CS 420 / CS 620 Polynomial Time (P)

Monday, December 1, 2025

UMass Boston Computer Science

```
O(1) = O(yeah)
O(logn) = O(nice)
O(n) = O(k)
O(n^2) = O(my)
O(2^n) = O(no)
```

O(n!) = O(mg)

 $O(n^n) = O(sh*t!)$

<u>Caveat</u>: This class: **polynomial time = "good"** (won't take forever) Real programmers: **polynomial time = "eh"** (pretty slow)

Announcements

• HW 12

- Out: Mon 11/24 12pm (noon)
- Thanksgiving: 11/26-11/30
- Due: Fri 12/5 12pm (noon)

Last HW

• HW 13

- Out: Fri 12/5 12pm (noon)
- Due: Fri 12/12 12pm (noon) (classes end)
- Late due: Mon 12/15 12pm (noon) (exams start)
 - Nothing accepted after this (please don't ask)

<u>Caveat</u>:

This class: **polynomial time = "good"** (won't take forever) Real programmers: **polynomial time = "eh"** (pretty slow)

```
O(1) = O(yeah)
O(logn) = O(nice)
O(n) = O(k)
O(n<sup>2</sup>) = O(my)
O(2^n) = O(no)
O(n!) = O(mg)
O(n^n) = O(sh*t!)
```

Class participation question (in Gradescope)

Q1 The time complexity class P represents what kind of problems ? 1 Point					
(select all that apply)					
realistically solvable problems					
tractable problems					
problems that have a polynomial time algorithm					
languages decided by Turing-machines that run in a worst case polynomial number of steps					

Previously: Time Complexity

Running Time or **Time Complexity** is a **property** of **decider TMs** (algorithms)

Let M be a deterministic Turing machine that halts on all inputs. The *running time* or *time complexity* of M is the function $f: \mathcal{N} \longrightarrow \mathcal{N}$, where f(n) is the maximum number of steps that M uses on any input of length n. If f(n) is the running time of M, we say that M runs in time f(n) and that M is an f(n) time Turing machine. Customarily we use n to represent the length of the input.

Depends on size of input

Worst case

Last Time: Time Complexity Classes

Big-O = asymptotic upper bound, i.e., "only care about <u>large</u> n"

Let $t: \mathcal{N} \longrightarrow \mathcal{R}^+$ be a function. Define the *time complexity class*, $\mathbf{TIME}(t(n))$, to be the collection of all languages that are decidable by an O(t(n)) time Turing machine.

Remember:

- TMs: have a time complexity (i.e., a running time),
- languages: are in a time complexity class

The **time complexity class** of a <u>language</u> is **determined** by the **time complexity** (**running time**) of its **deciding** <u>TM</u>

But: a <u>language</u> can have <u>multiple</u> TMs deciding it, so could be in <u>multiple</u> time complexity classes

The Polynomial Time Complexity Class (P)

P is the class of languages that are decidable in polynomial time on a deterministic single-tape Turing machine. In other words,

$$P = \bigcup_{k} TIME(n^k).$$

- Corresponds to "realistically" solvable problems:
 - Problems in P
 - = "solvable" or "tractable"
 - Problems outside P
 - = "unsolvable" or "intractable"

"Unsolvable" Problems

- Unsolvable problems (those outside P):
 - usually only have "brute force" solutions

today

• i.e., "try all possible inputs"

• "unsolvable" applies only to large n

Mathematicians are weird

Time it takes a hacker to brute force your password in 2025

Hardware: 12 x RTX 5090 | Password hash: bcrypt (10) Number of **Numbers Only** Characters Instantly Instantly Instantly Instantly Instantly Instantly Instantly 57 minutes 2 hours 4 hours 2 weeks Instantly 46 minutes 2 days 6 days Instantly 20 hours 4 months 1 year 8 Instantly 3 weeks 2 hours 10 1 day 40 years 11 1 weeks 12 3 months 13 14 300bn years 19th years 3tn years 15 15tn years 218th years 1qd years 16 812tn years 94qd years 12bn years 13_{ad} vears 17 322bn years 42qd years 840ad years 6qn years 18 2qn years 52qn years 463qn years 8tn years

Brute-force attack

From Wikipedia, the free encyclopedia

In cryptography, a **brute-force attack** consists of an attacker submitting many passwords or passphrases with the hope of eventually guessing a combination correctly. The attacker systematically checks all possible passwords and passphrases until the correct one is found. Alternatively, the attacker can attempt to guess the key which is typically created from the password using a key derivation function. This is known as an **exhaustive key search**.

As usual, in this class we're interested in questions like:

How to prove something is "solvable" (in P)?

How to prove something is "unsolvable" (not in P)?

(much harder)

3 Problems in **P**

• A <u>Graph</u> Problem:

 $PATH = \{\langle G, s, t \rangle | G \text{ is a directed graph that has a directed path from } s \text{ to } t \}$

• A Number Problem:

 $RELPRIME = \{\langle x, y \rangle | x \text{ and } y \text{ are relatively prime} \}$

• A <u>CFL</u> Problem:

Every context-free language is a member of P

- To prove that a language is "solvable", i.e., in P ...
 - ... construct a polynomial time algorithm deciding the language
- (These may also have nonpolynomial, i.e., brute force, algorithms)
 - Check all possible ... paths/numbers/strings ...

A decider!

