CS 420 / CS 620

Polynomial Time (P)
Monday, December 1, 2025
UMass Boston Computer Science

Caveat:
This class: polynomial time = “good” (won't take forever)
Real programmers: polynomial time = “eh” (pretty slow)

lecture25
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e HW 12
 Out: Mon 11/24 12pm (noon)
« Thanksgiving: -11/30

 Due: Fri 12/5 12pm (noon)

Last HW

e HW 13
 Out: Fri 12/5 12pm (noon)
 Due: Fri 12/12 12pm (noon) (classes end)

« Late due: Mon 12/15 12pm (noon) (exams start)
« Nothing accepted after this (please don't ask)

Caveat:
This class: polynomial time = “good” (won't take forever)
Real programmers: polynomial time = “eh” (pretty slow)

lecture25



Class participation guestion (in Gradescope)

Q1 The time complexity class P represents what kind of

problems ?
1 Point

(select all that apply)

"] realistically solvable problems
[] tractable problems
[] problems that have a polynomial time algorithm

] languages decided by Turing-machines that run in a worst
case polynomial number of steps



Previnsty: TiIMe Complexity

Running Time or Time Complexity is a
property of decider TMs (algorithms)

Let M be a deterministic Turing machine that halts on all in-
puts. The running time or time complexity of M is the function
f: N— N, where f(n) is the, maximum number of steps that M
uses;on any input of length n. If f(n) is the running time of M,
we say that M runs in time f(n) and that\M is an f(n) time Tur-
ing machine. Customarily we use n to represent the length of the
input.

, : Worst case
Depends on size of input



last Tire: TIMe Complexity Classes

Big-0 = asymptotic upper bound,
l.e., “only care about large n*

Let tx\ N —R™ be a function. Define the time complexity class,
TIME(t(n)), to be the collection of all languages that are decid-
able by an'O(t(n)) time Turing machine.

Remember:
- TMs: have a time complexity (i.e.,, a running time),
- languages: are in a time complexity class

The time complexity class of a language is determined
by the time complexity (running time) of its deciding T™M

But: a language can have
multiple TMs deciding it, so could be In
multiple time complexity classes




The Polynomial Time Complexity Class (P)

P is the class of languages that are decidable in polynomial time on
a deterministic single-tape 'Turing machine. In other words,

P = | TIME(n").
k

 Corresponds to “realistically” solvable problems:
* ProblemsinP
« = “solvable” or “tractable”

* Problems outside P
« =“unsolvable” or “intractable”



GREAT NEWS, EVERYONE/
(T TURNS QUT THE PROBLEM
WE SPENT QUR CAREERS
WORKING ON CAN'T
BE SOLVED/

‘Unsolvable” Problems

- Unsolvable problems (those outside P):
« usually only have “brute force” solutions
“try all possible inputs”
“unsolvable” applies only to largen . .
Time it takes a hacker to brute From Wikipedi, th free oncyclopeda

In cryptography, a brute-force attack consists of an attacker submitting many passwords or passphrases with the hope of

Mathematicians are weird.

Ll
fo rce you r passwo rd iN 202 5 eventually guessing a combination correctly. The attacker systematically checks all possible passwords and passphrases until
the correct one is found. Alternatively, the attacker can attempt to guess the key which is typically created from the password
Hardware: 12 x RTX 5090 | Password hash: berypt (10) using a key derivation function. This is known as an exhaustive key search.
Upper and Numbers, Upper Numbers, Upper
Number of Numbers Only Lorleet::f:e Lowercase and Lowercase and Lowercase
Shm Letters Letters  Letters, Symbols As usual, in this class we're interested in questions like:
Instantly Instantly Instantly Instantly Instantly
Instantly Instantly 57 minutes 2 hours 4 hours Ll . . U 77 .
PR T | today —~How to prove something is “solvable” (in P)?

Instantly 20 hours 2years /

Instantly 3 weeks

2 hours Ma\" 79iyears  3kyears  Tkyears . - u ” -
—— = - How to prove something is “unsolvable” (not in P)?

1 weeks

3months (much harder)
275bn years
_ 300bn years 3tn years 19tn years
B _ 15tn years 218tn years 1qd years

12bn years 812tn years 13qd years 94qd years
322bn years 42qd years 840qd years 6qgn years
8tn years 2qn years 52qn years 463qn years




3 Problems in P

* A Graph Problem:
PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}

* A Number Problem:
RELPRIME = {{x,y)| = and y are relatively prime}

A CFL Problem:

Every context-free language is a member of P
A decider!

« To prove that a language is “solvable”, i.e, In P ...
e ... construct a polynomial time algorithm deciding the language

» (These may also have nonpolynomial, i.e., brute force, algorithms)
 Check all possible ... paths/numbers/strings ...




