UMass Boston Computer Science

CS450 High Level Languages

Recursmn in the Lambda Calculus

Tuesday, March 25, 2025

[WUY T VBWE NO FRIENDS, REPSON #1734 1]
UNIMPRESSIVE MINDBLOWING FACTS

DID YOU WNOW THRKT
THE WORD "RECWS\ON:‘CON‘(A\NQ
THE WORD *RECURIION
W /7SELF?

Wk OGOA .~
THATE AMAZ...
YOU'RE AN

Logistios
e HW 6 In
+ dye-Tue 325 Ham-EST

« HW 7 out
e due: Tue 4/1 11am EST

[WUY T VAVE NO FRIENDS, REASON #1731 |
UNIMPRESLSWVE MINDBLOWING FT

DID YOU KNOW “THAT
THE WORD "RECURSION” CONTAING)
THE WORD “RECURSION ,
WN /7SELF?

Wk OGOA .~
[THATS AMAZ...
YOU'RE BN
PSSHOLE.

/%%#ﬁw&éa

Recursion vs Iteration: In Racket (Lecture 12)

Conclusion?
Recursion is not slower

than iteration?

equivalent

;3 iterative-sum-to :

Racket Recursion

Nat -> Nat

;3 Sums the numbers in the interval [0, X]
(define (iterative-sum-to X result)

(if (zero? x)
result

accumulator

(iterative-sum-to (subl x) (+ x result))))

ttihe (iterative-sum-to BIG-NUMBER 9))

; cpu time: |15

“for” In Racket is just

a macro (i.e., “syntactic sugar”)

for a (tail) recursive function

real time: 13 gc time: ©

Racket “Iteration”

(time (for/ggm1([x (add1l BIG-NUMBER)]) X))
; Cpu time: [15|real time: 6 gc time: ©

Racket for expressions

(for/list ([x 1lst]¥(addl x))

Generic “sequence”
(number, most data structures ...)

A 4

(map addl 1st)

(for/list ([x n]) (addl x))

\ 4

(build-list n add1)

(for/list ([x 1st] #:when (odd? x)) (addl x))

¥

(filter odd? (map addl 1lst))

(for/sum ([x lst] #:when (odd? x)) (addl x))

\ 4

(foldl + @0 (filter odd? (map addl 1lst)))

Note:
These are still expressions!

Lots of variations!
(see docs)

(forx/1list (for

Racket for* expressions foru/ints (o

> (forx ([1 "(1 2)]
[§ "ab"])
(display (list i j)))
(1 a)(1 b)(2 a)(2 b)

> (for*/list ([1 '"(1 2)]
["ab"])
(list 1 j))
"((1 #\a) (1 #\b) (2 #\a) (2 #\b))

Useful in HW7?

body-or-break

(for*/vector ma

4 ”
nested” for lOOPS | fors/hash (for

(for*/hasheq (f
(for*/hasheqv (
(for*/hashalw (
(forx/and (for-
(for*/or (for-c:
(for*/sum (for-
(for*/product (
(for*/first (fo
(forx/last (for
(forx/fold ([ac
body-or-break

(forx/foldr ([a

(for

Lots of variations! (see docs)

/D/‘W/ba@é
Kinds of Data Definitions (Lecture ©)

e Basic data
« E.g, numbers, strings, etc

* Intervals
» Data that is from a range of values, e.g,,

 Enumerations
« Data that is one of a list of possible values, e.g,,

e Iltemizations

combo | ¢ Data value that can be from a list of possible other data definitions

HW?7/!

of .. e E.g, either a string or number (Generalizes enumerations) I

 Compound Data
e Data that is a combination of values from other data definitions

ltemization of Compound Data - Example

;3 A Shape is one of:

;5 - (mk-Rect [h : Num] [w : Num] [c : Color])
;5 Interp: fields are width, height, color

;5 - (mk-Circ [r : Num] [c : Color])

;3 Interp: fields are radius and color

;5 Represents a shape to be drawn on a canvas

ltemization of Compound Data - Template

;3 A Shape is one of:

;5 - (mk-Rect [h : Num] [w : Num] [c : Color])
;5 Interp: fields are width, height, color

;5 - (mk-Circ [r : Num] [c : Color])

;3 Interp: fields are radius and color

;5 Represents a shape to be drawn on a canvas

;3 Sshape-fn : Shape -> ???
(define (shape-fn sh)
(cond
[(Rect? sh) .. (rect-h sh) .. (rect-w sh) .. (rect-c sh) ..]
[(Circ? sh) .. (circ-r sh) .. (circ-c sh) ..]))