Interlude: Graph Encodings

```
({1,2,3,4,5}, {(1,2), (2,3), (3,4), (4,5), (5,1)})
```

- For graph algorithms, "length of input" n usually = # of vertices
 - (Not number of chars in the encoding)
- So given graph G = (V, E), n = |V|
- Max edges?
 - $\bullet = O(|V|^2) = O(n^2)$
- So if a set of graphs (call it lang L) is decided by a TM where
 - # steps of the TM = polynomial in the # of vertices

 Or polynomial in the # of edges
 - Then L is in P

3 Problems in **P**

• A <u>Graph</u> Problem:

 $PATH = \{\langle G, s, t \rangle | G \text{ is a directed graph that has a directed path from } s \text{ to } t \}$

• A Number Problem:

 $RELPRIME = \{\langle x, y \rangle | x \text{ and } y \text{ are relatively prime} \}$

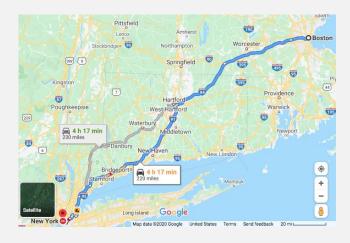
• A CFL Problem:

Every context-free language is a member of P

$$P = \bigcup_{k} TIME(n^k)$$

 $PATH = \{\langle G, s, t \rangle | G \text{ is a directed graph that has a directed path from } s \text{ to } t \}$

(A **path** is a **sequence of** nodes connected by edges)



- To prove that a language is in P ...
- ... we must construct a polynomial time algorithm deciding the lang

• A non-polynomial (i.e., "brute force") algorithm:

- check all possible combination (ordering) of all vertices,
- see if any connect s to t
- If n = # vertices, then # paths $\approx n^n$ or n! (worse than $2^{O(n)}$)

A decider!

 $PATH = \{\langle G, s, t \rangle | G \text{ is a directed graph that has a directed path from } s \text{ to } t \}$

PROOF A polynomial time algorithm M for PATH operates as follows.

M = "On input $\langle G, s, t \rangle$, where G is a directed graph with nodes s and t:

- **1.** Place a mark on node s.
- 2. Repeat the following until no additional nodes are marked:
- 3. Scan all the edges of G. If an edge (a, b) is found going from a marked node a to an unmarked node b, mark node b.
- **4.** If t is marked, accept. Otherwise, reject."

of steps (worst case) (n = # nodes):

<u>▶ Line 1</u>: 1 step

 $PATH = \{\langle G, s, t \rangle | G \text{ is a directed graph that has a directed path from } s \text{ to } t \}$

PROOF A polynomial time algorithm M for PATH operates as follows.

M = "On input $\langle G, s, t \rangle$, where G is a directed graph with nodes s and t:

- 1. Place a mark on node s.
- 2. Repeat the following until no additional nodes are marked:
- 3. Scan all the edges of G. If an edge (a, b) is found going from a marked node a to an unmarked node b, mark node b.
- **4.** If t is marked, accept. Otherwise, reject."

- <u>Line 1</u>: **1** step
- <u>Lines 2-3 (loop)</u>:
 - ightharpoonup Steps/iteration (line 3): max # steps = max # edges = $O(n^2)$

 $PATH = \{\langle G, s, t \rangle | G \text{ is a directed graph that has a directed path from } s \text{ to } t \}$

PROOF A polynomial time algorithm M for PATH operates as follows.

M = "On input $\langle G, s, t \rangle$, where G is a directed graph with nodes s and t:

- **1.** Place a mark on node s.
- 2. Repeat the following until no additional nodes are marked:
- 3. Scan all the edges of G. If an edge (a, b) is found going from a marked node a to an unmarked node b, mark node b.
- **4.** If t is marked, accept. Otherwise, reject."

- <u>Line 1</u>: **1** step
- Lines 2-3 (loop):
 - Steps/iteration (line 3): max # steps = max # edges = $O(n^2)$
 - > # iterations (line 2): loop runs at most n times

 $PATH = \{\langle G, s, t \rangle | G \text{ is a directed graph that has a directed path from } s \text{ to } t \}$

PROOF A polynomial time algorithm M for PATH operates as follows.

M = "On input $\langle G, s, t \rangle$, where G is a directed graph with nodes s and t:

- 1. Place a mark on node s.
- 2. Repeat the following until no additional nodes are marked:
- 3. Scan all the edges of G. If an edge (a, b) is found going from a marked node a to an unmarked node b, mark node b.
- **4.** If t is marked, accept. Otherwise, reject."

(Breadth-first search)

- <u>Line 1</u>: **1** step
- Lines 2-3 (loop):
 - Steps/iteration (line 3): max # steps = max # edges = $O(n^2)$
 - # iterations (line 2): loop runs at most n times
 - $ightharpoonup Total: O(n^3)$

 $PATH = \{\langle G, s, t \rangle | G \text{ is a directed graph that has a directed path from } s \text{ to } t \}$

PROOF A polynomial time algorithm M for PATH operates as follows.

M = "On input $\langle G, s, t \rangle$, where G is a directed graph with nodes s and t:

- 1. Place a mark on node s.
- **2.** Repeat the following until no additional nodes are marked:
- 3. Scan all the edges of G. If an edge (a, b) is found going from a marked node a to an unmarked node b, mark node b.
- **4.** If t is marked, accept. Otherwise, reject."

- <u>Line 1</u>: **1** step
- Lines 2-3 (loop):
 - Steps/iteration (line 3): max # steps = max # edges = $O(n^2)$
 - # iterations (line 2): loop runs at most n times
 - Total: $O(n^3)$
- **>** <u>Line 4</u>: **1** step

$$P = \bigcup_{k} TIME(n^k).$$

 $PATH = \{\langle G, s, t \rangle | G \text{ is a directed graph that has a directed path from } s \text{ to } t \}$

PROOF A polynomial time algorithm M for PATH operates as follows.

