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CS 420 / CS 620
Reducibility

Wednesday, November 19, 2025
UMass Boston Computer Science

DEFRNE DOES ITHALT ( PROGRAM):

{
3

RETORN TRUE;

THE BIG PICTURE SOWTION
To THE HALTING PROBLEM
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e HW 11
« Out: Mon 11/17 12pm (noon)
« Due: Mon 11/24 12pm (noon)

« HW 12
« Out: Mon 11/24 12pm (noon)
« Thanksgiving: 11/26-11/30
 Due: Fri 12/5 12pm (noon)

« HW 13 ,
 Out: Fri 12/5 12pm (noon) {B'EHNE DOES ITHALT (PRoGRAM):
 Due: Fri 12/12 12pm (noon) (classes end) RETURN TRUE;

« Late due: Mon 12/15 12pm (noon) (exams start) 3
 Nothing accepted after this (please don't ask) THE BIG PICTORE SOLUTION

To THE HALTING PROBLEM

lecture22



Last Tine

Diagonalization with Turing Machines

Diagonal: Result of Giving a TM its own Encoding as Input

\<Ml> (M)

All TM Encodings

(Ms)  (My) (D)
—— M, | accept reject accept reject accept
1> | accept accept accept accept accept
Ms | reject reject reject  reject reject
AllTMs,_!Il/f4 accept accept reject reject accept What
should
happen
here?

TM D can't exist!

Try to £
construct this: \
“opposite” |
TM D

_ _ :

It must both
accept and reject!




Last [ine
3 Easy Steps!

Inm: A+nm is undecidable
Atm = {(M,w)| M isa TM and M accepts w}

Proof by contradiction:

1. Assume Aqy, 1S decidable. j

H(( ) accept it M accepts w <
b w — . .
reject it M does not accept w

2. Use H to define another TM ... the impossible “opposite” machine:

D = “On input (M), where M is a TM:

(does opposite of whatinput | 1. Run H on jnput <M’ <M>> H computes: M's result with itself as input
TM would do if given itself)

Output the opposite of what H outputs. That is, if H accepts,
(M) (1‘_/2> (-}‘{:}s) (‘{4) ¢ 2))

SRS T reject; and if H rejects, accept.” Do the opposite
(from prev slide) ;T
This TM can't be defined! ["

| D reject  reject accept accept




Last Tine

3 Easy Steps!

M, | accept  reject
M, | accept accept
Ms | reject  reject
M.

| o 55 w2 Output the opposite of what

Inm: A+nm is undecidable
Atm = {(M,w)| M i1sa TM and M accepts w}

Proof by contradiction: 1hic cannot be true
1. Assume Aqy, 1S decidable. So there exists a decider H for it:

H((M, w)) accept it M accepts w
b w — . .
reject it M does not accept w

2. Use H to define another TM ... the Impossible “opposite” maching:
mput (M), where M 1s a TM:

“— 1. Run H on1n ).

That is, it H accepts,

reject; and if H rejects, accept.”

TM D can't be defined! |

3. But D does not exist! Contradiction! So the assumption is false:




Last Tine

Fasier Undecidability Proofs

« We proved Arw = {(M,w)| M isaTMand M accepts w} undecidable ...

e ... by contradiction:
 Use hypothetical A;, decider to create an impossible decider “D”!

4 n
reduce “D problem” to Ay, M) (My)  (Ms) My - (D)
My | accept  reject  accept  reject

M | accept accept accept acce

* Step # 1: coming up with “D” --- hard! e B
« Need to invent diagonalization

D reject  reject accept accept ?

Unknown lang Known undecidable lang!

e 'Step # 2: reduce “)Kproblem to wa --- easier!

« From now on: undecidability proofs only need step # 2!
« And we now have two “impossible” problems to choose from

Let’'s add more!



The Halting Problem

HALT vy = {(M,w)| M isa TM and M halts on input w}
Thm: HALT;, 1s undecidable

Proof, by contradiction:

(hypothetical) FAQ: “Do we need Examples Table?”

