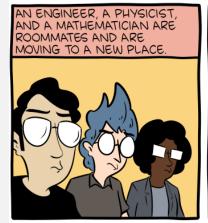
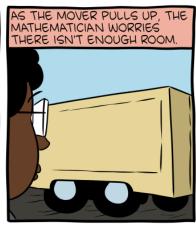
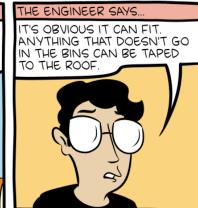
CS 420 / CS 620 NP

Wednesday, December 3, 2025 UMass Boston Computer Science

Who doesn't like niche NP jokes?







Announcements

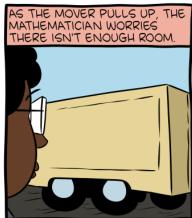
- HW 12
 - Out: Mon 11/24 12pm (noon)
 - Thanksgiving: 11/26-11/30
 - Due: Fri 12/5 12pm (noon)

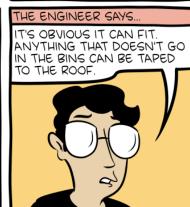
Last HW

• HW 13

- Out: Fri 12/5 12pm (noon)
- Due: Fri 12/12 12pm (noon) (classes end)
- Late due: Mon 12/15 12pm (noon) (exams start)
 - Nothing accepted after this (please don't ask)

Who doesn't like niche NP jokes?





Class participation question (in Gradescope)

Q1 Which of the following are ways to show that a language is in NP? 1 Point (select all that apply) create a deterministic poly time decider create a non-deterministic poly time decider create a deterministic poly time verifier create a non-deterministic poly time verifier

Previously: Poly Time Complexity Class (P)

P is the class of languages that are decidable in polynomial time on deterministic single-tape Turing machine. In other words,

$$P = \bigcup_{k} TIME(n^k).$$

- Corresponds to "realistically" solvable problems:
 - Problems in P
 - = "solvable" or "tractable"
 - Problems outside P
 - = "unsolvable" or "intractable"

Previously: 3 Problems in P

• A <u>Graph</u> Problem:

"search" problem

(to accept the string, decider must find a path)

 $PATH = \{\langle G, s, t \rangle | G \text{ is a directed graph that has a directed path from } s \text{ to } t \}$

• A <u>Number</u> Problem:

 $RELPRIME = \{\langle x, y \rangle | x \text{ and } y \text{ are relatively prime} \}$

• A CFL Problem:

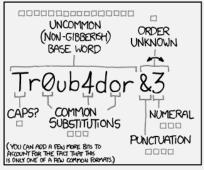
Every context-free language is a member of P

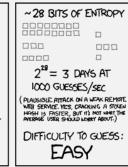
Search vs Verification

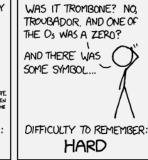
- Search problems are often unsolvable
- But, verification of a search result is usually solvable

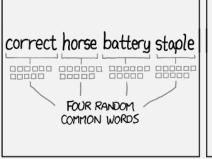
EXAMPLES

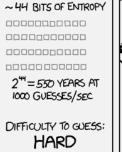
- FACTORING
 - Unsolvable: Find factors of 8633
 - Must "try all" possibilities
 - Solvable: Verify 89 and 97 are factors of 8633
 - Just do multiplication
- Passwords
 - Unsolvable: Find my umb.edu password
 - Solvable: Verify whether my umb.edu password is ...
 - "correct horse battery staple"

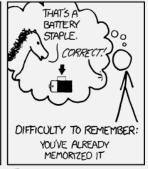












THROUGH 20 YEARS OF EFFORT, WE'VE SUCCESSFULLY TRAINED EVERYONE TO USE PASSWORDS THAT ARE HARD FOR HUMANS TO REMEMBER, BUT EASY FOR COMPUTERS TO GUESS.

The PATH Problem

 $PATH = \{\langle G, s, t \rangle | G \text{ is a directed graph that has a directed path from } s \text{ to } t\}$

- It's a search problem:
 - Exponential time (brute force) algorithm (n^n) :
 - Check all n^n possible paths and see if any connect s and t
 - Polynomial time algorithm:
 - Do a breadth-first search (roughly), marking "seen" nodes as we go (n = # nodes)

PROOF A polynomial time algorithm M for PATH operates as follows.

M = "On input $\langle G, s, t \rangle$, where G is a directed graph with nodes s and t:

- 1. Place a mark on node s.
- 2. Repeat the following until no additional nodes are marked:
- 3. Scan all the edges of G. If an edge (a, b) is found going from a marked node a to an unmarked node b, mark node b.
- **4.** If t is marked, accept. Otherwise, reject."

 $O(n^3)$

Verifying a *PATH*

 $PATH = \{\langle G, s, t \rangle | G \text{ is a directed graph that has a directed path from } s \text{ to } t \}$

The verification problem:

Given some path p in G, check that it is a path from s to t

Let m = length of longest possible path = # ed

NOTE: extra argument *p*, "Verifying" an answer requires having a potential answer to check!

<u>Verifier</u> V = On input < G, s, t, p>, where p is some set of edges:

- 1. Check some edge in p has "from" node s; mark and set it as "current" edge
 - Max steps = O(m)
- 2. Loop: While there remains unmarked edges in p:
 - 1. Find the "next" edge in p, whose "from" node is the "to" node of "current" edge
 - 2. If found, then mark that edge and set it as "current" also reject
 - Each loop iteration: O(m)
 - # loops: *O*(*m*)
 - Total looping time = $O(m^2)$
- 3. Check "current" edge has "to" node t; if yes accept, else reject

• Total time = $O(m) + O(m^2) = O(m^2)$ = polynomial in m

PATH can be **verified** in polynomial time

Verifiers, Formally

 $PATH = \{\langle G, s, t \rangle | \ G \text{ is a directed graph that has a directed path from } s \text{ to } t \}$ A verifier for a language A is an algorithm V, where $A = \{w | \ V \text{ accepts } \langle w, c \rangle \text{ for some string } c \}$ We measure the time of a verifier only in terms of the length of w, Certificate, or proof

so a **polynomial time verifier** runs in polynomial time in the length of w. A language A is **polynomially verifiable** if it has a polynomial time verifier.