M = "On input $\langle G, s, t \rangle$, where G is a directed graph with nodes s and t:

- 1. Place a mark on node s.
- 2. Repeat the following until no additional nodes are marked:
- 3. Scan all the edges of G. If an edge (a, b) is found going from a marked node a to an unmarked node b, mark node b.
- **4.** If t is marked, accept. Otherwise, reject."

 $PATH \in TIME(\mathbf{n}^3)$

 $O(n^3)$

(For practical purposes, not a great algorithm, but it's **in P!** i.e., **"solvable"**)

- <u>Line 1</u>: **1 step**
- Lines 2-3 (loop):
 - Steps/iteration (line 3): max # steps = max # edges = $O(n^2)$
 - # iterations (line 2): loop runs at most n times
 - Total: $O(n^3)$
- <u>Line 4</u>: **1 step**
- ightharpoonup Total = 1 + 1 + $O(n^3)$ = $O(n^3)$

3 Problems in **P**

• A <u>Graph</u> Problem:

 $PATH = \{\langle G, s, t \rangle | G \text{ is a directed graph that has a directed path from } s \text{ to } t\}$

• A Number Problem:

 $RELPRIME = \{\langle x, y \rangle | x \text{ and } y \text{ are relatively prime} \}$

• A CFL Problem:

Every context-free language is a member of P

A Number Theorem: $RELPRIME \in P$

 $RELPRIME = \{\langle x, y \rangle | x \text{ and } y \text{ are relatively prime} \}$

- Two numbers are **relatively prime**: if their gcd = 1
 - gcd(x, y) = largest number that divides both x and y
 - E.g., gcd(8, 12) = ??
- Brute force (exponential) algorithm deciding *RELPRIME*:
 - Try all of numbers (up to x or y), see if it can divide both numbers

Q: Why is this exponential?

HINT: What is a typical "representation" of numbers?

A: binary numbers

(if $x = 2^n$, then trying x numbers is exponential in n =the number of digits)

- A gcd algorithm that runs in polynomial time:
 - Euclid's algorithm

A GCD Algorithm for: $RELPRIME \in P$

 $RELPRIME = \{\langle x, y \rangle | x \text{ and } y \text{ are relatively prime} \}$

Modulo (i.e., remainder)

> 15 mod 8 = 17 mod 8 =

cuts x (at least) in half every loop, requires:

 $\log x$ loops

The Euclidean algorithm E is as follows.

E = "On input $\langle x, y \rangle$, where x and y are natural numbers in binary:

- 1. Repeat until y = 0:
- $^{\blacktriangle}$ Assign $x \leftarrow x \mod y$.
- Exchange x and y. \leftarrow
- **4.** Output *x*."

O(n)

Each number is cut in half every other iteration

Total run time (assume x > y): $2\log x = 2\log 2^n = O(n)$, where n = number of binary digits in (ie length of) x

3 Problems in **P**

• A <u>Graph</u> Problem:

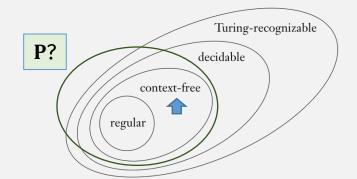
 $PATH = \{\langle G, s, t \rangle | G \text{ is a directed graph that has a directed path from } s \text{ to } t \}$

✓ • A <u>Number</u> Problem:

 $RELPRIME = \{\langle x, y \rangle | x \text{ and } y \text{ are relatively prime} \}$

A CFL Problem:

Every context-free language is a member of P



IF-THEN Statement to Prove:

IF a language L is a CFL, THEN L is in **P**

Review: A (Decider) TM for Any CFL (hw10 sol)

Given any CFL L, with CFG G, the following decider M_G decides L:

```
M_G =  "On input w:
```

- **1.** Run TM S on input $\langle G, w \rangle$.
- 2. If this machine accepts, accept; if it rejects, reject."

S is a decider for: $A_{CFG} = \{\langle G, w \rangle | G \text{ is a CFG that generates string } w\}$

S = "On input $\langle G, w \rangle$, where G is a CFG and w is a string:

- 1. Convert G to an equivalent grammar in Chomsky normal form.
- 2. List all derivations with 2n-1 steps, where n is the length of w; except if n=0, then instead list all derivations with one step.
- 3. If any of these derivations generate w, accept; if not, reject."

 M_G is a decider, bc S is a decider

 M_G accepts all $w \in L$, for any CFL L (with CFL G)

Therefore, every CFL is decidable

But, is every CFL decidable in poly time?

A Decider for Any CFL: Running Time

Given any CFL L, with CFG G, the following decider M_G decides L:

```
M_G =  "On input w:
```

- **1.** Run TM S on input $\langle G, w \rangle$.
- 2. If this machine accepts, accept; if it rejects, reject."

$$A \to 0A1$$

$$A \to B$$

$$B \to \#$$

S is a decider for: $A_{CFG} = \{\langle G, w \rangle | G \text{ is a CFG that generates string } w\}$

How many different possibilities at <u>each</u> derivation step?

 $A \Rightarrow 0A1 \Rightarrow$

S = "On input $\langle G, w \rangle$, where G is a CFG and w is a string:

- 1. Convert G to an equivalent grammar in Chomsky normal form.
- 2. List all derivations with 2n-1 steps, where n is the length of w; except if n=0, then instead list all derivations with one step.
- 3. If any of these derivations generate w, accept; if not, reject."

Worst case:

 $|R|^{2n-1}$ steps = $O(2^n)$ (R = set of rules)

This algorithm runs in exponential time

A CFL Theorem: Every context-free language is a member of P

• Given a CFL, we must construct a decider for it ...