[temization of Compound Data — 2nd way

;3 A Shape is one of:
;5 - Rectangle
;35 - Circle

;; A Rectangle is a (mk-Rect [h : Num] [w : Num] [c : Color])
;5 Interp: fields are width, height, color

;5 A Circle is a (mk-Circ [r : Num] [c : Color])

;3 Interp: fields are radius and colors

ltemization of Compound Data - template

;3 A Shape is one of:
;5 - Rectangle
;3 - Circle

;5 Shape-fn : Shape -> ???

(define (shape-fn sh)

(cond
[(Rect? sh) .. (rect-fn sh) ..]
[(Circ? sh) .. (circ-fn sh) ..]))

ltemization of Compound Data - function!

;3 A Shape is one of:
;5 - Rectangle
;3 - Circle

;3 shape-fn : Shape -> ???
(define (shape-fn sh)
(cond
[(Rect? sh) .. (rect-fn sh) ..]
[(Circ? sh) .. (circ-fn sh) ..]))

=)

;5 render : Shape -> Image
(define (render sh)
(cond
[(Rect? sh) (rect-img sh)]
[(Rirc? sh) (circ-img sh)]))

A Simple OO Example: Shapes

interface Shape
Image render();

T

class Circle class Rectangle
Num radius; Num width; Num height;
Color col; Color col;
Image render() { Image render() {
return circ-img (radius, col); return rect-img (width, height, col);
} }

A Simple OO Example: Terminology

Interface / abstract class

(abstract) method
(concrete class implements)

T

interface Shape
Image render();

—— implements

. concrete) class
class Circle ()

Num radius; (compound) Data definition!

Color col; fields

Image render() {
return circ-img (radius, col);

implements

class Rectangle

Num width;

Color col; fields (compound) Data definition!

Image render() {
return rect-img (width, height, col);

¥

(concrete) method
implementation

(concrete) class

Num height;

(concrete) method
implementation

CS450 vs OO Comparison

CS 450 Design Recipe 00 Programming

- Compound data (struct) have - Compound data (class) group
fields, separate fns process data fields and methods together!

A Simple OO Example: Compare to CS450

interface Shape
Image render();

T

|
(itemization) Data definition item |

(itemization) Data definition

class Circle class Rectangle (itemization) Data definition item
Num radius; Num width; Num height;
Color col; (compound) Data definition Color col; (compound) Data definition
Image render() { Image render() {
return circ-img (radius, col); return rect-img (width, height, col);
} function implementation } function implementation
(one cond clause) for (one cond clause) for

Shape data (split up) Shape data (split up)

CS450 vs OO Comparison

CS 450 Design Recipe 00 Programming

« Compound data (struct) have » Compound data (class) group
fields, separate fns process data fields and methods together!

* Itemization Data Defs explicitly < Itemization Data Defs implied by
defined interface / class definitions

CS450 vs OO Comparison

CS 450 Design Recipe 00 Programming

- Compound data (struct) have - Compound data (class) group
fields, separate fns process data fields and methods together!

* Itemization Data Defs explicitly < Itemization Data Defs implied by

defined interface / class definitions
 Functions organized by the kind < Methods organized by the kind of
of data they process! data they process!
1 function,

1 task, ... processes
1 data definition!