- NOTE: a certificate c must be at most length n^k , where n = length of w
 - Why? Because it takes time n^k to read it

So PATH is polynomially verifiable

The class **NP**

DEFINITION

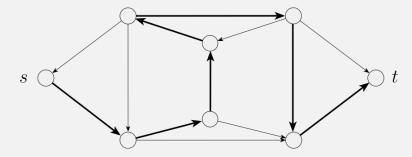
NP is the class of languages that have polynomial time verifiers.

• PATH is in NP, and P

The *HAMPATH* Problem

 $HAMPATH = \{\langle G, s, t \rangle | G \text{ is a directed graph}$ with a Hamiltonian path from s to $t\}$

• A **Hamiltonian path** goes through <u>every</u> node in the graph



- The **Search** problem:
 - Exponential time (brute force) algorithm:
 - Check all possible paths and see if any connect s and t using all nodes
 - Polynomial time algorithm: ???
 - We don't know if there is one!!!
- The Verification problem:
 - Still $O(m^2)$! (same verifier for *PATH*)
 - HAMPATH is polynomially verifiable, but not polynomially decidable

The class NP

DEFINITION

NP is the class of languages that have polynomial time verifiers.

- PATH is in NP, and P
- HAMPATH is in NP, but it's unknown whether it's in P

NP = Nondeterministic Polynomial time

Definition: NP is the class of languages that have polynomial time verifiers.

THEOREM

A language is in NP iff it is decided by some nondeterministic polynomial time Turing machine.

⇒ If a language is in NP, then it has a non-deterministic poly time decider

NTM definition needs to say what happens in each branch

(can't "do" anything with branch results)

• We know: If a lang L is in NP, then it has a poly time verifier V

• Need to: create NTM deciding L:

On input w =

NTM runtime = slowest branch

Nondeterministically run *V* with *w* and all possible poly length certificates *c* (and accept if it accepts)

NOTE: a verifier cert is usually a potential "answer", but does not have to be (like here)

Certificate *c* specifies a path

Deterministic (verifier) TMs <u>cannot</u> "call" nondeterministic TMs ← If a language has a non-deterministic poly time decider, then it is in NP

• We know: L has NTM decider N,

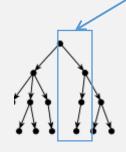
• Need to: show *L* is in NP, i.e., create polytime verifier *V*:

On input $\langle w, c \rangle =$ Potentially exponential slowdown?

But which path to take?

- Convert N to deterministic TM, and run it on w, but take only one computation path
- Let certificate c dictate which computation path to follow

Because Converting
NTM to deterministic
is exponentially
slower!



NP

NTIME $(t(n)) = \{L | L \text{ is a language decided by an } O(t(n)) \text{ time nondeterministic Turing machine} \}.$

$$NP = \bigcup_k NTIME(n^k)$$

NP = <u>Nondeterministic</u> polynomial time

NP vs P

P is the class of languages that are decidable in polynomial time on a deterministic single-tape Turing machine. In other words,

$$P = \bigcup_{k} TIME(n^k).$$

P = <u>Deterministic</u> polynomial time

 $\mathbf{NTIME}(t(n)) = \{L \mid L \text{ is a language decided by an } O(t(n)) \text{ time nondeterministic Turing machine} \}.$

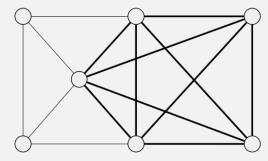
$$NP = \bigcup_k NTIME(n^k)$$

Also, **NP** = <u>Deterministic</u> polynomial time verification

NP = <u>Nondeterministic</u> polynomial time

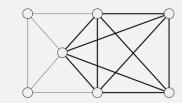
More **NP** Problems

- $CLIQUE = \{ \langle G, k \rangle | G \text{ is an undirected graph with a } k\text{-clique} \}$
 - A clique is a subgraph where every two nodes are connected
 - A *k*-clique contains *k* nodes



• $SUBSET ext{-}SUM = \{\langle S,t \rangle | \ S = \{x_1,\ldots,x_k\}, \ \text{and for some}$ $\{y_1,\ldots,y_l\} \subseteq \{x_1,\ldots,x_k\}, \ \text{we have} \ \Sigma y_i = t\}$

Theorem: CLIQUE is in NP



 $CLIQUE = \{\langle G, k \rangle | G \text{ is an undirected graph with a } k\text{-clique} \}$

possibl

PROOF IDEA The clique is the certificate.

Let n = # nodes in G

PROOF The following is a verifier V for CLIQUE.

V = "On input $\langle \langle G, k \rangle, c \rangle$:

1. Test whether c is a subgraph with k nodes in G.

2. Test whether G contains all edges connecting nodes in c.

3. If both pass, accept; otherwise, reject."

Cert c has at most n nodes

For each: node in cert c, check whether it's in G,

runtime: O(n)

For each: pair of nodes in cert c, check whether there's an edge in G,

runtime: $O(n^2)$

A *verifier* for a language A is an algorithm V, where

 $A = \{w | V \text{ accepts } \langle w, c \rangle \text{ for some string } c\}.$

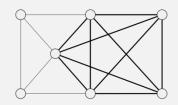
We measure the time of a verifier only in terms of the length of w, so a **polynomial time verifier** runs in polynomial time in the length of w. A language A is **polynomially verifiable** if it has a polynomial time verifier.