» Assume: HALT;,, has decider R; use It to create decider for Ay
(undecidable, no decider) ATM = {U\/L w>| MisaTM and M accepts w} A: Yes, to Justify 2 Stateme\n\
S = “On input (M, w), an encoding of a TM M ante_machine X decides lang L

it LA \JLJ._I.J.LD AL e

(even if it leads to contradiction)

ALSO: Example Table(s) tell
you how to solve the problem!

Examples also help to understand the problem (needed before solving)




The Halting Problem

HALTvwm = {{(M,w)| M isa TM and M halts on input w}
Thm: HALT;, 1s undecidable

Proof, by contradiction:

« Assume: HALT;, has decider R;

Examples for R

Input (M, w) will be

(M, w)) where:

- M;is some TM
described in table
and

- w; s some string

R lets us know when a TM would loop on some input
(without running the TM) ... so we can avoid it!




The Halting Problem

HALT vy = {(M,w)| M isa TM and M halts on input w}

Thm: HALT;, 1s undecidable

Proof, by contradiction: Using our hypothetical HALT;,, decider R

Loop is not accept

« Assume: HALT;,, has decider R; use it to create decider for Ay

Atm = {(M,w)| M is a TM and M accepts w}

S = “On input (M, w),an encoding of a TM M and a string w:

1.

2.
3.
4

Examples Table??

Run TM R on input (M, w). (dogsn't accepy)
It R rejects, reject — If R rejects (M,w), M loops’on w, so S should reject it

If R accepts, simulate M on w until it halts.<— This step always halts
It M has accepted, accept; if M has rejected, reject.”
Termination argument:

Step 1: Ris a decider so always halts
Step 3: M always halts because R said so




Th\ese must match (like before)

\ o\

Need help from (HALT;, decider) R
T h e H d lt to decide Ayl " BUT A;y undecidable!

Cant actually compute this! :
Input (M, w)=(M, w,) ‘ ‘HALTTM\F {(M, ’bU>| 1V1\111:'.- a ”‘X\. auflvu 1a1S On alUt ’lU}

where:
M, is TM described
in table
w; IS some string ‘

Loop is not accept

/ Atm = {(M, w)\M is a TM and M accepts w}

Need to use this ... .. to figure out this

Example Table
Justifying Statement
“S decides A"



Undecidability Proof Technique #1:
Reduce from known undecidable

The Haltin g Problem language (by creating its decider)
HALT vy = {(M,w)| M isa TM and M halts on input w}

Thm: HALT;, 1s undecidable
Proof, by contradiction: FFFAQ: “Do we need S/)??7??”

« Assume: HALT;, has decider R; use It to create decider for A-..:
“You never showed us how????”

input (M, w), an encoding of a TM M and a string w:

1. Run input <]LL ’LU). Now we have three known
[ : ) undecidable langs, i.e.,

2. It R rejects, reject. three “impossible”

3. If R accepts, simulate M on w until s. deciders, to choose from

4. If M has accepted, accept; if M has rejected, reject:

« But A, 1S undecidable (has no deciden)! |.e., this decider does not exist!
« SO HALT;), is also undecidable!




The Halting Problem .. as statements / Justifications

(Proof by contradiction)

Statements

1. HALT;, Is decidable

2. HALT;, has decider R

3. Construct decider S
using R (“see below”)

4, Decider S decides Ay,

5. Ay is undecidable
(i.e, it has no decider)

6. HALT;, I1s undecidable

HALT vy = {(M,w)| M isa TM and M halts on input w}

Justifications
1. Opposite of statement to prove

2. Definition of decidable langs

3. Definition of TMs and deciders
(incl termination argument)

4. See Examples Table

Theorem from last lecture
(Sipser Theorem 4.11)