A Simple OO Example: Compare to Ck54450

;5 A Shape is one of:
interface Shape ;5 - Rectangle
Image render(); ;5 - Circle
class Circle class Rectangle |

(struct rect [w h col])
Num radius; (struct circ [r col]) |Num Width;%m height; <~

Color col; Color col;

Image render() { Image render() {
return circ>pg / ' F (width, height, col);

.; render: Shape -> Image/

D= FEMEEr Sl method “dispatch” - 00 does the same!

“concrete”
implementations

¥

“abstract” _—

implementation

(rect-img sh)] <
rect-img sh)]))

[(Circ? sh)

CS450 vs OO Comparison

CS 450 Design Recipe

- Compound data (struct) have
fields, separate fns process data

* Itemization Data Defs explicitly
defined

 Functions organized by the kind
of data they process!

00 Programming

» Compound data (class) group
fields and methods together!

* Itemization Data Defs implied by
interface / class definitions

« Methods organized by the kind of
data they process!

 Explicit itemization dispatch (cond) * Implicit itemization dispatch

;5 (explicit) render: Shape -> Image
(define (render sh)

(cond

[(Rect? sh) (rect-img sh)]

[(Circ? sh) (circ-img sh)]))

55 (implicit) render: Shape -> Image

Image render (Shape sh)
if (sh instanceof Rectangle){ rect-img(sh); }
else if (sh instanceof Circle){ circ-img(sh); }

A Simple OO Example: Constructors

interface Shape
Image render();

Circle ¢ = Circle(10, blue); T

Image img = c.render();

class Circle

Num radius; Color col;
/] ..
Circle(r, c) {

radius = r;

col = c;
;

Q: Where are method implementations
for an object instance “stored”?

class Rectangle

Num width; Num height;

height =

/] ..

Rectangle(w, h, c) {
width = w;
col = ¢

¥

h;

Color col;

A: It's another (hidden) field (see “method table”)!

CS450 vs OO Comparison

CS 450 Design Recipe 00 Programming

- Compound data (struct) have » Compound data (class) group
fields, separate fns process data fields and methods together!

* Itemization Data Defs explicitly < Itemization Data Defs implied by

defined interface / class definitions
 Functions organized by the kind « Methods organized by the kind of
of data they process! data they process!
 Explicit itemization dispatch (cond) * Implicit itemization dispatch
« Struct Constructor explicitly « Object Constructor implicitly

Includes method defs ??? includes method defs

OO-style Constructors ... with structs!

Shape “interface” definition

(struct Shape [render-method])

(struct circ Shape [r col])

Super struct

mtertude; INNErItANce and “Super” Structs

;5 A Shape 1s one of: ;; A Shape is one of: | 2bstract®struct
.. Rectanel - Rectanel (implicitly defines
»5 = RECLangle »5> ~ REctangle Shape? predicate)
;5 - Circle ;5 - Circle
(struct rect [w h c]) (struct Shape [])
(struct circ [r c]) » (struct rect Shape [w h c])

(struct circ Shape [r c])

Alternatively ... \

“super” struct declaration

eg,ifr=(rect 1 2 ‘red)
(define (Shape? s) then:rg)c’j[h(ézectz 3 - E,«ue
1 aper — rue
(or (rect? s) (circ? s))) P

Useful in HW7?

mtertude: INNErItance and “Super” Structs

This kind of “polymorphic”

“abstract” struct

“abstract” data definition is what ;5 A Shape is one of: (implicitly defines
we've been creating all semester! ;5 - Rectangle Shape? predicate)
;3 - Circle
“super” structs are just a (struct Shape [])
convenience for the same thing (struct rect Shape [w h c])
(when all itemizations are structs) (struct circ Shape [r c])

q‘iSOFTWARE ENGINEERING

WAIT, | heard “Inheritance is bad”??? L
Why is inheritance generally

NO, accepted OO principles says: | Viewed as a bad thing by OOP
proponents

Inheritance of implementations is bad

(violates “1 task, 1 function”)

Interfaces and abstract classes are ok 4 | (i.e., “itemizations”)

OO-style Constructors ... with structs!