Interlude: Graph Encodings

({1,2,3,4,5}, {(1,2), (2,3), (3,4), (4,5), (5,1)})

 For graph algorithms, “length of input” n usually = # of vertices
 (Not number of chars in the encoding)

« So given graph G=(V, E), n=|V]

« Max edges?
* =0(|V]*) =0(n?)

- So if a set of graphs (call it lang L) is decided by a TM where

* # steps of the TM = polynomial in the # of vertices
Or polynomial in the # of edges

e Then LisinP




3 Problems in P

* A Graph Problem:
PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}

* A Number Problem:
RELPRIME = {{x,y)| = and y are relatively prime}

A CFL Problem:

Every context-free language is a member of P



P is the class of languages that are decidable in polynomial time on
a deterministic single-tape Turing machine. In other words,

P = TIME(n*).

A Graph Theorem: PATH € P

PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}

(A path is a sequence of
nodes connected by edges)

* To prove that a language isin P ...

.. we must construct a polynomial time algorithm deciding the lang
A decider!

A non-polynomial (i.e., "brute force”) algorithm:
» check all possible combination (ordering) of all vertices,
« see if any connectstot
 |f n=#vertices, then # paths = n"or n! (worse than 29()




A Graph Theorem: PATH € P

PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}

PROOF A polynomial time algorithm M for PATH operates as follows.

M = “On input (G, s, t), where G is a directed graph with nodes s and ¢:
1. Place a mark on node s.
2. Repeat the following until no additional nodes are marked:

3.  Scan all the edges of G. If an edge (a, b) is found going from
a marked node a to an unmarked node b, mark node b.

4. Iftis marked, accept. Otherwise, reject.”

# of steps (worst case) (n = # nodes):
> Line 1: 1 step



A Graph Theorem: PATH € P

PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}

PROOF A polynomial time algorithm M for PATH operates as follows.

M = “On input (G, s, t), where G is a directed graph with nodes s and t:
1. Place a mark on node s.
2. Repeat the following until no additional nodes are marked:

3.  Scan all the edges of G. If an edge (a, b) is found going from
a marked node a to an unmarked node b, mark node b.

4. Iftis marked, accept. Otherwise, reject.”

# of steps (worst case) (n = # nodes):
e Line 1: 1 step

e Lines 2-3 (loop):
> Steps/iteration (line 3): max # steps = max # edges = 0(n?)




A Graph Theorem: PATH € P

PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}

PROOF A polynomial time algorithm M for PATH operates as follows.

M = “On input (G, s, t), where G is a directed graph with nodes s and t:
1. Place a mark on node s.
2. Repeat the following until no additional nodes are marked:

3.  Scan all the edges of G. If an edge (a, b) is found going from
a marked node a to an unmarked node b, mark node b.

4. Iftis marked, accept. Otherwise, reject.”

# of steps (worst case) (n = # nodes):
e Line 1: 1 step

e Lines 2-3 (loop):
- Steps/iteration (line 3): max # steps = max # edges = O(n?)
> tt iterations (line 2): loop runs at most n times




A Graph Theorem: PATH € P

PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}

PROOF A polynomial time algorithm M for PATH operates as follows.

M = “On input (G, s, t), where G is a directed graph with nodes s and t:
1. Place a mark on node s.
2. Repeat the following until no additional nodes are marked:

3.  Scan all the edges of G. If an edge (a, b) is found going from
a marked node a to an unmarked node b, mark node b. (Breadth-first search)
4. Iftis marked, accept. Otherwise, reject.”

# of steps (worst case) (n = # nodes):
e Line 1: 1 step

e Lines 2-3 (loop):
- Steps/iteration (line 3): max # steps = max # edges = O(n?)
- f#iterations (line 2): loop runs at most n times
> Total: O(n3)




A Graph Theorem: PATH € P

PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}

PROOF A polynomial time algorithm M for PATH operates as follows.

M = “On input (G, s, t), where G is a directed graph with nodes s and t:
1. Place a mark on node s.
2. Repeat the following until no additional nodes are marked:

3.  Scan all the edges of G. If an edge (a, b) is found going from
a marked node a to an unmarked node b, mark node b.

4. Iftis marked, accept. Otherwise, reject.”

# of steps (worst case) (n = # nodes):
e Line 1: 1 step

e Lines 2-3 (loop):

- Steps/iteration (line 3): max # steps = max # edges = O(n?)
- f#iterations (line 2): loop runs at most n times
« Total: O(n3)

> Line 4: 1 step




P is the class of languages that are decidable in polynomial time on
a deterministic single-tape Turing machine. In other words,

P = | TIME(n*).