How to prove a language is in **NP**:

Proof technique #1: create a poly time verifier

NP is the class of languages that have polynomial time verifiers.

Proof 2: *CLIQUE* is in NP



 $CLIQUE = \{\langle G, k \rangle | G \text{ is an undirected graph with a } k\text{-clique}\}$

| N = "On input $\langle G, k \rangle$, where G is a graph:

1. Nondeterministically select a subset c of k nodes of G.

2. Test whether G contains all edges connecting nodes in c.

3. If yes, accept; otherwise, reject."

Check whether a subgraph is clique:

Runtime: $O(n^2)$

"try all subgraphs"

To prove a lang *L* is in NP, create either a:

- 1. Deterministic poly time verifier
- 2. Nondeterministic poly time decider

How to prove a language is in **NP**: Proof technique #2: **create an NTM**

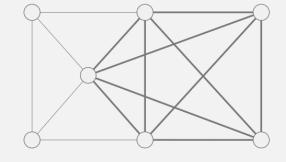
THEOREM

A language is in NP iff it is decided by some nondeterministic polynomial time Turing machine.

Don't forget to count the steps

More **NP** Problems

- $CLIQUE = \{ \langle G, k \rangle | G \text{ is an undirected graph with a } k\text{-clique} \}$
 - A clique is a subgraph where every two nodes are connected
 - A *k*-clique contains *k* nodes



set sum

- $SUBSET\text{-}SUM = \{\langle S, t \rangle | S = \{x_1, \dots, x_k\}, \text{ and for some}$ subset $\longrightarrow \{y_1, \dots, y_l\} \subseteq \{x_1, \dots, x_k\}, \text{ we have } \Sigma y_i = t\}$ sum
 - Some subset of a set of numbers S must sum to some total t
 - e.g., $\langle \{4, 11, 16, 21, 27\}, 25 \rangle \in SUBSET-SUM$

Theorem: SUBSET-SUM is in NP

SUBSET-SUM =
$$\{\langle S, t \rangle | S = \{x_1, \dots, x_k\}$$
, and for some $\{y_1, \dots, y_l\} \subseteq \{x_1, \dots, x_k\}$, we have $\Sigma y_i = t\}$

PROOF IDEA The subset is the certificate.

To prove a lang is in NP, create either:

- 1. Deterministic poly time verifier
- 2. Nondeterministic poly time decider

PROOF The following is a verifier V for SUBSET-SUM.

V = "On input $\langle \langle S, t \rangle, c \rangle$:

- 1. Test whether c is a collection of numbers that sum to t.
- 2. Test whether S contains all the numbers in c.
- **3.** If both pass, accept; otherwise, reject."

Don't forget to compute run time! **Does this run in poly time?**

Proof 2: SUBSET-SUM is in NP

SUBSET-SUM =
$$\{\langle S, t \rangle | S = \{x_1, \dots, x_k\}$$
, and for some $\{y_1, \dots, y_l\} \subseteq \{x_1, \dots, x_k\}$, we have $\Sigma y_i = t\}$

To prove a lang is in NP, create either:

- 1. Deterministic poly time verifier
- 2. Nondeterministic poly time decider

Don't forget to compute run time! **Does this run in poly time?**

ALTERNATIVE PROOF We can also prove this theorem by giving a nondeterministic polynomial time Turing machine for *SUBSET-SUM* as follows.

$$N =$$
 "On input $\langle S, t \rangle$:

Nondeterministically runs the verifier on each possible subset "in parallel"

- 1. Nondeterministically select a subset c of the numbers in S.
- \rightarrow 2. Test whether c is a collection of numbers that sum to t.
- **3.** If the test passes, accept; otherwise, reject."

$$COMPOSITES = \{x | x = pq, \text{ for integers } p, q > 1\}$$

- A composite number is not prime
- COMPOSITES is polynomially verifiable
 - i.e., it's in NP
 - i.e., factorability is in NP
- A certificate could be:
 - Some factor that is not 1
- Checking existence of factors (or not, i.e., testing primality) ...
 - ... is also poly time
 - But only discovered recently (2002)!

One of the Greatest unsolved

Question: Does P = NP?

... need to find a language in NP but not in P! To prove P ≠ NP ... (you know how to do it!) PATH??? Maybe will be iscovered tomorrow ??? CLIQUE (recently discovered) HAMPATH COMPOSITES

P=NP

To prove P = NP ... (you also know how to do it!)

... need to show P oval overlaps with NP oval ... and vice versa!

... need need to show every **language in NP** is also **in P**, and vice versa!

BUT ... How to prove an algorithm <u>doesn't</u> have poly time algorithm? (in general it's hard to prove that something <u>doesn't</u> exist)

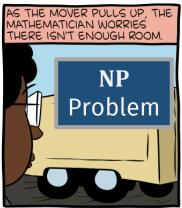
Not this course, see Sipser Ch8-9

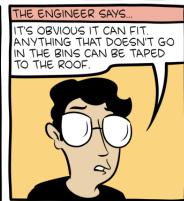
Implications if P = NP

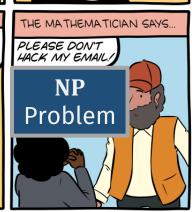
- Problems with "brute force" ("try all")
 solutions now have efficient solutions
- I.e., "unsolvable" problems are "solvable"
- <u>BAD</u>:
 - Cryptography needs unsolvable problems
 - perfect AI learning, recognition (maybe good?)
- <u>GOOD</u>: Optimization problems are solved
 - Optimal resource allocation could fix all the world's (food, energy, space ...) problems?

Who doesn't like niche NP jokes?









ember-comics con

Progress on whether P = NP?

