 that are less than the given int

(define (smaller-than 1lst x)
(cond
[(empty? 1st) empty]
[else (if (< (first 1st) x)

(é&éller—than (rest 1st) x))]))

(define (smaller-than 1lst x)

(([:(()ZrcrllptyP 1st) empty] (Repeated here is ok-ish, because it will only get run once)
[else (if (< (first 1lst) x) K/

(cons (first 1lst)/(smaller-than (rest 1lst) x))
(smaller-than (rest 1st) x))]))

(define (smaller-than 1lst x)
(cond
[(empty? 1lst) empty]
[else (if (< (first 1lst) x)
(cons (first 1lst) (smaller-than (rest 1lst) x))
(smaller-than (rest 1st) x))]))

(define (larger-than lst x)
(cond
[(empty? 1lst) empty]
[else (if (> (first 1st) x)
(cons (first 1lst) (larger-than (rest 1lst) x))
(larger-than (rest 1lst) x))]))

Abstraction Recipe

1. Find similar patterns in a program
 Minimum: 2
* |deally: 3+
=)2. |dentify differences and make them parameters

3. Create a reusable abstraction with the discovered parameters
* E.g., afunction(al) abstraction
« E.g, a data abstraction

« The abstraction must have a short, clear name and “be logical”
4. Use the abstraction by giving concrete “arguments” parameters

Your tasks

(define (smaller-than 1lst x)
(cond
[(empty? 1lst) empty]
[else (if (< (first 1lst) x)
(cons (first 1lst) (smaller-than (rest 1lst) x))
(smaller-than (rest 1st) x))]))

(define (larger-than 1lst x)
(cond
[(empty? 1lst) empty]
[else (if (> (first 1st) x)
(cons (first 1lst) (larger-than (rest 1lst) x))
(larger-than (rest 1lst) x))]))

Common list function #37

Is this a “good” abstraction?

;5 1lst-fn3: (Int Int -> Boolean) ListofInt Int -> ListofInt
;5 Returns a list containing elements of given list
;5 that are 22?2 When compared to another given int

(define (1lst-fn3 cmp? 1lst other-int)
(cond
[(empty? 1lst) empty]
[else (if (cmp? (first 1st) other-int)
(cons (first 1lst) (1lst-fn3 cmp? (rest 1lst) other-int))
(1st-fn3 cmp? (rest 1lst) other-int))]))

Abstraction Recipe

1. Find similar patterns in a program
 Minimum: 2
* |deally: 3+
2. ldentify differences and make them parameters

3. Create a reusable abstraction with the discovered parameters

- E.g., a function(al) abstraction
« E.g, a data abstraction

== « The abstraction must have a short, clear name and “be logical”
4. Use the abstraction by giving concrete “arguments” parameters

Abstraction Recipe

1. Find similar patterns in a program
 Minimum: 2
* |deally: 3+
2. ldentify differences and make them parameters

3. Create a reusable abstraction with the discovered parameters

- E.g., a function(al) abstraction
« E.g, a data abstraction

« The abstraction must have a short, clear name and “be logical”
=) 4. Use the abstraction by giving concrete “arguments” parameters

Common list function #37

Is this a “good” abstraction?

What are possible use cases?

Should be more than just the two
examples we are abstracting!

;5 1lst-fn3: (Int Int -> Boolean) ListofInt Int -> ListofInt
;5 Returns a list containing elements of given list
;5 that are 2?? When compared to another given int

(define (1lst-fn3 cmp? 1lst other-int)
(cond
[(empty? 1lst) empty]
[else (if (cmp? (first 1st) other-int)
(cons (first 1lst) (1lst-fn3 cmp? (rest 1lst) other-int))
(1st-fn3 cmp? (rest 1lst) other-int))]))

More tasks
(check-equal?

Write the following functions: (shorter-than (List "a" bc “3bc”) 2)
ist “a”

)
)

))

; that have length less than the given int

shorter-than: ListofString Int -> ListofString
Returns a list containing elements of given list

(check-equal?
(shorter-than-str (list “a” “bc” “abc”) “xy”)
(list “a”))

)
)

)

; that have length less than the given string

shorter-than-str: ListofString String -> ListofString
Returns a list containing elements of given list

;; 1st-fn3: (Int Int -> Boolean) ListofInt Int -> ListofInt
PV‘()[;5 Returns a list containing elements of given list
;5 that are ??? When compared to another given int

Write the following functions:

)
)

))

; that have length less than the given int

shorter-than: ListofString Int -> ListofString
Returns a list containing elements of given list

Could these be implemented with our new abstraction?