A Graph Theorem: PATH € P *

PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}

PATH € TIME(n3
PROOF A polynomial time algorithm M for PATH operates as follows. ()
M = “On input (G, s, t), where G is a directed graph with nodes s and t:
1. Place a mark on node s. 0(113)
2. Repeat the following until no additional nodes are marked:

3.  Scan all the edges of G. If an edge (a, b) is found going from
a marked node a to an unmarked node b, mark node b.

4. Iftis marked, accept. Otherwise, reject.”

# of steps (worst case) (n = # nodes):
e Line 1:/1 step

e Lines 2-3 (loop):

- Steps/iteration (line 3): max # steps = max # edges = O(n?)
- f#iterations (line 2): loop runs at most n times
« Total: O(n3)

* Line 4:1 step
»Total =1+ 1+ 0(n3)H40(n3)

(For practical purposes,
not a great algorithm, but
it'sin P!i.e, “solvable”)




3 Problems in P

V] + A Graph Problem:
PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}

* A Number Problem:
RELPRIME = {{x,y)| = and y are relatively prime}

A CFL Problem:

Every context-free language is a member of P



A Number Theorem: RELPRIME c P

RELPRIME = {{x,y)| = and y are relatively prime}

« Two numbers are relatively prime: if their gcd = 1
« gcd(x,y) = largest number that divides both x and y

- E.g,gcd(8,12)= 7?

- Brute force (exponential) algorithm deciding RELPRIME:
 Try all of numbers (up to x or y), see if it can divide both numbers
Q: Why is this exponential?
HINT: What is a typical “representation” of numbers?
A: binary numbers
(if x = 27, then trying x numbers is exponential in n = the number of digits)

* A gcd algorithm that runs in polynomial time:
 Euclid’s algorithm



A GCD Algorithm for: RELPRIME < P

RELPRIME = {{x,y)| = and y are relatively prime}

Modulo
(i.e., remainder) The Euclidean algorithm E'is as follows. 0(")
15 mod 8 = E =¥On input (x, y), where x and y are natural numbers in binary:
17 mod 8 = 1.~ Repeat until y = 0:
2 Assign x < x mod y. Each number is
cuts x (at least) in half 3. Exchange z and y. cut in half every
every loop, requires: 4. Output z.” | other iteration

logx loops

Total run time (assume x> y): 2log x = 2log2" 4 0(n),
where n = number of binary digits in (ie length of) x




3 Problems In P

v] « A Graph Problem:
PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}

v] < ANumber Problem:
RELPRIME = {{x,y)| = and y are relatively prime}

A CFL Problem:

Every context-free language is a member of P

[F-THEN Statement to Prove:

IF a language L Is a CFL,
THENLiSInP




Luiew: A (Decider) TM for Any CFL (hwio sol)

Given any CFL L, with CFG G, the following decider M, decides L:

M, is a decider,

Mg = “On input w: bc Sis a decider
1. Ruzl'TM S on input (G, w). - | T m———
2. Itihis machine accepts, accept; if it rejects, reject.” allw e L, for
any CFL L

Sis a decider for: Acrc = {(G, w)| G is a CFG that generates string w} (with CFL G)

S = “On input (G, w), where G is a CFG and w is a string: Therefore,
1. Convert G to an equivalent grammar in Chomsky normal form.| | every CFL is
2. Listall derivations with 2n — 1 steps, where n is the length of w; | | decidable
except if n = 0, then instead list all derivations with one step. :
L : e But, Is every
3. Ifany of these derivations generate w, accept; if not, reject. CEL decidable

in poly time?



A Decider for Any CFL: Running Time

Given any CFL L, with CFG G, the following decider M, decides L:

Mg = “On mnput w:
1. RunTM S on input (G, w).
2. If this machine accepts, accept; if it rejects, reject.”

j - %Al Sis a decider for: Acrc = {(G,w)| G is a CFG that generates string w}
_>
L —# S = “On input (G, w), where G is a CFG and w is a string:
p"'gs";,g'i‘:};gi;{e;g?; 1. Convert G to an equivalent grammar in Chomsky normal form.
I I I I — . . . . .
derivation step? 2. Listall derivations with 2n — 1 steps, where n is the length of w;
except if n = 0, then instead list all derivations with one step.
A= 0A1 = L . ., e
3. Ifany of these derivations generate w, accept; if not, reject.
Worst case:
2n-1 _ : : : ST
|R|"" steps = 0(2") This algorithm runs in exponential time

(R = set of rules)



A CFL Theorem: Every context-free language is a member of P

* Given a CFL, we must construct a decider for it ...

e ... that runs in polynomial time



Dynamic Programming

« Keep track of partial solutions, and re-use them
o Start with smallest and build up

* For CFG problem, instead of re-generating entire string ...
« ... keep track of substrings generated by each variable

S = “On input (G, w), where G is a CFG and w is a string:
1. Convert G to an equivalent grammar in Chomsky normal form.