Some, but still not close

$$P \stackrel{?}{=} NP$$
Scott Aaronson*

By Lance Fortnow
Communications of the ACM, September 2009, Vol. 52 No. 9, Pages 78-86
10.1145/1562164.1562186

- One important concept discovered:
 - NP-Completeness

NP-Completeness

Must prove for all langs, not just a single lang

DEFINITION

A language B is **NP-complete** if it satisfies two conditions:

- B is in NP, and easy
- 2. every A in NP is polynomial time reducible to B. hard????

What's this?

Flashback: Mapping Reducibility

Language A is *mapping reducible* to language B, written $A \leq_m B$, if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B.$$

IMPORTANT: "if and only if" ...

The function f is called the **reduction** from A to B.

To show <u>mapping reducibility</u>:

- 1. create computable fn
- 2. and then show forward direction
- 3. and reverse direction (or contrapositive of reverse direction)

 $A_{\mathsf{TM}} = \{ \langle M, w \rangle | \ M \text{ is a TM and } M \text{ accepts } w \} \bullet \\ HALT_{\mathsf{TM}} = \{ \langle M, w \rangle | \ M \text{ is a TM and } M \text{ halts on input } w \}$

... means $\overline{A} \leq_{\mathrm{m}} \overline{B}$

A function $f: \Sigma^* \longrightarrow \Sigma^*$ is a **computable function** if some Turing machine M, on every input w, halts with just f(w) on its tape.

Polynomial Time Mapping Reducibility

Language A is *mapping reducible* to language if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$,

$$w \in A \iff f(w) \in B$$
.

The function f is called the **reduction** from A

To show poly time mapping reducibility:

- 1. create computable fn
- 2. show computable fn runs in poly time
- 3. then show forward direction
- 4. and show reverse direction(or contrapositive of reverse direction)

Language A is **polynomial time mapping reducible**, or simply **polynomial time reducible**, to language B, written $A \leq_P B$, if a polynomial time computable function $f: \Sigma^* \longrightarrow \Sigma^*$ exists, where for every w,

$$w \in A \iff f(w) \in B$$
.

Don't forget: "if and only if" ...

The function f is called the **polynomial time reduction** of A to B.

A function $f: \Sigma^* \longrightarrow \Sigma^*$ is a *computable function* if some Turing machine M, on every input w, halts with just f(w) on its tape.

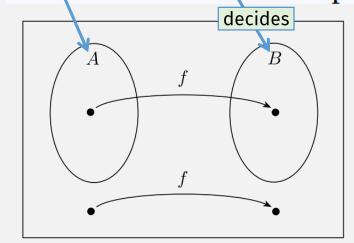
Flashback: If $A \leq_{\mathrm{m}} B$ and B is decidable, then A is decidable.

Has a decider

PROOF We let M be the decider for B and f be the reduction from A to B. We describe a decider N for A as follows.

N = "On input w:

- **1.** Compute f(w).
- decides 2. Run M on input f(w) and output whatever M outputs."



This proof only works because of the if-and-only-if requirement

Language A is *mapping reducible* to language B, written $A \leq_m B$, if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
.

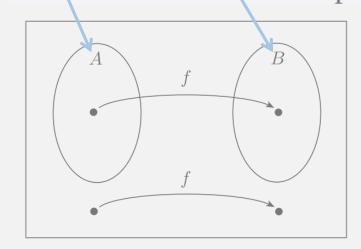
The function f is called the **reduction** from A to B.

Thm: If $A \leq_{\frac{m}{P}} B$ and $B \stackrel{\in}{\text{is decidable}}$, then $A \stackrel{\in}{\text{is decidable}}$.

PROOF We let M be the decider for B and f be the reduction from A to B. We describe a decider N for A as follows.

N = "On input w:

- 1. Compute f(w).
- 2. Run M on input f(w) and output whatever M outputs."



Language A is *mapping reducible* to language B, written $A \leq_m B$, if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
.

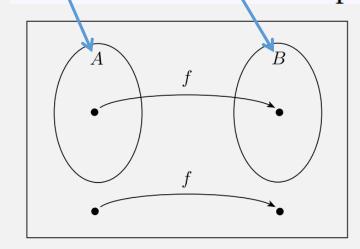
The function f is called the **reduction** from A to B.

Thm: If $A \leq_{\underline{m}} B$ and $B \stackrel{\in Y}{\text{is decidable}}$, then $A \stackrel{\in Y}{\text{is decidable}}$

PROOF We let M be the decider for B and f be the reduction from A to B. We describe a decider N for A as follows.

N = "On input w:

- **1.** Compute f(w).
- Run M on input f(w) and output whatever M outputs."



poly time Language A is mapping reducible to language B, written $A \leq_m B$, if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
.

The function f is called the **reduction** from A to B.

NP-Completeness

DEFINITION

A language B is NP-complete if it satisfies two conditions:

- **1.** B is in NP, and
- **2.** every A in NP is polynomial time reducible to B.
- How does this help the P = NP problem?

THEOREM

If B is NP-complete and $B \in P$, then P = NP.

THEOREM

If B is NP-complete and $B \in P$, then P = NP.

To prove P = NP, must show:

- 1. every language in P is in NP DEFINITION
 - Trivially true (why?) Convert decirations:
- 2. every language in NP is in P
- **1.** B is in NP, and

• Given a language $A \in NP ...$

- **2.** every A in NP is polynomial time reducible to B.
- ... can poly time mapping reduce A to B $A \leq_{P} B$
 - because *B* is **NP-Complete**
- Then A also $\in \mathbf{P}$...
 - Because $A \leq_{\mathbf{P}} B$ and $B \in \mathbf{P}$, then $A \in \mathbf{P}$ (prev slide)

So to prove **P** = **NP**, we only need to find a poly-time algorithm for one **NP-Complete** problem!