6. Contradiction of Stmts #4 & #5



Sumary: The Limits of Algorithms

* Apra = {(B,w)| B is a DFA that accepts input string w} Decidable
« Acre = {(G,w)| G is a CFG that generates string w } Decidable
e Atm = {(M,w)| M isa TM and M accepts w} laii;gres Undecidable
o« HALT 1y = {(M,w)| M is a TM and M halts on input w} Undecidable

It's straightforward to use
hypothetical HALT;,, decider to
create A, decider



next

Sumary: The Limits of Algorithms

* Apra = {(B,w)| B is a DFA that accepts input string w}
« Acre = {(G,w)| G is a CFG that generates string w }
e Atm = {(M,w)| M isa TM and M accepts w}

o HALTtMm = {(M,w)| M is a TM and M halts on input w}

Epra = {(A)| Aisa DFA and L(A) = 0}

Not as
similar

Ecrg = {{(G)| Gisa CFG and L(G) = 0} languages

o Frm = {(M) MisaTMand L(M) = ()}

How can we use a
hypothetical E;y, decider to
create Ay or HALT;,, decider?

Decidable
Decidable
Undecidable
Undecidable
Decidable
Decidable
Undecidable



Thm: E7) Is undecidable
Proof, by contradiction:
« Assume Eqy, has decider R; use it to create decider for Ay

S = “On input (M,

w), an encoding of a TM M and a string w:

. Run R on input (M)
- If R accepts, reject (because it means (M) doesn’t accept anything)

- if R rejects, then

777

e [dea: Use Examples (Ta

(Will tell us how to solve the problem!)

Undecidability Proof Technique #2

Reducibility: Moditying the TM

ETM = {<M>‘ M is a TM and L(M

)

0}

((M) accepts something,

vle) for guidance!

but Is It w???

)




Ay Examples Table

Remember:
A;y undecidable
(has no decider)!

.. without “help”, i.e,, R\

\So cannot compute this Arm = {{M,w)| M isa TM and M accepts w}

Input <M, w>




Ris E7y d

- <
cider So:

Frm = {(M)| M isaTM and L(M

) =0}

« Assume E;y\has decider R;
S = “On input (M, w),

Want:

So cannot compute this
.. without “help”, i.e, R

Want R result to tell us... |

implies

M

implies

/

not accept w

M accept w

Want;

IDEA: modify M (into M,) so R
gives the needed information —
M1 = “On

input :

L(M,)=0

L(M,) #0

M, accept nothing, implies M not accept w
M, accept something, implies M acceptw




S = “On input (M. w), |
| | |

implies
Z implies
Want: Got: L(M1).:® | .
M, = ‘;(-)nl';nnf; i‘):’ et (w /’)%1 gggggi mgl?&vﬁfgg&

L(M,) #@ ={w}

gl (nothing or just w)




Erm = {(M)| M isaTM and L(M) = 0}

Thm: E7y I1s undecidable
Proof, by contradiction:
- Assume Eqy, has decider R; use 1t to create decider for Ay

S =“On inoyt (M, w), an encoding of a TM M and a string w:

First, construct M,
. Run K on mput <ﬂj“1 — Note: M, is only used to get needed info from R; (never run!)

. It R accepts, reject (because it means (M) doesn't accept[_w__)

—d

« if R rejects, thenlaccept ((M) accepts something,[_and itis wh
\

Got: L(M,)=0 \
- M, accept nothing, implies ot acceptw
- M, accept w, implies M acceptw

M; = “On input x:

1. Ifz # w, reject.

2. Ifx = w, run M on input w and accept if M does.” L) = =)




Reducibility: Moditying the TM

Erv={ (M) MisaTMand L(M) =
Thm: E;y, is undecidable ™ = (M) MisaTMand L(M) = 0}

Proof, by contradiction: | contradiction because: Ay is undecidable and has no decider!
« Assume E7y has decider R; use 1t to create decider for A;y:

S =*“Oainnut (M, w), an encoding of a TM M and a string w:

First, construct M,

. RKun ¥ on nput (

. If R accepts, reject (because it means accept [__w
- if R rejects, then[accepd ((M) accepts something,[anditis w1

e Idea: Wrap (M) in a new TM that can only accept w:

M; = “On input z:
1. If x # w, reject.