2. Listall derivations with 2n — 1 steps, where n is the length of w;
except if n = 0, thien instead list all derivations with one step.

3. If any of these derivations generate w, accept; if not, reject.”

This duplicates a lot of work because many strings
might have the same beginning derivation steps




CFL Dynamic Programming Example

e Chomsky Grammar G:
« S AB|BC
- A>BA]Ja
- B>CC|b
« C>AB|a
e Example string: baaba

« Store every partial string and their generating variables in a table
Substring end char

Substring
start char

O T v v o



CFL Dynamic Programming Example

e Chomsky Grammar G:
« S AB|BC
- A>BA]Ja
- B>CC|b
« C>AB|a
e Example string: baaba

« Store every partial string and their generating variables in a table
Substring end char

vars generating °'b" vars for “ba” vars for “baa”

Substring a vars for “a” vars for “aa” vars for “aab”
start char | a




CFL Dynamic Programming Example

e Chomsky Grammar G:
« S> AB|BC
« A>BA]|a
« B>CC|b
« C>AB|a

« Example string: baaba
« Store every partial string and their generating variables in a table

Algo:
- For each single char c and var A:

- If A->cisarule,add A to table

Substring end char

Vars generati

Substring a
start char | 3

ne “b"” vars for “ba”
vars for “a”

vars for “baa”
vars for “aa” vars for “aab”




CFL Dynamic Programming Example

Chomsky Grammar G:
« S> AB|BC
- A>BA]Ja
« B>CC|b
« C>AB|a

Example string: baaba

Algo:
- For each single char c and var A:

- If A->cisarule,add A to table

« Store every partial string and their generating variables in a table

Substring
start char

Substring end char

b B

a A,C

AC

AC




CFL Dynamic Programming Example

« Chomsky Grammar G: Algo:
. S> AB|BC - For each smgle char c and var A:
- A>BA|a = IfA%msa.rule,addAtotable
« B> CC|b - For each substrlpg s (len > 1.): .
- For each split of substring s Into x,y:
* C>AB|a - For each rule of shape A 2 BC:
e Example string: baaba - Use table to check if B

generates x and C generates y

« Store every partial string and their gererocrrrs—rorromreo—rra—oore

Substring
start char

Substring end char

b B

a A,C



CFL Dynamic Programming Example

e Chomsky Grammar G: Algo:
. S> AB|BC - For each single char c and var A:
+ ADBA|a - If A->cisarule, add A to table
BSCClb - For each substring s:
| - For each split of substring s into xy:
> E= A8 a - For each rule of shape A - BC:
) Example String: baaba For-subisit?i‘:gT“;l‘)h”iZpTli(twi:l.t-rgel(;"i;rizE{"
a, a:
o I I I « Forrule S>> AB
Store every partial string and their g8mereed® ™ b A rate b and b generate “a"
Substring end char - NO
For rule S > BC

- YES
b B T >

For rule A > BA

Substring | a AC . YES
rt char « Forrule B> CC
start char Jia AL « Does C generate “b” and C generate “a”*
b « NO
« ForruleC—-> AB
a « Does A generate “b” and B generate “a”*

NO

Does B generate “b” and A generate “a”*




CFL Dynamic Programming Example

Algo:
For each single char c and var A:

If A-> cisarule,add A to table
For each substring s:
For each split of substring s into x,y:

e Chomsky Grammar G:
« S> AB|BC
- A>BA]Ja
« B>CC|b
« C>AB|a

« Example string: baaba

« Store every partial string and their géreroers

Substring end char

«— Forrule S = BC
. YES

For each rule of shape A > BC:

- ISP 1anie 10 check IT R

For substring “ba”, split into “b” and “a”:
For rule S> AB

NO

b B S,A <
Substring | a AC
start char | a3

b

d

AC|’

For rule A > BA

Does B generate “b” and A generate

YES
For rule B> CC

NO
For rule C > AB

Does A generate “b” and B generate

NO

Does A generate “b” and B generate

Does C generate “b” and C generate *




CFL Dynamic Programming Example

. Chomsky Grammar G: AJIEQ For each:char,var...
e [For each I | - _For each smgle char c and var A:
. | - char - If A>cisarule, add A to table

- var - For each substring For each: substring, split, rule ...