Thus, if a language B is NP-complete and in P, then P = NP

An NP-Complete Language?

 $SAT = \{ \langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula} \}$

DEFINITION

A language B is NP-complete if it satisfies two conditions:

- **1.** B is in NP, and
- **2.** every A in NP is polynomial time reducible to B.

So to prove **P** = **NP**, we only need to find a poly-time algorithm for one **NP-Complete problem**!

Thus, if a language B is NP-complete and in P, then P = NP

The Boolean Satisfiability Problem

Theorem: SAT NP-complete

 $SAT = \{ \langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula} \}$

Boolean Formulas

A Boolean	ls	Example:
Value	TRUE or FALSE (or 1 or 0)	TRUE, FALSE

Boolean Formulas

A Boolean	Is	Example:
Value	TRUE or FALSE (or 1 or 0)	TRUE, FALSE
Variable	Represents a Boolean value	x, y, z

Boolean Formulas

A Boolean	ls	Example:
Value	TRUE or FALSE (or 1 or 0)	TRUE, FALSE
Variable	Represents a Boolean value	x, y, z
Operation	Combines Boolean variables	AND, OR, NOT $(\land, \lor, and \neg)$

Boolean Formulas

A Boolean	Is	Example:
Value	TRUE or FALSE (or 1 or 0)	TRUE, FALSE
Variable	Represents a Boolean value	x, y, z
Operation	Combines Boolean variables	AND, OR, NOT $(\land, \lor, and \neg)$
Formula ϕ	Combines vars and operations	$(\overline{x} \wedge y) \vee (x \wedge \overline{z})$

Boolean Satisfiability

• A Boolean formula is satisfiable if ...

• ... there is **some assignment** of **TRUE** or **FALSE** (1 or **0**) to its **variables** that **makes the entire formula TRUE**

- Is $(\overline{x} \wedge y) \vee (x \wedge \overline{z})$ satisfiable?
 - Yes
 - x = FALSE,
 y = TRUE,
 z = FALSE

 $SAT = \{ \langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula} \}$

Theorem: SAT is NP-complete

DEFINITION

A language B is **NP-complete** if it satisfies two conditions:

- \longrightarrow 1. B is in NP, and
 - **2.** every A in NP is polynomial time reducible to B.

 $SAT = \{ \langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula} \}$

Theorem: SAT is in NP:

Let n = the number of variables in the formula

Verifier:

On input $\langle \phi, c \rangle$, where c is a possible assignment of variables in ϕ to values:

• Plug values from c into ϕ , Accept if result is TRUE

Running Time: O(n)

| Non-deterministic Decider:

On input $\langle \phi \rangle$, where ϕ is a boolean formula:

- Non-deterministically try all possible assignments in parallel
- Accept if any satisfy ϕ

Running Time: Checking each assignment takes time O(n)

 $SAT = \{ \langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula} \}$

Theorem: SAT NP-complete

DEFINITION

A language B is NP-complete if it satisfies two conditions:

 \checkmark 1. B is in NP, and

 \rightarrow 2. every A in NP is polynomial time reducible to B.

the first!

problem

Proving NP-Completeness is hard!

But after we find one, then we can use that problem to prove other problems **NP**-Complete!

(Just like figuring out the **first** undecidable problem was hard!)

THEOREM

If B is NP-complete and $B \leq_{\rm P} C$ for C in NP, then C is NP-complete.

Theorem: SAT NP-complete

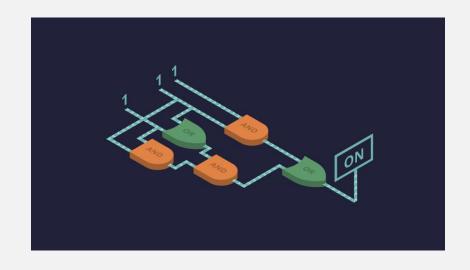
The first NP-Complete problem

PROOF: The Cook-Levin Theorem

(complicated proof
 --- defer explaining for now, assume it's true)

 $SAT = \{ \langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula} \}$

It sort of makes sense that every problem can be reduced to it ...



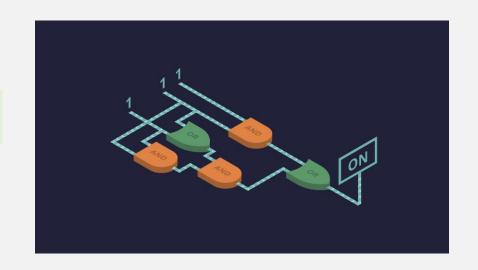
 $SAT = \{ \langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula} \}$

Theorem: SAT NP-complete

PROOF: The Cook-Levin Theorem

(complicated proof
 --- defer explaining for now, assume it's true)

Then we can use SAT to prove other problems NP-Complete!



THEOREM

If B is NP-complete and $B \leq_{\mathrm{P}} C$ for C in NP, then C is NP-complete.