2. Ifz = w, run M on input w and accept it M does.”




next

* Exw = {(M)| MisaTMand L(M) =0} 4

Sumary: The LImits of Algorithms

Apra = {(B,w)| B is a DFA that accepts input string w }
Acrc = {(G,w)| G is a CFG that generates string w}
Atm = {(M,w)| M is a TM and M accepts w}

EDFA {< >‘ A iS a DFA and L(A) = @}

Ecre = {(G)| GisaCFG and L(G) = 0}

needs

EQpea = {(A, B)| Aand B are DFAsand L(A) = L(B)}

EQcrc = {(G, H)| G and H are CFGs and L(G) = L(H)}

EQ+y = {(My, My)| My and My are TMs and L(M;) = L(M>,)}

Decidable
Decidable
Undecidable
Decidable
Decidable
Undecidable
Decidable
Undecidable
Undecidable



Undecidability Proof Technique #3

Reduce to something else: EQ+y is undecidable

EQ+y = {(My, My)| My and M, are TMs and L(M;) = L(M>)}

Proof, by contradiction:
Erwm

« Assume: EQ;y has decider R; use it to create decider fohlw:
Erp = {1) MisaTMand L(M) = 0}

S = “On input (M), where M is a TM:
1. Run R'on input (M, M;), where M; is a TM that rejects all
inputs.
2. It R accepts, accept; it R rejects, reject.”



Reduce to something else: EQty is undecidable
EQ+v = {(My, M3)| My and M are TMs and L(M;) = L(Ms)}
Proof, by contradiction:

« Assume: EQ;y has decider R; use it to create decider for Ey:
={(M)| MisaTMand L(M) = (0}

ut (M), where M is a TM:
1. Run Roni M), where M; is a TM that rejects all

inputs.
2. If R accepts, accept; it R rejects, reject.”

 But E7 IS undecidable!



Sumary: Undecidability Proof Techniques

: Arm = {(M,w)| M isa TM and M ts |
« Proof Technique #1: ™ = {(M,w)| M isaTM an accepts w }
* Use hypothetical decider to implement impossible Ay deciderﬁ Reduce

« Example Proof: HALTtyw = {{M,w)| M isa TM and M halts on input w}

* Proof Technique #2:

2 Use hypothetical decider to implement impossible A, decider
Can also . . . ™
» But first modify the input M

combine
these Reduce

techniques | « Example Proof: FEry = {(M)| M isaTM and L(M) = 0}

\

* Proof Technique #3:

* Use hypothetical decider to implement non-A4,, impossible decider

« Example Proof: EQ y = {(M;, M>)| M, and M, are TMs and L(M,) = L(M>)}



Sumary: DecCidability and Undecidability

Apra = {(B,w)| B is a DFA that accepts input string w }
Acre = {(G,w)| G is a CFG that generates string w}
Atm = {(M,w)| M is a TM and M accepts w}

Epra = {(A)| Aisa DFA and L(A) = 0}

Ecrc = {(G)| Gis aCFG and L(G) = 0}

Erv = {(M)| MisaTM and L(M) = ()}
EQpea = {(A, B)| Aand B are DFAsand L(A) = L(B)}
EQcrc = {(G, H)| G and H are CFGs and L(G) = L(H)}

EQ+y = {(My, My)| My and My are TMs and L(M;) = L(M>,)}

Decidable
Decidable
Undecidable
Decidable
Decidable
Undecidable
Decidable
Undecidable
Undecidable



Also Undecidable ...

next | * REGULAR;y = {<M>| M isaTM and L(M) is a regular language}



Undecidability Proof Technique #2:

Thm:REGULAR~y, is undecidable Modify Input TM M

REGULARtm = {(M)| M isaTM and L(M) is a regular language}

Proof, by contradiction:
« Assume: REGULAR-, has decider R; use it to create decider for A,

S = “On input (M, w), an encoding of a TM M and a string w:
o| First, construct M, (??)

e Run R on mput (M

2

o If R accepts, accept; if R rejects, reject
\ A\

Want: L(M,) =
« regular, If M accepts w
« nonregular, if M does not accept w




Thm:REGULARTy\ is undecidable (continued)

REGULARtm = {(M)| M isaTM and L(M) is a regular language}

M3 = “On input z:
1. If x has the form 01", accept.
2. If x does not have this form, run M on input wjand

Always accept strings 071"
L(M,) = nonregular, so far

accept 1t M accepts w.” If M accepts w,

accept everything else,

if M does not accept w, M, accepts all strings (regular lang) so L(M,) = 2* = regular

All strings

Qnin

/

Want: L(M,) =

* nonregu

 regular, If M accepts WE/

ar, if M does not accept w

if M accepts w, M, accepts this nonregular lang




Also Undecidable ...

* REGULAR, = {<M>| MisaTM and L(M) is a regular language}
 CONTEXTFREE ), = {<M>|MisaTMand L(M) is a CFL}
* DECIDABLE, = {<M> | M is a TM and L(M) is a decidable language}

* FINITE,, = {<M>| MisaTM and L(M) is a finite language}

Seems like:

no algorithm can compute anything about ...
.. the language of a Turing Machine,

l.e., about the runtime behavior of programs ...



An Algorithm About Program Behavior?

main()

{
printf ("hello, world\n");
+

Write a program that,
glven another program as its argument,
returns TRUE if that argument prints
“hello, world”

4

TRUE



Seems like:

no algorithm can compute anything about ...
.. the language of a Turing Machine,
l.e., about the runtime behavior of programs ..

Fermat’s Last Theorem
(unknown for ~350 years,
solved in 19905s)

in()
I-::laln /

If ™ +y" = 2", for any integer n > 2

printf("hello, world\n");

Write a program that,

her program as its argument,
RUE if that argument prints

' t
@“hello, world”

4

P??°7?



Seems like:
no algorithm can compute anything about ...

.. the language of a Turing Machine, AlSO UndeCIdable

l.e., about the runtime behavior of programs ..

* REGULAR, = {<M>| MisaTM and L(M) is a regular language}
 CONTEXTFREE ), = {<M>|MisaTMand L(M) is a CFL}

* DECIDABLE, = {<M> | M is a TM and L(M) is a decidable language}
* FINITE,, = {<M>| MisaTM and L(M) is a finite language}

Rice's Theorem

*|ANYTHING-, = {<M>| MisaTM and ... anything ...” about L(M)}




Rice’s Theorem: ANYTHING,, 1S Undecidable

ANYTHING, = {<M>| MisaTM and ... anything ... about L(M)}

« “... Anything ...”, more precisely:
For any M,, M,,
* If L(My) = L(M,)
» then M, € ANYTHING,,, © M, € ANYTHING;,

* Also, “... Anything ...”must be “non-trivial”:
« ANYTHING), '={}
* ANYTHING), = set of all TMs



Rice’s Theorem: ANYTHING,, 1S Undecidable

ANYTHING, = {<M>| MisaTM and ... anything ... about L(M)}

Proof by contradiction

« Assume some language satisfying ANYTHING-,, has a decider R.
 Since ANYTHING,,, 1s non-trivial, then there exists M,y € ANYTHING+,
« Where R accepts M,y

« Use R to/create decider for Ay
On inPUt Mr w>: These two cases

.| M _=oninputx: . ~ must be different,
Y Create w" ) I‘:/{Vun M Oan X IfM acceptS W. MW - MANY (SO R can distinguish

If M doesn't accept w: M, accepts nothing | when M accepts w)

- If M rejects w: reject x I
- If M accepts w: Wait! What if the TM that accepts
Run M,,,on x and accept if it accepts, else reject nothing is in ANYTHING;,,!