Should we be able to?

)
)

)

; that have length less than the given string

shorter-than-str: ListofString String -> ListofString
Returns a list containing elements of given list

Abstraction Recipe

1. Find similar patterns in a program
 Minimum: 2
* |deally: 3+
2. ldentify differences and make them parameters

3. Create a reusable abstraction with the discovered parameters

- E.g., a function(al) abstraction
« E.g, a data abstraction

« The abstraction must have a short, clear name and “be logical”
= 4. Use the abstraction by giving concrete “arguments” parameters

Remember:

Abstraction Reci PE |The Design Recipe (like good

software development) is iterative!

1. Find similar patterns in a program
 Minimum: 2
* |deally: 3+
2. ldentify differences and make them parameters

3. Create a reusable abstraction with the discovered parameters
- E.g., a function(al) abstraction
« E.g, a data abstraction

« The abstraction must have a short, clear name and “be logical”
4. Use the abstraction by giving concrete “arguments” parameters

Common list function #37

Is this a “good” abstraction?

;3 1st-fn3: (Int Int -> Boolean) ListofInt Int -> ListofInt
;5 Returns a list containing elements of given list
;5 that are 22?2 When compared to another given int

(define (1st-fn3 cmp? 1lst other-int)
(cond
[(empty? 1lst) empty]
[else (if (cmp? (first 1st) other-int)
(cons (first 1lst) (1lst-fn3 cmp? (rest 1lst) other-int))
(1st-fn3 cmp? (rest 1lst) other-int))]))

A Better common list function

;3 lst-fn3: (X -> Boolean) Listof<X> -> Listof<X>
;5 Returns a list containing elements of given list
;3 for which the given predicate returns true

37

(define (1st-fn3 pred? lst)
(cond
[(empty? 1lst) empty]
[else (if (pred? (first 1lst) other-int)
(cons (first 1lst) (1lst-fn3 pred? (rest 1lst)
(1st-fn3 pred? (rest 1lst)))1))

))

Common list function #3: filter

;5 smaller-than: Listof<Int> Int -> Listof<Int>
;5 Returns a list containing elements of given list less than the given int

(define (smaller-than 1lst thresh)
(filter (lamgda (x) (< x thresh)) 1lst)

lambda creates an anonymous “inline” function (expression)

;; fFilter: (X -> Boolean) Listof<X> -> Listof<X»>
;5 Returns a list containing elements of given list
;; for which the given predicate returns true

(define (filter pred? 1lst)
(cond
[(empty? 1lst) empty]
[else (if (pred? (first 1lst))
(cons (first 1lst) (filter pred? (rest 1lst)))
(filter pred? (rest 1lst)))]))

Common list function

3:filter

;3 smaller-than: Listof<Int> Int -> Listof<Int>

;5 Returns a list containing elements of

given list less than the given int

(define (smaller-than 1lst thresh)
(filter (lamgda (x) (< x thresh)) 1lst)

lambda creates an anonymous “inline” function (expression)

lambda rules:

define (filter pred? 1lst
cond
empty? lst) empty
else (if (pred? (first 1st
cons (first 1lst) (filter

filter pred? (rest 1st

- Can skip the design recipe steps,
BUT

- name, description, and signature
must be “obvious”

- code is arithmetic only

- otherwise, create standalone
function define

filter In other high-level languages

JavaScript Demo: Array.filter()

const words = ['spray’', 'limit', 'elite', 'exuberant', ‘'destruction’, 'present’];
const result = words.filter((word) => word.length > 6);

console.log(result);
// Expected output: Array ["exuberant"”, "destruction"”, "present"]

it B o ATV o B S VU (N

97

Your Remaining tasks

Implement with filter

B |

smaller-than: ListofInt Int -> ListofInt
Returns list containing elements of given list less than the given int

)

)

; larger-than: ListofInt Int -> ListofInt

Returns list containing elements of given list greater than the given int

)

shorter-than: ListofString Int -> ListofString
Returns list containing elements of given list with length less than given int

)

)

shorter-than-str: ListofString String -> ListofString
Returns list containing elements of given list with length less than given string