The 3SAT Problem

 $3SAT = \{\langle \phi \rangle | \phi \text{ is a satisfiable 3cnf-formula}\}$

Theorem: 3SAT is NP-complete

A Boolean	ls	Example:
Value	TRUE or FALSE (or 1 or 0)	TRUE, FALSE
Variable	Represents a Boolean value	x, y, z
Operation	Combines Boolean variables	AND, OR, NOT $(\land, \lor, and \neg)$
Formula ϕ	Combines vars and operations	$(\overline{x} \wedge y) \vee (x \wedge \overline{z})$

A Boolean	Is	Example:
Value	TRUE or FALSE (or 1 or 0)	TRUE, FALSE
Variable	Represents a Boolean value	x, y, z
Operation	Combines Boolean variables	AND, OR, NOT $(\land, \lor, and \neg)$
Formula ϕ	Combines vars and operations	$(\overline{x} \wedge y) \vee (x \wedge \overline{z})$
Literal	A var or a negated var	$x \text{ or } \overline{x}$

A Boolean	Is	Example:
Value	TRUE or FALSE (or 1 or 0)	TRUE, FALSE
Variable	Represents a Boolean value	x, y, z
Operation	Combines Boolean variables	AND, OR, NOT $(\land, \lor, and \neg)$
Formula ϕ	Combines vars and operations	$(\overline{x} \wedge y) \vee (x \wedge \overline{z})$
Literal	A var or a negated var	$x \text{ or } \overline{x}$.
Clause	Literals ORed together	$(x_1 \vee \overline{x_2} \vee \overline{x_3} \vee x_4)$

A Boolean	ls	Example:
Value	TRUE or FALSE (or 1 or 0)	TRUE, FALSE
Variable	Represents a Boolean value	x, y, z
Operation	Combines Boolean variables	AND, OR, NOT $(\land, \lor, and \lnot)$
Formula ϕ	Combines vars and operations	$(\overline{x} \wedge y) \vee (x \wedge \overline{z})$
Literal	A var or a negated var	$x \text{ or } \overline{x}$
Clause	Literals ORed together	$(x_1 \vee \overline{x_2} \vee \overline{x_3} \vee x_4)$
Conjunctive Normal Form (CNF)	Clauses ANDed together	$(x_1 \vee \overline{x_2} \vee \overline{x_3} \vee x_4) \wedge (x_3 \vee \overline{x_5} \vee x_6)$

∧ = AND = "Conjunction"
∨ = OR = "Disjunction"
¬ = NOT = "Negation"

A Boolean	ls	Example:
Value	TRUE or FALSE (or 1 or 0)	TRUE, FALSE
Variable	Represents a Boolean value	x, y, z
Operation	Combines Boolean variables	AND, OR, NOT $(\land, \lor, and \neg)$
Formula ϕ	Combines vars and operations	$(\overline{x} \wedge y) \vee (x \wedge \overline{z})$
Literal	A var or a negated var	$x \text{ or } \overline{x}$.
Clause	Literals ORed together	$(x_1 \vee \overline{x_2} \vee \overline{x_3} \vee x_4)$
Conjunctive Normal Form (CNF)	Clauses ANDed together	$(x_1 \vee \overline{x_2} \vee \overline{x_3} \vee x_4) \wedge (x_3 \vee \overline{x_5} \vee x_6)$
3CNF Formula	Three literals in each clause	$(x_1 \vee \overline{x_2} \vee \overline{x_3}) \wedge (x_3 \vee \overline{x_5} \vee x_6) \wedge (x_3 \vee \overline{x_6} \vee x_4)$

∧ = AND = "Conjunction"
∨ = OR = "Disjunction"
¬ = NOT = "Negation"

Key thm: THEOREMknown unknown unknown

Let's prove it so we can use it

If B is NP-complete and $B \leq_{\mathrm{P}} C$ for C in NP, then C is NP-complete.

Proof:

- Need to show: C is NP-complete:
 - it's in NP (given), and
 - every lang A in NP reduces to C in poly time (must show)
- For every language A in NP, reduce $A \rightarrow C$ by:
 - First reduce $A \rightarrow B$ in poly time
 - Can do this because B is NP-Complete
 - Then reduce $B \rightarrow C$ in poly time
 - This is given
- <u>Total run time</u>: Poly time + poly time = poly time

To use this theorem, C must be in NP

DEFINITION

A language B is NP-complete if it satisfies two conditions:

- **1.** *B* is in NP, and
- **2.** every A in NP is polynomial time reducible to B.

<u>Using</u>: If B is NP-complete and $B \leq_{\mathbf{P}} C$ for C in NP, then C is NP-complete.

3 steps to prove a language C is NP-complete:

- 1. Show *C* is in **NP**
- 2. Choose *B,* the **NP**-complete problem to reduce from
- 3. Show a poly time mapping reduction from B to C

To show poly time mapping reducibility:

- 1. create computable fn,
- 2. show that it runs in poly time,
- 3. then show forward direction of mapping red.,
- 4. and reverse direction (or contrapositive of reverse direction)

<u>Using</u>: If B is NP-complete and $B \leq_{\mathbf{P}} C$ for C in NP, then C is NP-complete.

3 steps to prove a language C is NP-complete:

- 1. Show C is in NP
- 2. Choose B, the NP-complete problem to reduce from
- 3. Show a poly time mapping reduction from B to C

Example:

Let *C* = *3SAT*, to prove *3SAT* is **NP**-Complete:

1. Show *3SAT* is in **NP**

Flashback, 3SAT is in NP

 $3SAT = \{\langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula}\}$

Let n =the number of variables in the formula

Verifier:

On input $\langle \phi, c \rangle$, where c is a possible assignment of variables in ϕ to values:

• Accept if c satisfies ϕ

Running Time: O(n)

Non-deterministic Decider:

On input $\langle \phi \rangle$, where ϕ is a boolean formula:

- Non-deterministically try all possible assignments in parallel
- Accept if any satisfy ϕ

Running Time: Checking each assignment takes time O(n)

<u>Using</u>: If B is NP-complete and $B \leq_{\mathbf{P}} C$ for C in NP, then C is NP-complete.