CmreeTw — - For each split of substring s into x,y:
*C>ABJa - For each rule of shape A - BC:

=a 2l - Use table to check if B

_ zgﬁft;}nsgubstring artial string and their g —erroamorares X AN and ¢ generatesy

- rule Substring end char

If S is here, accept ——>SA,C

Substring a A,C B B S,A,C
start char | a AC S,C B
b B S,A

a AC



A CFG Theorem: Every context-free language is a member of P

|D = “On input w = wy - - - Wy
For each: |1. Forw =¢,if S — eisarule, accept; else, reject. [w = € case]

- char 2.>Fori=1ton: O(n)chars | [examine each substring of length 1]
Rl 3. For each variable A:|  #vars = constant = 0(1)
‘ 4. Test whether A — b is a rule, where b = w);. 0(1) * O(n) = O(n)
5. If so, place A in table(i.i).
For each: 6.~ For | = 2 to n:| O(n) diff lengths |[ [ is the length of the substring]
-substring —— 7 >For i = 1 ton — [ + 1:| O(n) strings of each length substring]
- split of substring-|, . . - :
“rule 8. Letj=17+4+1—1. [ 7 is the end position of the substring ]
9. Fork =itoj— 1:| O(n) ways to split a string into two pieces
10. For each rule A — BC(C: #vars = constant = 0(1)
11. If table(i, k) contains B and table(k + 1, j) contains

C, put A in table(i, 7). N N N _ 3
12. If S'isin table(1,n), accept; else, ng(l) 0(") 0(") IO(H) O(H )

Total:|0(n3)
(This is also known as the Earley parsing algorithm)




Summary: 3 Problems in P

V] « A Graph Problem:
PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}

v] < ANumber Problem:
RELPRIME = {{x,y)| = and y are relatively prime}

v] « A CFL Problem:

Every context-free language is a member of P




NP



Search vs Verification

» Search problems are often unsolvable
« But, verification of a search result is usually solvable

~28 BITS OF ENTROPY | [ \WAS IT TROMBONE? NG,

EXAMPLES @g% m R o || T
* FACTORING Tr@ub4dor &3 .éosé@f;? Qg‘,??ﬁ;‘jﬁi?
» Unsolvable: Find factors of 8633 o S%M%m Twm By
* Must “try al.l” possibilities (opimenenn  PNCUTON || OV Sss: || DY T AMErces
 Solvable: Verify 89 and 97 are factors of 8633 ——
« Just do multiplication PR
correct horse ba’clter_g s’canlg S
e PASSWORDS . Fojm,m; || ook
» Unsolvable: Find my umb . edu password oL o s |
* Solvable : Verify whether my umb.edu password is .. e Vo o R L SCESLY T

« “correct horse battery staple” TO REMEMBER, BUT EASY FOR COMPUTERS To GUESS.



The PATH Problem

PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}

* It's a search problem:
- Exponential time (brute force) algorithm (n"):
« Check all n” possible paths and see if any connectsand t

e Polynomial time algorithm:
Do a breadth-first search (roughly), marking “seen” nodes as we go (n = # nodes)

PROOF A polynomial time algorithm M for PATH operates as follows.

M = “On input (G, s, t), where G is a directed graph with nodes s and t:
1. Place a mark on node s. p
2. Repeat the following until no additional nodes are marked: 0(" )

3.  Scan all the edges of G. If an edge (a, b) is found going from
a marked node a to an unmarked node b, mark node b.

4. Iftis marked, accept. Otherwise, reject.”




Verifying a PATH

PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}

The verification problem:

« Given some path p in G, check that it is a path from sto ¢
NOTE: extra argument p,
“Verifying” an answer requires
having a potential answer to check!

* Let m = length of longest possible path = # ed

Verifier V= 0n input <G, s, t, p>, where pis some set of edges:
1. Check some edge in p has “from” node s; mark and set it as “current” edge

* Max steps = O(m)

2. Loop: While there remains unmarked edges in p:

1. Find the “next” edge in p, whose “from” node is the “to” node of “current” edge
2. |ff0und’ then mark that ed?‘n and cat it ac “Fiirrant” alen roiart

« Each loop iteration: O(m)

* # loops: O(m)
« Total looping time = O(m?)

3. Check “current” edge has “to” node t; if yes accept, else reject

« Total time = O(m) + O(m?) 5 0(m?)

= polynomial in m

v |

PATH can be verified
in polynomial time



Verifiers, Formally

PATH = {(G, s,t)| G 1s a directed graph that has a|directed path|from s to ¢}
|

.. With extra argument:
can be any string that helps
to find a result in poly time

(is often just a potential
result itself)

Decider ...

A verifier for a language A is an ‘flgorithm V, where

A = {w| V accepts (w, ¢) for some string c¥.

