UMass Boston Computer Science

CS450 High Level Languages

Function “Arithmetic” and the

Lambda Calculus

Thursday, March 13, 2025

OH COOL, EXCEL 15
ADDING A LAMBDA
FUNCTION, 50 YOU
CAN RECURSMVELY
DEFINE FUNCTIONS.

)

s

SEEMS UWECESSPRI Y.

WHEN T NEED TO DO ARBITRARY
COMPUTATION, T JUST ADD A GIANT
BLOCK OF COLUMNS TO THE SIDE
OF My SHEET AND HAVE A TURNG

MACHINE TRAVERSE DOWN 1T,

s

T THINK YOU'RE DOING

COMPUTING LRONG.
THE CHURCH-TURING
THESIS SAYS THAT ALL
Uﬁ‘f-ﬁ OF COMPUTING
ARE EQ(HLLY LRONG.

R

I THNK IF TURING 5AL
YOUR SPREADSHEETS,
HED CHANGE HIS MIND,

HE CAN ASK ME TO STOP
MAKING THEM, BUT NOT
PROVE WHETHER T LiL!

&

Logistios

* HW 6 out

e Due: Tues 3/25 11am EST (2 weeks)

« Reminder: Spring Break next week!

 No lecture

OH COOL, EXCEL 15
ADDING A LAMBDA
FUNCTION, S0 YOU
CAN RECURSIVELY
DEFINE FUNCTIONS.

y

SEEMS UNNECESSARY.

]
WHEN T NEED TO DO ARBITRARY
COMPUTATION, T JUST ADD A GIPNT
BLOCK OF COLUMNS TO THE SIDE
OF My SHEET AND HAVE A TURING
MACHINE TRAVERSE DOWN T,

T

T THINE YOU'RE DOING

COMPUTING WRONG.
THF_ CHURCH-TURING
THESIS SAYS THAT ALL
Uﬁ‘r’s OF COMPUTING
ARE EG{HLLVLRONG

g

I THNK IF TURING SAL)
YOUR SPREADSHEETS,
HE'D CHANGE HIS MIND.

HE CAN ASK ME TO STOP
MAKING THEM, BUT NOT
PROVE WHETHER T LiLL!

)

}D/‘W/ba&@

Common list function #3: filter

;; filter: (X -> Boolean) Listof<X> -> Listof<X>
;5 Returns a list containing elements of given list
;; for which the given predicate returns true

(define (filter pred? lst)
(cond
[(empty? 1lst) empty]
[else (if (pred? (first 1lst))
(cons (first 1lst) (filter (rest 1lst)))
(filter (rest 1st)))]))

Common list function #3: filter

lambda rules:
- May skip design recipe steps,

define (filter pred? lst BUT .. .
cond - name, description, and signature
empty? 1st) empty must be “obvious”
else (if (pred? (first 1st - code must be arithmetic only

cons (first 1st filter (re

- otherwi r n n
T (et Tl otherwise, create standalone

function with define

55 smaller-than: Listof<Int> Int -> Listof<Int>
;5 Returns a list containing elements of given list less than the given int

(define (smaller-than 1lst thresh)

(filter (laqua (x) (< x thresh)) 1st))

lambda creates an anonymous “inline” function (expression)

Functions as Values

* In high-level languages, functions are just another kind of data!
- no different from other data (e.g., numbers)

« They can be passed around, or be the result of a function

;5 make< : Int -> (Int -> Bool)
;5 makes a function that returns true
;5 for values less than the given thresh value

(define (make< thresh)—— |

_(_d%imaller‘—than 1st thresh)
(lambda (x) (< x thresh))) (filter®(make< thresh) 1lst))

« Lambda is just one possible way to “make” functions
« We can also do “arithmetic” with functions to compute new fns

currying

» A curried function is partially applied to some (not all) args [' ‘ ‘
 Result is another function S

NOTE: First argument is first arg to fn

(curry < 4

;5 = a function that returns true when given a numbéer greater than 4
—_~

(Tambda (x) (< 4 x))

(define (smaller-than 1lst thresh)
(filter (lambda (x) (< x thresh)) 1st))

(define (smaller-than lst thresh) (define (smaller-than lst thresh)
(filter (curry > thresh) 1lst)) (filter (curryrRS thresh) 1lst))

NOTE: First argument is last arg to fn

,éﬁm,,? Lessr: Haskell B. Cu rry

« Mathematician / Logician
« Born in Millis, MA, in year 1900

 “currying” functions is named after him .
» and also, the “Haskell” (functional) programming language

* Invented “combinatory logic”,
l.e., a system of function “arithmetic”

More Function Arithmetic

« compose combines multiple functions into one function
« last one is applied first

(compose sqrt addl)
;5 = a function that first applies addl to its argument, then sqrt