3 steps to prove a language is NP-complete:

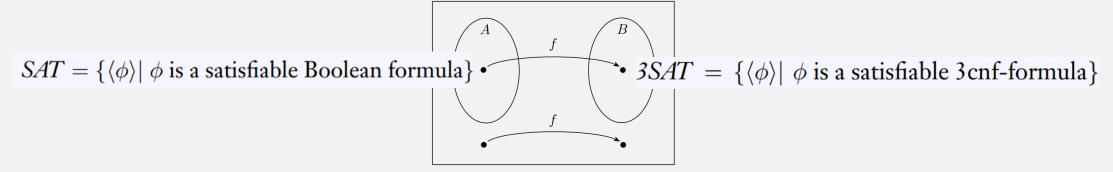
- 1. Show *C* is in **NP**
- 2. Choose B, the NP-complete problem to reduce from
- 3. Show a poly time mapping reduction from B to C

Example:

Let C = 3SAT, to prove 3SAT is **NP-Complete**:

- ✓ 1. Show *3SAT* is in **NP**
- \square 2. Choose B, the NP-complete problem to reduce from: SAT
 - 3. Show a poly time mapping reduction from *SAT* to *3SAT*

Theorem: SAT is Poly Time Reducible to 3SAT



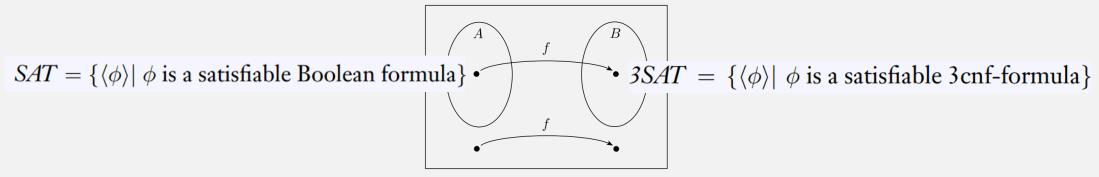
To show poly time <u>mapping reducibility</u>:

- 1. create **computable fn** *f*,
- 2. show that it runs in poly time,
- 3. then show **forward direction** of mapping red., \Rightarrow if $\phi \in SAT$, then $f(\phi) \in 3SAT$
- 4. and reverse direction

 \Leftarrow if $f(\phi) \in 3SAT$, then $\phi \in SAT$ (or contrapositive of reverse direction)

 \Leftarrow (alternative) if $\phi \notin SAT$, then $f(\phi) \notin 3SAT$

Theorem: SAT is Poly Time Reducible to 3SAT



<u>Want</u>: poly time <u>computable fn</u> converting a Boolean formula ϕ to 3CNF:

- 1. Convert ϕ to CNF (an AND of OR clauses)
 - a) Use DeMorgan's Law to push negations onto literals

$$\neg (P \lor Q) \iff (\neg P) \land (\neg Q) \qquad \neg (P \land Q) \iff (\neg P) \lor (\neg Q) \qquad O(\mathbf{n})$$

- b) Distribute ORs to get ANDs outside of parens $(P \lor (Q \land R)) \Leftrightarrow ((P \lor Q) \land (P \lor R))$ O(n)
- 2. Convert to 3CNF by adding new variables

$$(a_1 \lor a_2 \lor a_3 \lor a_4) \Leftrightarrow (a_1 \lor a_2 \lor z) \land (\overline{z} \lor a_3 \lor a_4) \bigcirc (n)$$

Remaining step: show iff relation holds ...

... this thm is a special case, don't need to separate forward/reverse dir bc each step is already a known "law"

<u>Using</u>: If B is NP-complete and $B \leq_{\mathbf{P}} C$ for C in NP, then C is NP-complete.

3 steps to prove a language is NP-complete:

- 1. Show *C* is in **NP**
- 2. Choose B, the NP-complete problem to reduce from
- 3. Show a poly time mapping reduction from *B* to *C*

Example:

Let C = 3SAT, to prove 3SAT is **NP-Complete**:

- ✓ 1. Show 3SAT is in NP
- \square 2. Choose B, the NP-complete problem to reduce from: SAT
- ☑3. Show a poly time mapping reduction from SAT to 3SAT

NP-Complete problems, so far

• $SAT = \{ \langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula} \}$ (havent proven yet)

• $3SAT = \{\langle \phi \rangle | \phi \text{ is a satisfiable 3cnf-formula} \}$ (reduced *SAT* to *3SAT*)

• $CLIQUE = \{\langle G, k \rangle | G \text{ is an undirected graph with a } k\text{-clique} \}$ (reduce ??? to CLIQUE)?

<u>Using</u>: If B is NP-complete and $B \leq_{\mathbf{P}} C$ for C in NP, then C is NP-complete.

3 steps to prove a language is NP-complete:

- 1. Show *C* is in **NP**
- 2. Choose B, the NP-complete problem to reduce from
- 3. Show a poly time mapping reduction from *B* to *C*

Example:

Let C = 3SAT, to prove 3SAT is **NP-Complete**:

- ✓ 1. Show 3SAT is in NP
- \square 2. Choose B, the NP-complete problem to reduce from: SAT
- ☑3. Show a poly time mapping reduction from SAT to 3SAT

<u>USing</u>: If B is NP-complete and $B \leq_{\mathbf{P}} C$ for C in NP, then C is NP-complete.

3 steps to prove a language is NP-complete:

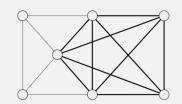
- 1. Show *C* is in **NP**
- 2. Choose B, the NP-complete problem to reduce from
- 3. Show a poly time mapping reduction from B to C

Example:

Let C = 3SAT CLIQUE, to prove 3SAT CLIQUE is NP-Complete:

- ?1. Show 3SAT CLIQUE is in NP
- ?2. Choose B, the NP-complete problem to reduce from: SAT 3SAT
- ?3. Show a poly time mapping reduction from 3SAT to 3SAT CLIQUE

CLIQUE is in NP



 $CLIQUE = \{\langle G, k \rangle | G \text{ is an undirected graph with a } k\text{-clique} \}$

PROOF IDEA The clique is the certificate.