_ . . certificate, or proof
We measure the time of a verifier only in terms of the length of w,

so a polynomial time verifier runs in polynomial time in the length

of w. A language A is polynomially verifiable if it has a polynomial
time verifier.

« NOTE: a certificate ¢ must be at most length n*, where n = length of w
* Why? | Because it takes time n* to read it

So PATH is polynomially verifiable



The HAMPATH Problem ‘)(

HAMPATH = {(G, s,t)| G is a directed graph
with a Hamiltonian path from s to ¢}

« A Hamiltonian path goes through every node in the graph

>

S t

* The Search problem: =" :

- Exponential time (brute force) algorithm:
« Check all possible paths and see if any connect s and ¢ using all nodes
« Polynomial time algorithm: 222

« We don't know if there is onelll

 The Verification problem:
e Still 0(m?)! (same verifier for PATH)
« HAMPATH is polynomially verifiable, but not polynomially decidable




The class NP

DEFINITION

NP is the class of languages that have polynomial time verifiers.

e PATH is In NP, and P
« HAMPATH is In NP, but it's unknown whether it's in P




NP = Nondeterministic polynomial time

NP is the class of languages that have polynomial time verifiers.
TH EORE M -------------------------------------------------------------------------------------------------------------------------

A language is in NP iff it is decided by some nondeterministic polynomial time
Turing machine.

= If a language is in NP, then it has a non-deterministic poly time decider
« We know: If a lang L is in NP, then

e Need to: NOTE: a verifier cert is usually a

potential “answer”, but does

On input w = not have to be (like here)

« Nondeterministically run V with w and all possible poly length certificates ¢

Certificate ¢

—— &< If a language has a non-deterministic poly time decider, then it is in NP specifies a path
eterministic .
(verifier)TMs | * We know: L has NTM decider N,

cannot “call” non- | | Need to: show L is
deterministic TMs :

is explonentially  Let certificate ¢ dictate which computation path to follow
slower!

On input <w, c> = | potentially exponential slowdown? But which path to take?
Because Converting 1, Conyert N to deterministic TM, and run it on w, but take only one computation path
NTM to deterministic )l




NP

NTIME(@#(n)) = {L| L is a language decided by an O(¢(n)) time

nondeterministic Turing machine}.

NP = J, NTIME(n")

NP = Nondeterministic polynomial time




NP vs P

P is the class of languages that are decidable in polynomial time on
a deterministic single-tape Turing machine. In other words,

P = JTIME(n*).
k

P = Deterministic polynomial time

NTIME(@#(n)) = {L| L is a language decided by an O(¢(n)) time

nondeterministic Turing machine}.

NP p— Uk NTIME(nk) Also, NP = Deterministic

polynomial time verification

NP = Nondeterministic polynomial time




More NP Problems

e CLIQUE = {(G, k)| G is an undirected graph with a k-clique}
« A clique is a subgraph where every two nodes are connected

()

« A k-clique contains k nodes ¢

O

()

@)

« SUBSET-SUM :{<Sat>|52{$1,...,wk}, and for some
{850 il € @, -

., Tk}, we have Yy, = t}



Q-
\

Theorem: CLIQUE is in NP Y

CLIQUE = {(G, k)| G is an undirected graph with a k-clique}

PROOF IDEA The clique is the certificate.

Let n=# nodesin G

PROOF The following is a verifier V' for CLIQUE. I cisatmostn
o« . _ For each: nodeincg,
V' ="“On mput {{(G, k), C>_‘ _ _ check whether it's in G
1. Test whether c is a subgraph with & nodes in G. o(n)
2. 'Test whether G contains all edges connecting nodes in c. |
3. If both pass, accept; otherwise, reject.” For each: pair of nodesin c,
check whether there’s an edge in G:
0(n?)

A verifier for a language A is an algorithm V, where

How to prove a language Is in NP:
Proof technique #1: create a verifier

A = {w| V accepts (w, ¢) for some string c}.

We measure the time of a verifier only in terms of the length of w,
so a polynomial time verifier runs in polynomial time in the length

of w. A language A is polynomially verifiable if it has a polynomial
TR veriﬁe%.u 8 poy y vertf PO NP is the class of languages that have polynomial time verifiers.



Proof 2: CLIQUE is in NP JM

CLIQUE = {(G, k)| G is an undirected graph with a k-clique}

| N — €O -  here (7 . T
N = “On input (G, k),' u:rht'ere G is a graph: “try all subgraphs’
1. Nondeterministically select a subset ¢ of k£ nodes of G. |
2. 'lest whether GG contains all edges connecting nodes in c. |
| 3. Ifyes, accept; otherwise, reject.” Checking whether a
— — —— — —— — - subgraph is clique:
0(n?)