ZTmeda (x) (sqgrt (addl x)))

((compose sgrt addl) 8) | ; = 3

Composing Many Functions

« compose combines multiple functions into one function
« last one is applied first

(apply
above

Step1 | (build-list

5

(compose (curryr square "solid" "blue")
(curry * 20)
addl)))

}D/‘ewba&@

Fold “dual”™: build-1ist

(build-1ist n proc) — list? procedure
n . exact-nonnegative-integer?

proc : (exact-nonnegative-integer? . -> . any)

Creates a list of n elements by applying proc to the integers from 0 to (sub1 n) in order. If
st is the resulting list, then (list-ref Ist i) is the value produced by (proc 1i).

Examples:

> (build-list 10 values)

'(0 123 4567829)

> (build-1ist 5 (lambda (x) (* x x)))
'(01 4 9 16)

(build-1list 4 addil)
;5 = (map addl (list @ 1 2 3))
35 = (list 1 2 3 4)

Composing Many Functions

« compose combines multiple functions into one function

« last one is applied first

—_
7z

s(lapply—

5 labove

1/(build-1ist ;Aj;(list 9123 4)
5 map

(composés (curryr square "solid" "blue").

s{curry * 20) |; = (list 20 40 60\80 100)

2add1)))[. - (1ist 1 2 3 4 5)

N\

\

9 = (gbove (square 20 “solid” “blue”)
(square 40 “solid” “blue”)
(square 60 “solid” “blue”)
(square 80 “solid” “blue”)
(square 100 “solid” “blue”))

g = (list (square 20 “solid” “blue”)
(square 40 “solid” “blue”)
(square 60 “solid” “blue”)
(square 80 “solid” “blue”)
(square 100 “solid” “blue”))

The Lambda (A) Calculus

« A “programming language” consisting of only:
* Lambda
« Function application

No numbers???

« Equivalent in “computational power” to
« Turing Machines
« And ... your favorite programming language!

How???

/%S’L‘a/y Lessor: AlONZO Church I

« Mathematician, logician, computer scientist

e Invented the Lambda Calculus No numbers??? How to do add??

 And (half of) Church-Turing Thesis

7 ” . . OH COOL, EXCEL 1S | | SEEMS UNNECESSARY. T THINK YOU'RE DOING I THNK IF TURING 5ALJ
« Any “computable” function has: PDDNG A LAMEDA | | Lren) T NELD T o ARBTRARY | COMPUTNG LRONG. | YOUR SPREADSHEETS,
- . - - FUNCTION, 50 YOU | | copmpuraTion, T JUST ADD AGIANT | | THE CHURCH-TURING HED CHANGE HIS MIND.

« an equivalent Turing Machine, and CANRECURSVELY | | 5 0k OF COLUMNS TO THE SIDE mssaasnvsmﬁrm HE. CAN ASK ME TO STOP

. DEFINE FUNCTIONS. | | pe My SHEET AND HAVE A TURNG | | WAYS OF COMPUTING MAKING THEM, BUT NOT

« an equivalent Lambda Calculus program) MACHINE TRAVERSE. DOUN 1T mmwm PROVE HETHER T LIILL!

* 5O, a Turing Machine = a lambda \ /

Church Numerals

55 A ChurchNum is a function with two arguments:

53 “fn” : a function to apply

;5 “base” : a base ("zero") value to apply to

;3 Represents: a number where the given function 1is

;5 applied that number of times to the given base Possible “instantiations”:

- base = symbol “0”

(define czero
(lambda (f base) base))

Function f applied zero times - f ="add 1” operation

(define cone

Function f applied one times

(lambda (f base) (f base)))

(define ctwo
(lambda (f base) (f (f base))))

Function f applied two times

(define cthree
(lambda (f base) (f (f (f base)))))

Function f applied three times

Church “Add?”

;5 cplusl : ChurchNum -> ChurchNum
;5 “Adds” 1 to the given Church num

(define cplusil __— Input ChurchNum n
(lambda (n}——" |
(lambda (f base) Returns a ChurchNum ...
(f (n_f base)))))
(define czero N\ —— _
(lambda (f base) base)) (we know “n” will apply f n times)
Totaln+1
(define cone
(lambda (f base) (f base))) ... that adds an extra application of f to "n”
(define ctwo
(lambda (f base) (f (f base)))) 55 A ChurchNum is a function with two arguments:
55 “fn” : a function to apply
(define cthree ;5 “base” : a base ("zero") value to apply to

(lambda (f base) (f (f (f base)))))

Church Addition

;5 cplus : ChurchNum ChurchNum -> ChurchNum
;5 “Adds” the given ChurchNums together