* RunRon M,

- If it accepts, then M, = M,,,, SO M accepts w, SO accep}  Proof still works! Just use the

e Flse reject complement of ANYTHING;,, instead!
|




Rice’'s Theorem Implication

{<M> | Mis a TM that installs malware} ~ Undecidable!
by Rice’'s Theorem

(n)
1f the number n 1s a prime
var factor; // if

RANSOMWAREATTACK /\

YOUR FILES HAVE BEEN ENCRYPTED




Turing Unrecognizable?

Is there anything out here?

Atwm

' Turing-recognizable

decidable

context-free

regular
Where do these go?

Erm = {{M)| M isaTM and L(M) = 0}

EQcec = {(G,H)| G and H are CFGs and L(G) = L(H)}
EQ+y = {(My, My)| My and M, are TMs and L(M;) = L(M>)}



Thm: Some langs are not Turing-recognizable

Proof: requires 2 lemmas

« Lemma 1: The set of all languages is uncountable

« Proof: Show there is a bijection with another uncountable set ...
... The set of all infinite binary sequences

e Llemma 2: The set of all TMs is countable

* Therefore, some language Is not recognized by a TM



Mapping a Language to a Binary Sequence

All Possible Strings |
< >>=1{¢ 0 1, 00, 01, 10, 11, 000, 001, ---
ome Language .
(subset of above) A = { 0, 00, 01, 000, 001,
Its (unique) (XA = 0 1 0 1 1 0 0 1 1
Binary Sequence

Each digit represents one possible string:
- 1 if lang has that string,
- 0 otherwise



Thm: Some langs are not Turing-recognizable

Proof: requires 2 lemmas

« Lemma 1: The set of all languages is uncountable

« Proof: Show there is a bijection with another uncountable set ...

... The set of all infinite binary sequences
> Now just prove set of infinite binary sequences is uncountable (diagonalization)

« Lemma 2: The set of all TMs is countable
« Because every TM M can be encoded as a string <M>
« And set of all strings is countable

* Therefore, some language is not recognized by a TM u



Co-Turing-Recognizability

* A language is co-Turing-recognizable if ...
e ... It Is the complement of a Turing-recognizable language.




Thm: Decidable <& Recognizable & co-Recognizable




Thm: Decidable < Recognizable & co-Recognizable

= If a language is decidable, then it is recognizable and co-recognizable

« Decidable => Recognizable:
« Adecideris arecognizer, bc decidable langs are a subset of recognizable langs

« Decidable => Co-Recognizable:
 To create co-decider from a decider ... switch reject/accept of all inputs
« A co-decider is a co-recognizer, for same reason as above

< If a language is recognizable and co-recognizable, then it is decidable



Thm: Decidable < Recognizable & co-Recognizable

= If a language is decidable, then it is recognizable and co-recognizable
« Decidable => Recognizable:
« A decideris arecognizer, bc decidable langs are a subset of recognizable langs

« Decidable => Co-Recognizable:
« To create co-decider from a decider ... switch reject/accept of all inputs
« A co-decider is a co-recognizer, for same reason as above

< If a language is recognizable and co-recognizable, then it is decidable
 Let M, = recognizer for the language,
- and M, = recognizer for its complement

e Decider M:

* Run 1stepon M,
* Run 1step on M,,
« Repeat, until one machine accepts. If it's M,, accept. If it's M,, reject

Termination Arg: Either M, or M, must accept and halt, so M halts and is a decider




A Turing-unrecognizable language

« We've proved:

At is Turing-recognizable

A+m 1s undecidable

e So:

Atwm is not Turing-recognizable

« Because: recognizable & co-recognizable implies decidable



Is there anything out here?

ATm Arm

' Turing-recognizable

decidable

context-free

regular