• ... that runs in polynomial time

Dynamic Programming

- Keep track of partial solutions, and re-use them
 - Start with smallest and build up
- For CFG problem, instead of re-generating entire string ...
 - ... keep track of <u>substrings</u> generated by each variable

S = "On input $\langle G, w \rangle$, where G is a CFG and w is a string:

- 1. Convert G to an equivalent grammar in Chomsky normal form.
- 2. List all derivations with 2n-1 steps, where n is the length of w; except if n=0, then instead list all derivations with one step.
- 3. If any of these derivations generate w, accept; if not, reject."

This <u>duplicates a lot of work</u> because <u>many strings</u> might have the <u>same beginning derivation steps</u>

- Chomsky Grammar *G*:
 - $S \rightarrow AB \mid BC$
 - $A \rightarrow BA \mid a$
 - $B \rightarrow CC \mid b$
 - $C \rightarrow AB \mid a$
- Example string: baaba
- Store every partial string and their generating variables in a table

Substring end char

		b	a	a	b	a
	b					
Substring	a					
Substring <u>start</u> char	a					
	b					
	a					

- Chomsky Grammar *G*:
 - $S \rightarrow AB \mid BC$
 - $A \rightarrow BA \mid a$
 - $B \rightarrow CC \mid b$
 - $C \rightarrow AB \mid a$
- Example string: baaba
- Store every partial string and their generating variables in a table

Substring end char

		b	a	a	b	a
	b	vars generating "b"	vars for "ba"	vars for "baa"	•••	
Substring <u>start</u> char	a		vars for "a"	vars for "aa"	vars for "aab"	
	a			•••		
	b					
	a					

- Chomsky Grammar *G*:
 - $S \rightarrow AB \mid BC$
 - $A \rightarrow BA \mid a$
 - B \rightarrow CC | b
 - $C \rightarrow AB \mid a$
- Example string: baaba
- Store every partial string and their generating variables in a table

Substring end char

		D	a	a	D	a
	b	vars generating "b"	vars for "ba"	vars for "baa"		
Substring start char	a		vars for "a"	vars for "aa"	vars for "aab"	
start char	a					
	b					
	a					

Algo:

- For each single char c and var A:

- If $A \rightarrow c$ is a rule, add A to table

- Chomsky Grammar *G*:
 - $S \rightarrow AB \mid BC$
 - $A \rightarrow BA \mid a$
 - $B \rightarrow CC \mid b$
 - $C \rightarrow AB \mid a$
- Example string: baaba
- Store every partial string and their generating variables in a table

Algo:

- For each single char c and var A:

- If $A \rightarrow c$ is a rule, add A to table

Substring end char

		b	a	a	D	a
	b	В				
Substring start char	a		A,C			
start char	a			A,C		
	b				В	
	а					A.C

- Chomsky Grammar *G*:
 - $S \rightarrow AB \mid BC$
 - $A \rightarrow BA \mid a$
 - $B \rightarrow CC \mid b$
 - $C \rightarrow AB \mid a$
- Example string: baaba
- Store every partial string and their get

Algo:

- For each single char c and var A:
 - If $A \rightarrow c$ is a rule, add A to table
- For each substring s (len > 1):
 - **For each split** of **substring** s **into** x,y:
 - For each rule of shape A \rightarrow BC:
 - Use table to check if B
 generates x and C generates y

Substring end char

		b	a	a	b	a
	b	В				
Substring start char	a		A,C			
	a			A,C		
	b				В	
	a					A,C

- Chomsky Grammar *G*:
 - $S \rightarrow AB \mid BC$
 - $A \rightarrow BA \mid a$
 - $B \rightarrow CC \mid b$
 - $C \rightarrow AB \mid a$
- Example string: baaba
- Store every partial string and their gen

Substring end char

		b	a	a
	b	В	←	
Substring start char	a		A,C	
start char	a			A,C
	b			
	a			

Algo:

- For each single char c and var A:
 - If $A \rightarrow c$ is a rule, add A to table
- For each substring s:
 - For each split of substring s into x,y:
 - For each rule of shape $A \rightarrow BC$:
 - lise table to check if R

For substring "ba", split into "b" and "a":

- For rule $S \rightarrow AB$
 - Does A generate "b" and B generate "a"?
 - NO
- For rule $S \rightarrow BC$
 - Does B generate "b" and C generate "a"?
 - YES
- For rule A → BA
 - Does B generate "b" and A generate "a"?
 - YES
- For rule $B \rightarrow CC$
 - Does C generate "b" and C generate "a"?
 - NO
- For rule C → AB
 - Does A generate "b" and B generate "a"?
 - NO

- Chomsky Grammar *G*:
 - $S \rightarrow AB \mid BC$
 - $A \rightarrow BA \mid a$
 - $B \rightarrow CC \mid b$
 - $C \rightarrow AB \mid a$
- Example string: baaba
- Store every partial string and their gen

Substring end char

a

	b	В	S,A ≺	
Substring start char	a		A,C	
start char	a			A,C
	b			
	a			

Algo:

- For each single char c and var A:
 - If $A \rightarrow c$ is a rule, add A to table
- For each substring s:
 - For each split of substring s into x,y:
 - **For** each rule of shape A → BC:
 - lise table to check if R

For substring "ba", split into "b" and "a":

- For rule $S \rightarrow AB$
 - Does A generate "b" and B generate "a"?
 - NO
 - For rule S → BC
 - Does B generate "b" and C generate "a"?
 - YES

- For rule A → BA

- Does B generate "b" and A generate "a"?
- YES
- For rule $B \rightarrow CC$
 - Does C generate "b" and C generate "a"?
 - NO
- For rule $C \rightarrow AB$
 - Does A generate "b" and B generate "a"?
 - NO

• Chomsky Grammar *G*:

- For each: C
- - char
- var
- C → AB | a

For each:

- substring
- split of substring
- rule

ing: **baaba**

partial string and their ge....