(define cplus " Input ChurchNums n m
(lambda (m n) e— |
(lambda (f base) Returns a ChurchNum ...
(m £ (n f base)))))
(define czero N — _
(lambda (f base) base)) (we know “n” will apply f n times)
Total n+m
(define cone —
(lambda (f base) (f base))) .. that adds “m” extra applications of

(define ctwo
(lambda (f base) (f (f base))))

(define cthree
(lambda (f base) (f (f (f base)))))

Code Demo 1 - Church Numerals

55 A ChurchNum is a function with two arguments:

53 “fn” : a function to apply

;5 “base” : a base ("zero") value to apply to

;3 Represents: a number where the given function 1is

;5 applied that number of times to the given base Possible “instantiations”:

- base = symbol “0”

(define czero
(lambda (f base) base))

Function f applied zero times - f ="add 1” operation

(define cone

Function f applied one times

(lambda (f base) (f base)))

(define ctwo
(lambda (f base) (f (f base))))

Function f applied two times

(define cthree
(lambda (f base) (f (f (f base)))))

Function f applied three times

Church Booleans

;5 A ChurchBool is a function with two arguments,
;5 Where the representation of:

55 “true” returns the first arg, and

;5 “false” returns the second arg

(define ctrue .
(lambda (a b) a)) Returns first arg
2

A N
~_ 7

(define cfalse
(lambda (a b) b))

Returns second arg

Foview: “A 1 d y

The truth table of A A B:

A B AANB
True |True True When 4 = True,
True |False False then And(4,) = B
False| True |[False When A = False,
False| False |False then And(4, 5) =4

Church “And”

The truth table of A A B:

A B AANB
True True True
True False False
False True False

False False False

;5 cand: ChurchBool ChurchBool-> ChurchBool
;5 “ands” the given ChurchBools together

When A = True,
want: And(4, B) =

When A = False,
want: And(4, B) =

(define cand
(lambda (A B)

(ABA)))

(define ctrue
(lambda (a b) a))

(Returns first arg)

v

D
(A B A) =B|[V]
ZI\-* B

B A = ctrue ¢/

(cand A B) =

(define cfalse (Returns second arg)

(lambda (a P) ?))
5 1f A = cfSi;e l/
(55 then (A B A) =|A

%; want (cand A B) = A

Ch U rCh “Or" ;3 cor: ChurchBool ChurchBool-> ChurchBool

;5 “or” the given ChurchBools together

(define cor
(lambda (A B)

(A AB)))
A B AV B (define ctrue .
(lambda (a b) a)) (Returns first arg)
True True True [when 4= True, M —

True False True want: OT(A, B) =A \ A = ctrue y ﬂ
(AAB) =|A

False True True | \when 4 = False, V] (cor A B) = A

want: Or(4, B) =B

False False False (define cfalse

(lambda (a b) b)) / (Returns second arg)
5 1f A = cfalse /

;; then (A A B) =|B|V]
;5 want (cor A B) =B

Church “If"

;5 1fp
;5 1fp

;5 cif: ChurchBool Any Any -> Any
;5 Church

"if" same as Church "true" or
true, result is first branch
false, result is second branch

"false":

(define ctrue

Returns first arg

(lambda (a‘ b)ja))

N

(define cfalse

Returns second arg

(lambda (a Q) p))

(define cif
(lambda (test then else)
(test then else)))

Code Demo 2 - Church Booleans

Church Pairs (Lists)

;5 A ChurchPair<X,Y> 1l-arg function, where
;; the arg fp is applied to (i.e., :selects") the X and Y data values

\ /

;5 ccons: X Y\—> ChurchPa;p<§;Y>

(define ccons
(lambda (x y)
(lambda (ge

(get x y¥)))

(define cfirst |

(lambda (CC%////’|npUtChuchPaw
(cc (lambda (x y) X%3?7”"——'“GeEfthefNStﬁem

(define csecond ; i.e, "rest"
(lambda (cc)

(cc (lambda (x y) y3rrT

“Gets” the second item

Code Demo 3 = Church Pairs

The Lambda Calculus

« A “programming language” consisting of only:
* Lambda
« Function application

* “Language” has:

Numbers

Booleans and conditionals
Lists

Recursion???

In-class exercise: Self-printing Program

Write a program that prints “itself”:

~n or ~% prints a newline character (which is equivalent to \n in a literal format string)

. ~a or ~A displays the next argument among the vs
rintf : . © ©
P t “directive”

“Format” ~s or ~S writes the next argument among the vs

+ argument

stri ng ~v or ~V prints the next argument among the vs

((A (x) (printf "(~a\n 222)\n" x 22?))
"(A (x) (printf \"(~a\\n 222)\\n\" x 22?2))")

File name: in-class-03-13.rkt (submit in gradescope)