Method

Shape “dispatch” function Shape “interface” definition |mplementat|on
(as a field)

;; render : Shape -> Image (struct Shape [render-method])

. / circ
(define (render sh) (struct circ Shapeg [r col]) constructor
(cond — ~"-7 mustbe

Super/struct given 3 args

[(Rect? sh) (rect-img sh)]

irc? T — |
[(Circ? sh) (circ-img sh Shape constructors

\
‘ (defM
(make method an optional [circ-render- circ-img])

argument, with default) (circ circ-render-fn r col)

default

Then create same

Q: Where are method implementations 1
definitions for rect ..

for an object instance “stored”?

A: It's another (hidden) field!

CS450 vs OO Comparison

CS 450 Design Recipe 00 Programming

« Compound data (struct) has « Compound data (class) group
(possibly function) fields! fields and methods together!

* Itemization Data Defs explicitly < ltemization Data Defs implied by
defined interface / class definitions

 Functions organized by the kind « Methods organized by the kind of
of data they process! data they process!

 Explicit itemization dispatch (cond) * Implicit itemization dispatch

« Struct Constructor explicitly « Object Constructor implicitly

iIncludes method defs includes method defs

CS450 vs OO Comparison

CS 450 Design Recipe

» Compound data (struct) has
(possibly function) fields!

- Itemization Data Defs explicitly
defined

* Functions organized by the kind
of data they process!

 Explicit itemization dispatch (cond)

 Constructor explicitly includes
method defs

 Data to process is explicit arg

00 Programming

- Compound data (class) group
fields and methods together!

» Itemization Data Defs implied by
interface / class definitions

* Methods organized by the kind of
data they process!

 Implicit itemization dispatch

 Constructor implicitly includes
method defs

« Data to process (“this”) is Implicit arg

CS 450 so far ...

So far, this class teaches:
« How to use high-level languages
* l.e,, a high-level programming “process”

* I.e., a language-agnostic design recipe
for creating clean, readable programs

IT'S LIKE YoU RAN OCR ON
A PHOTO OF A SCRABBLE
BOARD FROM A GAME UHERE
JAVASCRIPT RESERVED LJORDS
COUNTED FOR TRIPLE. POINTS.

L

IT LOOKS LIKE. SOMEONE
TRANSCRIBED A NAVAL UEATHER
FORECAST LHILE. LIOODPECKERS
HAMMERED THEIR SHIFT KEYS,
THEN RANDOMLY INDENTED [T,

&

TS LIKE AN EE CUMIINGS
POEM URITTEN USING ONLY
THE USERNAIMES A UEBSITE
SUGGESTS WHEN THE ONE
YOU WANT 15 TAKEN.

THIS LOOKS LIKE THE OUTPUT OF A MARKOV
BOT THAT'S BEEN FED BUS TIMETRBLES FROM
A CITy WHERE THE BUSES CRASH (ONSTANTLY.

\ LHATEVER, IT RUNS FINE FoRNOU.

50 DOES A N -
BURNING BUS, K

\ LHATEVER, IT RUNS FINE. DR NO.

S0 DOES A
[BURNING BUS.
i LY

« How to do well: learn and follow the “process” (design recipe)

« How to not do well: just focus on “getting the code working”

e (code does not “run fine”)

AN

i

Freom
Lecture 7

“Computation” =
“arithmetic” of
expressions

“high” level
(easier for humans
to understand)

“declarative” —

Core model: Lambda Calculus

sequence of
instructions /
statements

“Computation” =

“imperative” —

Core model: Turing Machines

“low” level
(runs on cpu)

NOTE: This hierarchy is approximate

English
Specification langs
Markup (htm1, markdown)
Database (squ)
Logic Program (prolog)
Lazy lang (Haskell, R)

Functional lang (racket)

JavaScript, Python

C# [Java
C++
C
Assembly Language

Machine code

Types? pre/post cond?

tags

queries

This class: how to

program in a high-

level more “human
friendly” way

relations

Delayed computation

Expressions (no stmts)

lleva l"

GC (no alloc, ptrs)

Classes, objects

Scoped vars, fns

Named instructions

0s and 1s

“Nicer” for
humans to use

™ The Lambda (A) Calculus

« A “programming language” consisting of only:
« Lambda functions
« Function application

« Equivalent in “computational power” to
« Turing Machines
 Your favorite programming language!