Substring end char

Algo:

For each: char, var ...

- For each single char c and var A:
 - If $A \rightarrow c$ is a rule, add A to table
- For each substring For each: substring, split, rule ...
 - For each split of substring s into x,y:
 - For each rule of shape $A \rightarrow BC$:
 - Use table to check if B
 generates x and C generates y

h a b a If S is here, accept **→** S,A,C В S,A b S,A,C A,C B A,C S,C B B S,A b A,C a

Substring start char

A CFG Theorem: Every context-free language is a member of P

```
D = "On input w = w_1 \cdots w_n:
       For each: 1. For w = \varepsilon, if S \to \varepsilon is a rule, accept; else, reject. [w = \varepsilon \text{ case }]
       - char — 2. For i = 1 to n: O(n) chars [examine each substring of length 1]
                   3. For each variable A: #vars = constant = O(1)
       - var-
                            Test whether A \to b is a rule, where b = w_i.
                                                                                 O(\mathbf{1}) * O(\mathbf{n}) = O(\mathbf{n})
                            If so, place A in table(i, i).
                   6. For l=2 to n: O(n) diff lengths [l] is the length of the substring
For each:
- substring -
                   7. For i = 1 to n - l + 1: O(n) strings of each length substring
- split of substring
                   8. Let j = i + l - 1. [i] is the end position of the substring [i]
- rule
                        For k = i to j - 1: O(n) ways to split a string into two pieces
                  10. For each rule A \to BC: #vars = constant = O(1)
                                 If table(i, k) contains B and table(k + 1, j) contains
                  11.
                                  C, put A in table(i, j).
                                                            O(1) * O(n) * O(n) * O(n) = O(n^3)
                  12. If S is in table(1, n), accept; else, reserve
```

Total: $O(n^3)$

(This is also known as the <u>Earley parsing algorithm</u>)

Summary: 3 Problems in **P**

✓ • A <u>Graph</u> Problem:

 $PATH = \{\langle G, s, t \rangle | G \text{ is a directed graph that has a directed path from } s \text{ to } t \}$

✓ • A <u>Number</u> Problem:

 $RELPRIME = \{\langle x, y \rangle | x \text{ and } y \text{ are relatively prime} \}$

✓ • A CFL Problem:

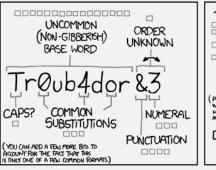
Every context-free language is a member of P

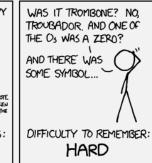
Search vs Verification

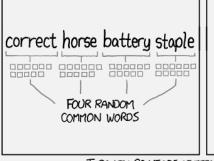
- Search problems are often unsolvable
- But, verification of a search result is usually solvable

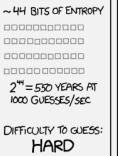
EXAMPLES

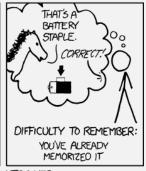
- FACTORING
 - Unsolvable: Find factors of 8633
 - Must "try all" possibilities
 - Solvable: Verify 89 and 97 are factors of 8633
 - Just do multiplication
- Passwords
 - Unsolvable: Find my umb.edu password
 - Solvable: Verify whether my umb.edu password is ...
 - "correct horse battery staple"











THROUGH 20 YEARS OF EFFORT, WE'VE SUCCESSFULLY TRAINED EVERYONE TO USE PASSWORDS THAT ARE HARD FOR HUMANS TO REMEMBER, BUT EASY FOR COMPUTERS TO GUESS.

The PATH Problem

 $PATH = \{\langle G, s, t \rangle | G \text{ is a directed graph that has a directed path from } s \text{ to } t\}$

- It's a **search** problem:
 - Exponential time (brute force) algorithm (n^n) :
 - Check all n^n possible paths and see if any connect s and t
 - Polynomial time algorithm:
 - Do a breadth-first search (roughly), marking "seen" nodes as we go (n = # nodes)

PROOF A polynomial time algorithm M for PATH operates as follows.

M = "On input $\langle G, s, t \rangle$, where G is a directed graph with nodes s and t:

- 1. Place a mark on node s.
- 2. Repeat the following until no additional nodes are marked:
- 3. Scan all the edges of G. If an edge (a, b) is found going from a marked node a to an unmarked node b, mark node b.
- **4.** If t is marked, accept. Otherwise, reject."

 $O(n^3)$

Verifying a *PATH*

 $PATH = \{\langle G, s, t \rangle | G \text{ is a directed graph that has a directed path from } s \text{ to } t \}$

The **verification** problem:

Given some path p in G, check that it is a path from s to t

Let m = length of longest possible path = # ed

NOTE: extra argument *p,* "**Verifying**" an answer requires having a potential answer to check!