To prove a lang L is in NP, create either a:
1. Deterministic poly time verifier
2. Nondeterministic poly time decider

How to prove a language Is in NP:
Proof technique #2: create an NTM

THEOREM -------------------------------------------------------------------------------------------------------------------------

Don’t forget to count the steps
g P A language is in NP iff it is decided by some nondeterministic polynomial time

Turing machine.



More NP Problems

e CLIQUE = {(G, k)| G 1s an undirected graph with a k-clique}
« A clique is a subgraph where every two nodes are connected

A k-clique contains k nodes

set

@ @,

sum O @

o SUBSET-SUM = {(S,t)| S ={x1,...,xr}, and for some

subset

—{y1,...,u} CH{z1,..., 21}, we have Xy; = t}—

sum

« Some subset of a set of numbers S must sum to some total ¢

* €8, (

4,

11, 16,21

.27}, 25) € SUBSET-SUM




Theorem: SUBSET-SUM is in NP

SUBSET-SUM = {(S,t)| S = {z1,...,xx}, and for some

PROOF IDEA The subsetis the c:f:rtif'uf.:atei

oo osu} C{x1,...,xL}, we have Xy; = t}

To prove a lang is in NP, create either:
1. Deterministic poly time verifier
2. Nondeterministic poly time decider

PROOF The following is a verifier V for SUBSET-SUM.

V' = “On input ((S, 1), c):

1. Test whether ¢ is a collection of numbers that sum to ¢.

2. Test whether S

3. If both pass, accept; otherwise, reject.”

contains all the numbers in c.

Don’t forget to compute run time!
Does this run in poly time?




Proof 2:  SUBSET-SUM is in NP

SUBSET-SUM = {<S= t>| S = {3'313 cee -'I»'k}, and for some
{yl"'"’yi} g {Ilz--ogﬂjk}g we h‘clVe Eyt :f}

To prove a lang is in NP, create either:
1. Deterministic poly time verifier

2. Nondeterministic poly time decider :
Don't forget to compute run time!

Does this run in poly time?

r S

| ALTERNATIVE PROOF We can also prove this theorem by giving a nonde-
terministic polynomial time Turing machine for SUBSET-SUM as follows.

| N =“On input (S,1):
Nondeterministically runs 1. Nondeterministically select a subset ¢ of the numbers in S.
the verifier on each 2. Test whether c is a collection of numbers that sum to ¢.
possible subset in parallel 3. If the test passes, accept; otherwise, reject.”




COMPOSITES = {z| x = pq, for integers p,q > 1}

« A composite number is not prime

« COMPOSITES is polynomially verifiable
e e, it'sin NP
* |.e, factorability is in NP

A certificate could be;:
« Some factor that is not 1

» Checking existence of factors (or not, i.e., testing primality) ...

« ... IS also poly time
 But only discovered recently (2002)!




One of the Greatest unsolved

B Question: Does P = NP?

To prove P#NP ... || .. need to find a language in NP but not in P!
PATH

o
chi?eliaybe wiy/be C L1 O UL

d tomofroy, ???

/  HAMPATH
, isc, Verey ) COMPOSITES

To prove P=NP ...
/
.. need need to show every language in NP

is also in P, and vice versa!
'“H-H______ﬂ_,_ﬂ--""

How do you prove an algorithm doesn’t have a poly time algorithm?
(in general it's hard to prove that something doesn't exist)




Implications if P = NP

Problems with “brute force” (“try all”)
solutions now have efficient solutions

.e., “unsolvable” problems are “solvable”

BAD:

» Cryptography needs unsolvable problems
« Near perfect Al learning, recognition

GOOD: Optimization problems are solved

« Optimal resource allocation could fix all the
world'’s (food, energy, space ...) problems?

Who doesn't like niche NP jokes?

AN ENGINEER, A PHYSICIST,
AND A MATHEMATICIAN ARE
ROOMMATES AND ARE
MOVING TO A NEW PLACE.

AS THE MOVER PULLS UP, THE
MATHEMATICIAN WORRIES
THERE ISN'T ENQUGH ROOM.

THE MOVER REASSURES THEM.

THE ENGINEER SAYS..

T BEEN AT THIS 30 YEARS,

I CAN LOQK AT ANY AMOUNT
OF STUFF AND INSTANTLY
TELL YA IF IT CAN FIT IN THE
MOVING BINE,

IT'S OBVIOUS IT CAN FIT.
ANYTHING THAT DOESN'T GO
IN THE BINS CAN BE TAPED

bed

THE PHYSICIST SAYS...