Last

~ Church Numerals

55 A ChurchNum is a function with two arguments:
;53 “f” ¢ a function to apply
553 “base” : a base ("zero") value to apply to

;5 For a specific number, its "Church" representation
;5 applies the given function that number of times

(define czero - i .
(lambda (f base) base)) applied zero times

(define cone
(lambda (f base) (f base)))

f applied one time

(define ctwo

f applied two times
(lambda (f base) (f (f base))))

(define cthree f applied three times

(lambda (f base) (f (f (f base)))))

Church “Add?1”

;5 cplusl : ChurchNum -> ChurchNum
;5 “Adds” 1 to the given Church num

(define cplusl _—— Input ChurchNum
(lambda (n}——" |
(lambda (f basey Returns ChurchNum that ...
(f (n_f base)))))

(define czero \\\ — .
(lambda (f base) base)) (we know “n” will apply £ n times)

(define cone ... adds an extra application of f
(lambda (f base) (f base)))

(define ctwo
(lambda (f base) (f (f base))))

(define cthree
(lambda (f base) (f (f (f base)))))

Church Addition

;5 cplus : ChurchNum ChurchNum -> ChurchNum
;5 “Adds” the given ChurchNums together

(define cplus _— Input ChurchNums
(lambda (m n) e— |
(lambda (f base)< Returns a ChurchNum that ...
(m £ (n f base)))))

(define czero R\\ — .
(lambda (f base) base)) (we know “n” will apply £ n times)

(define cone ... adds “m” extra applications of f
(lambda (f base) (f base)))

(define ctwo
(lambda (f base) (f (f base))))

(define cthree
(lambda (f base) (f (f (f base)))))

Church Booleans

;5 A ChurchBool is a function with two arguments,
;5 Where the representation of:

55 “true” returns the first arg, and

;5 “false” returns the second arg

(define ctrue .
(lambda (a b) a)) Returns first arg
2

A N
~_ 7

(define cfalse
(lambda (a b) b))

Returns second arg

Foview: “A 1 d y

The truth table of A A B:

A B AANB
True |True True When 4 = True,
True |False False then And(4,) = B
False| True |[False When A = False,
False| False |False then And(4, 5) =4

Church “And”

The truth table of A A B:

A B AAB

;5 cand: ChurchBool ChurchBool-> ChurchBool
;5 “ands” the given ChurchBools together

(define cand
(lambda (A B)

(A B A)))
\

True True True When 4 = True,

True False False

(define‘ctrue
(lambda (a b) a))

(Returns first arg)

want: And(4, B) =

False True False When A = False,

False False False

want: And(4, B) =

7

B. A = ctrue /
\ (ABA) =BV

—

v i (cand A B) = B

4 (define cfalse

(Returns second arg)

(lambda (a b) b))

;; if A = cfalse /

;; then (A B A) =|A

N;; want (cand A B) = A

Church Pairs (Lists)

;5 A ChurchPair<X,Y> 1l-arg function, where
;; the arg fq is applied to (i.e., :selects") the X and Y data values

;5 ccons: X Y’¥> ChurchPa;p<§;Y>
(define ccons
(lambda (x y)
(lambda (ge
(get x y¥)))

(define cfirst
(lambda (cc)
(cc (lambda (x y) X))))

1 “Gets” the first item

A “Gets” the second item

(define csecond
(lambda (cc) 5/////
(cc (lambda (x y) y))))

™ The Lambda (A) Calculus

« A “programming language” consisting of only:
« Lambda functions
« Function application

* “Language” has:

Numbers

Booleans and conditionals
Lists

Recursion?

Recursion In the Lambda Calculus

Q: How can we write recursive programs with no-name lambdas?