<u>Verifier</u> V = On input < G, s, t, p>, where p is some set of edges:

- 1. Check some edge in p has "from" node s; mark and set it as "current" edge
 - Max steps = O(m)
- 2. Loop: While there remains unmarked edges in p:
 - 1. Find the "next" edge in p, whose "from" node is the "to" node of "current" edge
 - 2. If found, then mark that edge and set it as "current" also reject
 - Each loop iteration: O(m)
 - # loops: *O*(*m*)
 - Total looping time = $O(m^2)$
- 3. Check "current" edge has "to" node t; if yes accept, else reject

• Total time = $O(m) + O(m^2) = O(m^2)$ = polynomial in m

PATH can be **verified** in polynomial time

Verifiers, Formally

 $PATH = \{\langle G, s, t \rangle | \ G \text{ is a directed graph that has a directed path from } s \text{ to } t \}$ A verifier for a language A is an algorithm V, where $A = \{w | \ V \text{ accepts } \langle w, c \rangle \text{ for some string } c \}$ We measure the time of a verifier only in terms of the length of w, Certificate, or proof

so a **polynomial time verifier** runs in polynomial time in the length of w. A language A is **polynomially verifiable** if it has a polynomial time verifier.

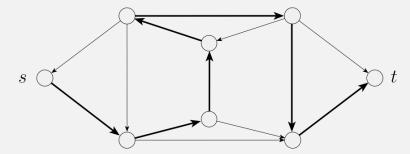
- NOTE: a certificate c must be at most length n^k , where n = length of w
 - Why? Because it takes time n^k to read it

So PATH is polynomially verifiable

The *HAMPATH* Problem

 $HAMPATH = \{\langle G, s, t \rangle | G \text{ is a directed graph}$ with a Hamiltonian path from s to $t\}$

• A Hamiltonian path goes through every node in the graph



• The **Search** problem:

- Exponential time (brute force) algorithm:
 - Check all possible paths and see if any connect s and t using all nodes
- Polynomial time algorithm: ???
 - We don't know if there is one!!!
- The **Verification** problem:
 - Still $O(m^2)$! (same verifier for *PATH*)
 - HAMPATH is polynomially verifiable, but not polynomially decidable

The class NP

DEFINITION

NP is the class of languages that have polynomial time verifiers.

- PATH is in NP, and P
- HAMPATH is in NP, but it's unknown whether it's in P

NP = <u>Nondeterministic</u> polynomial time

NP is the class of languages that have polynomial time verifiers.

THEOREM

A language is in NP iff it is decided by some nondeterministic polynomial time Turing machine.

- ⇒ If a language is in NP, then it has a non-deterministic poly time decider
- We know: If a lang L is in NP, then it has a poly time verifier V
- Need to: create NTM deciding L:

On input *w* =

• Nondeterministically run V with w and all possible poly length certificates c

NOTE: a verifier cert is <u>usually</u> a potential "answer", but does not have to be (like here)

Certificate *c* specifies a path

Deterministic (verifier) TMs <u>cannot</u> "call" nondeterministic TMs

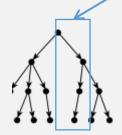
Because Converting NTM to deterministic is exponentially slower! ← If a language has a non-deterministic poly time decider, then it is in NP

- We know: L has NTM decider N,
- Need to: show *L* is in NP, i.e., create polytime verifier *V*:

On input <*w*, *c*> = Potentially exponential slowdown?

But which path to take?

- Convert N to deterministic TM, and run it on w, but take only one computation path
- Let certificate c dictate which computation path to follow



NP

NTIME $(t(n)) = \{L | L \text{ is a language decided by an } O(t(n)) \text{ time nondeterministic Turing machine} \}.$

$$NP = \bigcup_k NTIME(n^k)$$

NP = <u>Nondeterministic</u> polynomial time

NP vs P

P is the class of languages that are decidable in polynomial time on a deterministic single-tape Turing machine. In other words,

$$P = \bigcup_{k} TIME(n^k).$$

P = <u>Deterministic</u> polynomial time

 $\mathbf{NTIME}(t(n)) = \{L \mid L \text{ is a language decided by an } O(t(n)) \text{ time nondeterministic Turing machine} \}.$

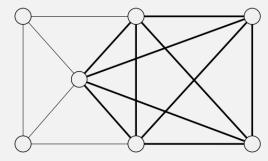
$$NP = \bigcup_k NTIME(n^k)$$

Also, **NP** = <u>Deterministic</u> polynomial time verification

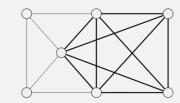
NP = <u>Nondeterministic</u> polynomial time

More **NP** Problems

- $CLIQUE = \{ \langle G, k \rangle | G \text{ is an undirected graph with a } k\text{-clique} \}$
 - A clique is a subgraph where every two nodes are connected
 - A *k*-clique contains *k* nodes



• $SUBSET ext{-}SUM = \{\langle S,t \rangle | \ S = \{x_1,\ldots,x_k\}, \ \text{and for some}$ $\{y_1,\ldots,y_l\} \subseteq \{x_1,\ldots,x_k\}, \ \text{we have} \ \Sigma y_i = t\}$



 $CLIQUE = \{\langle G, k \rangle | G \text{ is an undirected graph with a } k\text{-clique} \}$

PROOF IDEA The clique is the certificate.

Let n = # nodes in G

PROOF The following is a verifier V for CLIQUE.

c is at most n

V = "On input $\langle \langle G, k \rangle, c \rangle$:

1. Test whether c is a subgraph with k nodes in G.

For each: node in c, check whether it's in G O(n)

- 2. Test whether G contains all edges connecting nodes in c.
- 3. If both pass, accept; otherwise, reject."

For each: pair of nodes in c, check whether there's an edge in G: $O(n^2)$

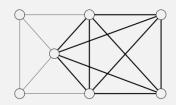
A *verifier* for a language A is an algorithm V, where

 $A = \{w | V \text{ accepts } \langle w, c \rangle \text{ for some string } c\}.$

We measure the time of a verifier only in terms of the length of w, so a **polynomial time verifier** runs in polynomial time in the length of w. A language A is **polynomially verifiable** if it has a polynomial time verifier.