IT'S OBVIQUS IT CAN FIT. IF
IT WERE THE DENSITY OF A
NEUTRON STAR, QUR STUFF
WOULD BE THE SIZE OF A
ZASERALL.

THE MATHEMATICIAN SAYS..
PLEASE CON'T

\| ¥
Problem

smbc -comics.com



Progress on whether P=NP 7

* Some, but still not close

b 2 NP The Status of the P Versus NP Problem

By Lance Fortnow
Scott Aaronson® Communications of the ACM, September 2009, Vol. 52 No. 9, Pages 78-86
10.1145/1562164.1562186

« One important concept discovered:
« NP-Completeness




NP-Completeness

Must look at DEFINITION

all langs, can't
just look at a

single lang 1. Bisin NP, and | €asy
2. every A in NP is polynomial time reduciblesto B. har

A language B is NP-complete it it satisties two conditions:

4?2227

« How does this help the P = NP problem? | what's this?

THEOREM = e s

It B is NP-complete and B € P, then P = NP.



tastback: Mapping Reducibility

Language A is mapping reducible to language B, written A <., B,
if there is a computable function f: ¥* — ¥* where for every w,

Arm = {{M,w)| M isa TM and M acce

w e A< f(w) € B. IMPORTANT: “if and only if” ...

The function f is called the reduction from A to B| T0 show mapping reducibility:

1. create computable fn

... Means

2. and then show forward direction
3. and reverse direction
(or contrapositive of forward direction)

A <m

B

A function f: ¥X*— X" is a computable function if some Turing
machine M, on every input w, halts with just f(w) on its tape.



Polynomial Time Mapping Reducibility

To show poly time mapping reducibility:
Language A is mapping reducible to language | 1. Create computable fn

if there is a computable function f: 2*— »*, | 2. show computable fn runs in poly time
3. then show forward direction

w € A<= f(w) € B. |4 and show reverse direction
(or contrapositive of reverse direction)

The function f is called the reduction from A 1
Language A is polynomial time mapping reducible, or simply poly-
nomial time reducible, to language B, written A <p B, if a polyno-
mial time computable function f: >*— >* exists, where for every
w,

weE A <— f(w) c B.< Don't forget: “if and only if” ...

The function f is called the polynomial time reduction of A to B.

oly time oly time
A function f: X*— X*is agcomputable function 1Psome Turlng
machine M, on every input w, halts with just f(w) on its tape



Flastback If A <., B and B is decidable, then A is decidable.

Has a decider

PROOF We let M be the decider for B and f be the reduction from A to B.
We describe a decider NV for A as follows.

N = “On input w:
1. Compute f(w).
decides| 2. Run M on input f(w) and output whatever M outputs.”

decides

This proof only works because of the if-and-only-if requirement

Language A is mapping reducible to language B, written A <., B,
if there is a computable function f: ¥* — 3%, where for every w,

we A<= f(w) € B,

The function f is called the reduction from A to B.




e ¥ c¥
Thm: IfA gml_)B and B rs—deetrdable; then A 1s-deetdable-

PROOF We let M be the decider for B and f be the reduction from A to B.
We describe a decider IV for A as follows.

N = “On input w:
1. Compute f(w).
2. Run M on input f(w) and output whatever M outputs.”

Language A is mapping reducible to language B, written A <., B,
if there is a computable function f: ¥* — 2*, where for every w,

we A<= f(w) € B.

The function f is called the reduction from A to B.




c? c?¥
Thm: IfA gml_)B and B rsdeetdable; then A 1is-deeidable:

oly time oly time
PROOF Welet M be tht—"-Adecider for B and f be th%educdon from A to B.
We describe ¥decider N for A as follows.
poly time

“On input w:

N =
1. Compute f(w).
2. Run ﬂ/{ on input f(w) and output whatever M outputs.”

f
poly time . .
Language A igynapping reducible to language B, written A <, B,
; if there is a computable function f: ¥* — 3%, where for every w,
The function f is called the reduction from A to B.




THEOREM = oo

If B is NP-complete and B € P, then P = NP.

To prove P = NP, must show:

1. every language in P iIs in NP\ 5eriniTiON

» Trivially true (why?) ANanguage B is NP-complete if it satisfies two conditions:
2. every language iIn NP isIn P/ 1\Bisin NP, and
 Given a language A € NP ... 2. every A in NP is polynomial time reducible to B.

e ... can poly time mapping rediice A to B
« because Bis NP-Complete

« Then Aalso €P... Next: How to do poly
 Because A <p Band B € P,then A € P time mapping
reducibility

Thus, If a language B is NP-complete and in P, then P = NP



Newt Tine: 3SAT is polynomial time reducible to CLIQUE.