Q: Is there a way for a lambda program to reference itself?

From Lecture 2

Lambda Program that Knows “ltself”

 Program that runs “itself” repeatedly (i.e,, it infinite loops):

Function (takes one argument)

(A (x) (x X))
(A (x) (x X)) |

Argument (is also function)

Function applies argument (function) to itself

Result is:

The same program (i.e., the program “itself”)

« Can we do something else besides loop?

Lambda Program that Prints “ltself”

* Program that prints “itself”:

Function (takes one argument)

((X (x) (print2x x)3
“(M (x) (print2x x))”) |

Apply function print2x to string argument

Argument (string)

Result is:

The same program (i.e, the program “itself”)

(define (print2x str)
(printf “(~a\n ~v)\n” str str)))

Line break

|

(could have inlined this)

Function

Argument

Lambda Program that Prints “ltself”

* Program that prints “itself”:

Also “itself” (part of program)

((A (x) (print2x x))
“(N (x) (print2x x))”)

“Itself”
(whole program)

« Q: Which part of the program is “itself”?

Lambda Program that Knows “ltself”

 Program that runs “itself” repeatedly (i.e., it infinite loops):

Also “itself” (part of program)

“the recursive call” Insight:
((A (x) (x x)) 1 “Iitself” = “the recursive call”
(A (%) (x x)))

“Itself”
(whole program)

« Q: Which part of the program is “itself”?
« Can we do something more useful with “the recursive call”?

Delay “the recursive call”

“the recursive call”

N
(A (x) (x x))
(A (x) (X X)))

Add a function
parameter

=

What do we do
with this?

Delayed
“recursive call” “the recursive call”

s
(A (x) (A (v) ((x x) v)))

(A (x) (A (v) ((x x) v))))

‘ Give “the recursive call” to

What function “needs” a
recursive call?
A Recursive function!

/ M M
another function that needs it
N (F)y<

(A (x) (F (A (v) ((x x) v))))
(A (x) (f (A (v) ((x x) v)))))

A Recursive Function

(define (factorial n)
(if (zero? n)
1
(* n (factorial (subl n)))))

A Recursive Function, as lambda

(define factorial
(A (n)
(if (zero? n)
1
(* n (factorial (subl n))))))

A Recursive Function without recursion

(define factorial
(A (n)
(if (zero? n)
1
(* n (THE-RECURSIVE-CALL (subl n))))))

Where does this come from?

Make it a parameter!

A Recursive Function without recursion

(define factorial
(A (THE-RECURSIVE-CALL) |Make “the recursive call” a parameter
(A (n)
(if (zero? n)
1
(* n (THE-RECURSIVE-CALL (subl n)))))))

A Recursive Function without recursion

(define facterial factorial-maker
(A (THE-RECURSIVE-CALL) |Make “the recursive call” a parameter
(A (n)
(if (zero? n)
1
(* n (THE-RECURSIVE-CALL (subl n)))))))

Delay “the recursive call”

“the recursive call”

(A (x) (x x))
(A (x) (x x)))

Delayed
“recursive call” “the recursive call”

(A (x) (A (v) ((x xJ v)))
(A (x) (A (v) ((x x) v))))

Function that needs

f could be
“factorial-maker”

— “recursive call”
N (F—

A () (FT(0 (v) ((x %))

(A (x) (f (A (v) ((x x) v)))))

Y Combinator

“the recursive call”

(A (x) (x x))
(A (x) (x x)))

Y Combinator “creates”
recursive functions

BEATING THE AVERAGES (LeCtU re 2)
Want to start a startup? Get funded by Y Combinator. — c E - ‘i‘; @ B

(This article is derived from a talk given at the 2001 Franz Developer Symposium.)

Delayed
“recursive call” “the recursive call”

(A (x) (A (v) ((x xJ v)))
(A (x) (A (v) ((x x) v))))

f could be
“factorial-maker”

(A (F)
A () (F (0 (V) ((x x) V)

)))
(A (x) (f (A (v) ((x x) v)))))

Code Demo