How to prove a language is in **NP**: Proof technique #1: **create a verifier**

NP is the class of languages that have polynomial time verifiers.



 $CLIQUE = \{\langle G, k \rangle | G \text{ is an undirected graph with a } k\text{-clique}\}$

| N = "On input $\langle G, k \rangle$, where G is a graph:

1. Nondeterministically select a subset c of k nodes of G.

2. Test whether G contains all edges connecting nodes in c.

3. If yes, accept; otherwise, reject."

Checking whether a subgraph is clique: $O(n^2)$

"try all subgraphs"

To prove a lang L is in NP, create either a:

- 1. Deterministic poly time verifier
- 2. Nondeterministic poly time decider

How to prove a language is in **NP**: Proof technique #2: **create an NTM**

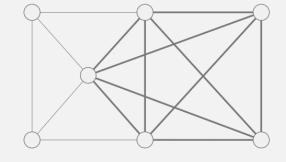
THEOREM

A language is in NP iff it is decided by some nondeterministic polynomial time Turing machine.

Don't forget to count the steps

More **NP** Problems

- $CLIQUE = \{ \langle G, k \rangle | G \text{ is an undirected graph with a } k\text{-clique} \}$
 - A clique is a subgraph where every two nodes are connected
 - A *k*-clique contains *k* nodes



set sum

- $SUBSET\text{-}SUM = \{\langle S, t \rangle | S = \{x_1, \dots, x_k\}, \text{ and for some}$ subset $\longrightarrow \{y_1, \dots, y_l\} \subseteq \{x_1, \dots, x_k\}, \text{ we have } \Sigma y_i = t\}$ sum
 - Some subset of a set of numbers S must sum to some total t
 - e.g., $\langle \{4, 11, 16, 21, 27\}, 25 \rangle \in SUBSET-SUM$

Theorem: SUBSET-SUM is in NP

SUBSET-SUM =
$$\{\langle S, t \rangle | S = \{x_1, \dots, x_k\}$$
, and for some $\{y_1, \dots, y_l\} \subseteq \{x_1, \dots, x_k\}$, we have $\Sigma y_i = t\}$

PROOF IDEA The subset is the certificate.

To prove a lang is in **NP**, create <u>either</u>:

- 1. Deterministic poly time verifier
- 2. Nondeterministic poly time decider

PROOF The following is a verifier V for SUBSET-SUM.

V = "On input $\langle \langle S, t \rangle, c \rangle$:

- 1. Test whether c is a collection of numbers that sum to t.
- 2. Test whether S contains all the numbers in c.
- **3.** If both pass, accept; otherwise, reject."

Don't forget to compute run time! **Does this run in poly time?**

Proof 2: SUBSET-SUM is in NP

SUBSET-SUM =
$$\{\langle S, t \rangle | S = \{x_1, \dots, x_k\}$$
, and for some $\{y_1, \dots, y_l\} \subseteq \{x_1, \dots, x_k\}$, we have $\Sigma y_i = t\}$

To prove a lang is in **NP**, create <u>either</u>:

- 1. Deterministic poly time verifier
- 2. Nondeterministic poly time decider

Don't forget to compute run time! **Does this run in poly time?**

ALTERNATIVE PROOF We can also prove this theorem by giving a nondeterministic polynomial time Turing machine for *SUBSET-SUM* as follows.

$$N =$$
 "On input $\langle S, t \rangle$:

Nondeterministically runs the verifier on each possible subset in parallel

- 1. Nondeterministically select a subset c of the numbers in S.
- \rightarrow 2. Test whether c is a collection of numbers that sum to t.
- **3.** If the test passes, accept; otherwise, reject."

$$COMPOSITES = \{x | x = pq, \text{ for integers } p, q > 1\}$$

- A composite number is not prime
- COMPOSITES is polynomially verifiable
 - i.e., it's in NP
 - i.e., factorability is in NP
- A certificate could be:
 - Some factor that is not 1
- Checking existence of factors (or not, i.e., testing primality) ...
 - ... is also poly time
 - But only discovered recently (2002)!

One of the Greatest unsolved

HW Question: Does P = NP?

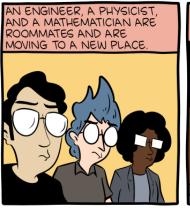
To prove P ≠ NP need to find a language in NP but not in P! PATHP = NPTo prove P = NP ...??? Maybe will be hscovered tomorrow ??? *CLIQUE* ... need need to show every language in NP (only recently/discovered) HAMPATH is also in P, and vice versa! **COMPOSITES**

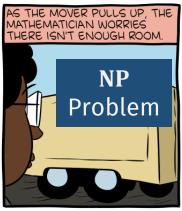
How do you prove an algorithm <u>doesn't</u> have a poly time algorithm? (in general it's hard to prove that something <u>doesn't</u> exist)

Implications if P = NP

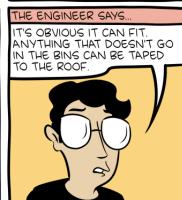
- Problems with "brute force" ("try all") solutions now have efficient solutions
- I.e., "unsolvable" problems are "solvable"
- <u>BAD</u>:
 - Cryptography needs unsolvable problems
 - Near perfect AI learning, recognition
- <u>GOOD</u>: Optimization problems are solved
 - Optimal resource allocation could fix all the world's (food, energy, space ...) problems?

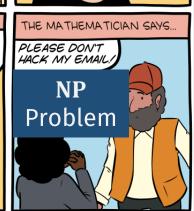
Who doesn't like niche NP jokes?











Progress on whether P = NP?