Let n = # nodes in G

c is at most n

PROOF The following is a verifier V for CLIQUE.

V = "On input $\langle \langle G, k \rangle, c \rangle$:

- 1. Test whether c is a subgraph with k nodes in G.
- 2. Test whether G contains all edges connecting nodes in c.
- 3. If both pass, accept; otherwise, reject."

For each node in c, check whether it's in G: O(n)

For each pair of nodes in c, check whether there's an edge in G: $O(n^2)$

<u>Using</u>: If B is NP-complete and $B \leq_{\mathbf{P}} C$ for C in NP, then C is NP-complete.

3 steps to prove a language is NP-complete:

- 1. Show *C* is in **NP**
- 2. Choose B, the NP-complete problem to reduce from
- 3. Show a poly time mapping reduction from B to C

Example:

Let $C = \frac{3SAT}{CLIQUE}$, to prove $\frac{3SAT}{CLIQUE}$ is NP-Complete:

- **☑**1. Show *3SAT-CLIQUE* is in **NP**
- \square 2. Choose B, the NP-complete problem to reduce from: SAT3SAT
- ?3. Show a poly time mapping reduction from 3SAT to 3SAT CLIQUE

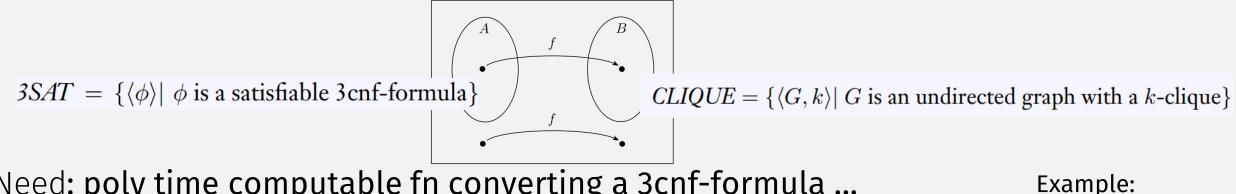
Theorem: 3SAT is polynomial time reducible to CLIQUE.

 $3SAT = \{\langle \phi \rangle | \ \phi \text{ is a satisfiable 3cnf-formula}\}$ $CLIQUE = \{\langle G, k \rangle | \ G \text{ is an undirected graph with a k-clique}\}$

To show poly time <u>mapping reducibility</u>:

- 1. create computable fn,
- 2. show that it runs in poly time,
- 3. then show forward direction of mapping red.,
- 4. and reverse direction(or contrapositive of reverse direction)

Theorem: 3SAT is polynomial time reducible to CLIQUE.



Need: poly time computable fn converting a 3cnf-formula ...

 $\phi = (x_1 \vee x_1 \vee x_2) \wedge (\overline{x_1} \vee \overline{x_2} \vee \overline{x_2}) \wedge (\overline{x_1} \vee x_2 \vee \overline{x_2})$

• ... to a graph containing a clique:

Each clause maps to a group of 3 nodes

Connect all nodes <u>except</u>:

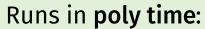
 Contradictory nodes Nodes in the same group Don't forget iff

 \Rightarrow If $\phi \in 3SAT$

- Then each clause has a TRUE literal
 - Those are <u>nodes in the 3-clique!</u>
 - E.g., $x_1 = 0$, $x_2 = 1$

 $\Leftarrow \mathsf{lf} \, \phi \notin \mathit{3SAT}$

• Then in the graph, some clause's group of nodes won't be connected to another group, preventing the clique



- # literals = O(n)# nodes
- # edges poly in # nodes

 $O(n^2)$

<u>Using</u>: If B is NP-complete and $B \leq_{\mathbf{P}} C$ for C in NP, then C is NP-complete.

3 steps to prove a language is NP-complete:

- 1. Show *C* is in **NP**
- 2. Choose B, the NP-complete problem to reduce from
- 3. Show a poly time mapping reduction from B to C

Example:

Let $C = \frac{3SAT}{CLIQUE}$, to prove $\frac{3SAT}{CLIQUE}$ is NP-Complete:

- **☑**1. Show *3SAT-CLIQUE* is in **NP**
- \square 2. Choose B, the NP-complete problem to reduce from: SAT3SAT
- $\overline{\mathbf{V}}$ 3. Show a poly time mapping reduction from $\mathbf{3}\mathbf{S}\mathbf{A}\mathbf{T}$ to $\mathbf{3}\mathbf{S}\mathbf{A}\mathbf{T}$ **CLIQUE**

NP-Complete problems, so far

- $SAT = \{ \langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula} \}$ (havent proven yet)
- $3SAT = \{\langle \phi \rangle | \phi \text{ is a satisfiable 3cnf-formula} \}$ (reduced *SAT* to *3SAT*)

• $CLIQUE = \{\langle G, k \rangle | G \text{ is an undirected graph with a } k\text{-clique}\}$ (reduced 3SAT to CLIQUE)

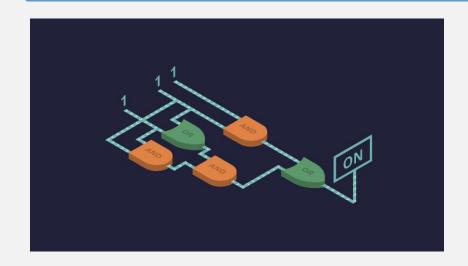
Next Time: The Cook-Levin Theorem

The first NP-Complete problem

THEOREM "

SAT is NP-complete.

It sort of makes sense that every problem can be reduced to it ...



After this, it'll be much easier to find other NP-Complete problems!

THEOREM

If B is NP-complete and $B \leq_{\mathrm{P}} C$ for C in NP, then C is NP-complete.