Some, but still not close

$$P \stackrel{?}{=} NP$$
Scott Aaronson*

By Lance Fortnow

Communications of the ACM, September 2009, Vol. 52 No. 9, Pages 78-86
10.1145/1562164.1562186

- One important concept discovered:
 - NP-Completeness

NP-Completeness

Must look at all langs, can't just look at a single lang

DEFINITION

A language B is NP-complete if it satisfies two conditions:

- $\mathbf{1}$ B is in NP, and easy
- 2. every A in NP is polynomial time reducible to B.

hard????

• How does this help the **P** = **NP** problem?

What's this?

THEOREM

If B is NP-complete and $B \in P$, then P = NP.

Flashback: Mapping Reducibility

Language A is *mapping reducible* to language B, written $A \leq_m B$, if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B.$$

IMPORTANT: "if and only if" ...

The function f is called the **reduction** from A to B.

To show <u>mapping reducibility</u>:

- 1. create computable fn
- 2. and then show forward direction
- 3. and reverse direction (or contrapositive of forward direction)

 $A_{\mathsf{TM}} = \{\langle M, w \rangle | \ M \text{ is a TM and } M \text{ accepts } w\}$ $HALT_{\mathsf{TM}} = \{\langle M, w \rangle | \ M \text{ is a TM and } M \text{ halts on input } w\}$

... means $\overline{A} \leq_{\mathrm{m}} \overline{B}$

A function $f: \Sigma^* \longrightarrow \Sigma^*$ is a **computable function** if some Turing machine M, on every input w, halts with just f(w) on its tape.

Polynomial Time Mapping Reducibility

Language A is *mapping reducible* to language if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$,

$$w \in A \iff f(w) \in B$$
.

The function f is called the **reduction** from A

To show poly time mapping reducibility:

- 1. create computable fn
- 2. show computable fn runs in poly time
- 3. then show forward direction
- 4. and show reverse direction(or contrapositive of reverse direction)

Language A is **polynomial time mapping reducible**, or simply **polynomial time reducible**, to language B, written $A \leq_P B$, if a polynomial time computable function $f: \Sigma^* \longrightarrow \Sigma^*$ exists, where for every w,

$$w \in A \iff f(w) \in B$$
.

Don't forget: "if and only if" ...

The function f is called the **polynomial time reduction** of A to B.

A function $f: \Sigma^* \longrightarrow \Sigma^*$ is a *computable function* if some Turing machine M, on every input w, halts with just f(w) on its tape.

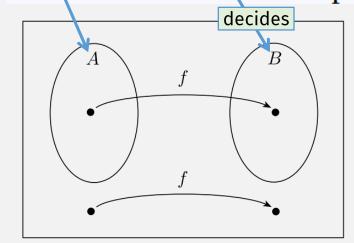
Flashback: If $A \leq_{\mathrm{m}} B$ and B is decidable, then A is decidable.

Has a decider

PROOF We let M be the decider for B and f be the reduction from A to B. We describe a decider N for A as follows.

N = "On input w:

- **1.** Compute f(w).
- decides 2. Run M on input f(w) and output whatever M outputs."



This proof only works because of the if-and-only-if requirement

Language A is *mapping reducible* to language B, written $A \leq_m B$, if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
.

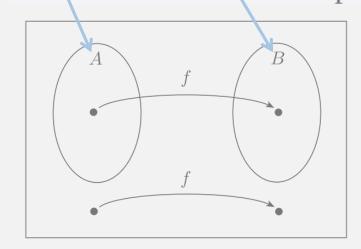
The function f is called the **reduction** from A to B.

Thm: If $A \leq_{\frac{m}{P}} B$ and $B \stackrel{\in}{\text{is decidable}}$, then $A \stackrel{\in}{\text{is decidable}}$.

PROOF We let M be the decider for B and f be the reduction from A to B. We describe a decider N for A as follows.

N = "On input w:

- 1. Compute f(w).
- 2. Run M on input f(w) and output whatever M outputs."



Language A is *mapping reducible* to language B, written $A \leq_m B$, if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
.

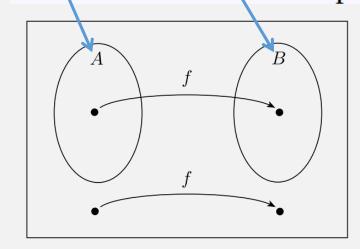
The function f is called the **reduction** from A to B.

Thm: If $A \leq_{\underline{m}} B$ and $B \stackrel{\in Y}{\text{is decidable}}$, then $A \stackrel{\in Y}{\text{is decidable}}$

PROOF We let M be the decider for B and f be the reduction from A to B. We describe a decider N for A as follows.

N = "On input w:

- **1.** Compute f(w).
- Run M on input f(w) and output whatever M outputs."



poly time Language A is mapping reducible to language B, written $A \leq_m B$, if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
.

The function f is called the **reduction** from A to B.

THEOREM

If B is NP-complete and $B \in P$, then P = NP.

To prove P = NP, must show:

- 1. every language in P is in NP
 - Trivially true (why?)
- 2. every language in NP is in P
 - Given a language $A \in NP ...$
 - ... can poly time mapping reduce A to B
 - because *B* is NP-Complete
 - Then A also $\in \mathbf{P}$...
 - Because $A \leq_{\mathbf{P}} B$ and $B \in \mathbf{P}$, then $A \in \mathbf{P}$

A language B is **NP-complete** if it satisfies two conditions:

1. B is in NP, and

DEFINITION

2. every A in NP is polynomial time reducible to B.

Next: How to do poly time mapping reducibility

Thus, if a language B is NP-complete and in P, then P = NP

Next Time: 3SAT is polynomial time reducible to CLIQUE.