Nondeterministic Finite Automata (NFAs)

Wednesday September 15, 2021
Announcements

• HW1 due Sun 9/19 11:59pm EST
 • Upload solutions to Gradescope
 • LaTex is great!
 • Handwritten and scanned/photo is perfectly fine
 • I must be able to read your answers!
 • Illegible solutions will not receive any credit

• Please post HW questions to Piazza
 • Don’t email me directly
 • So others can benefit from the discussion, and potentially help out!

• Monday 9/13 lecture video posted

• Welcome new students!
 • Make sure to catch up ASAP
Last Time: Finite State Automaton, a.k.a. DFAs

DEFINITION 1.5

A finite automaton is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set called the states,
2. \(\Sigma\) is a finite set called the alphabet,
3. \(\delta: Q \times \Sigma \rightarrow Q\) is the transition function,
4. \(q_0 \in Q\) is the start state, and
5. \(F \subseteq Q\) is the set of accept states.

• **Key characteristic:**
 • Has a **finite** number of states
 • I.e., it’s a computer with a finite amount of memory
 • Can’t dynamically allocate

• Often used for **text matching**
Combining DFAs?

Password Requirements

» Passwords must have a minimum length of ten (10) characters - but more is better!
» Passwords **must include at least 3** different types of characters:
 » upper-case letters (A-Z)
 » lower-case letters (a-z)
 » symbols or special characters (%, &, *, $, etc.)
 » numbers (0-9)
» Passwords cannot contain all or part of your email address
» Passwords cannot be re-used

To match all requirements, can we combine smaller DFAs?

For more information, visit: https://www.umb.edu/it/password
Combining DFAs

Problem 1: What should be the transition labels?

Problem 2: Once we enter one of the machines, can’t go back to the other one!

\[M_1: \text{Check special chars} \]

\[M_2: \text{Check uppercase} \]

\[M_3: \text{OR} \]

Combined machine adds new start state

We need a different kind of machine!

Idea: nondeterminism allows being in multiple states (i.e., multiple machines) at once!
Nondeterminism

Deterministic computation

- start
- ... states
- accept or reject

Nondeterministic computation

- ... reject
- ... states
- accept

Nondeterministic computation can be in multiple states at the same time
Nondeterministic Finite Automata (NFA)

Definition 1.37

A *nondeterministic finite automaton* is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set of states,
2. \(\Sigma\) is a finite alphabet,
3. \(\delta: Q \times \Sigma \rightarrow \mathcal{P}(Q)\) is the transition function,
4. \(q_0 \in Q\) is the start state, and
5. \(F \subseteq Q\) is the set of accept states.

Compare with DFA:

A *finite automaton* is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set called the *states*,
2. \(\Sigma\) is a finite set called the *alphabet*,
3. \(\delta: Q \times \Sigma \rightarrow Q\) is the *transition function*,
4. \(q_0 \in Q\) is the *start state*, and
5. \(F \subseteq Q\) is the *set of accept states*.

Difference

- Power set, i.e. a transition results in *set of states*
Power Sets

• A power set is the set of all subsets of a set

• **Example**: $S = \{a, b, c\}$

• Power set of $S =$
 • $\{\{\}, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$
 • **Note**: includes the empty set!
A **nondeterministic finite automaton** is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set of states,
2. \(\Sigma\) is a finite alphabet,
3. \(\delta: Q \times \Sigma \varepsilon \rightarrow \mathcal{P}(Q)\) is the transition function,
4. \(q_0 \in Q\) is the start state, and
5. \(F \subseteq Q\) is the set of accept states.

\[
\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}
\]

Definition 1.37

A finite automaton is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set called the **states**,
2. \(\Sigma\) is a finite set called the **alphabet**,
3. \(\delta: Q \times \Sigma \rightarrow Q\) is the **transition function**,
4. \(q_0 \in Q\) is the **start state**, and
5. \(F \subseteq Q\) is the **set of accept states**.
A nondeterministic finite automaton is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set of states,
2. \(\Sigma\) is a finite alphabet,
3. \(\delta: Q \times \Sigma \rightarrow \mathcal{P}(Q)\) is the transition function,
4. \(q_0 \in Q\) is the start state, and
5. \(F \subseteq Q\) is the set of accept states.
The formal description of N_1 is $(Q, \Sigma, \delta, q_1, F)$, where

1. $Q = \{q_1, q_2, q_3, q_4\}$,
2. $\Sigma = \{0, 1\}$,
3. δ is given as

\[
\begin{array}{c|ccc}
 & 0 & 1 & \varepsilon \\
\hline
q_1 & \{q_1\} & \{q_1, q_2\} & \emptyset \\
q_2 & \{q_3\} & \emptyset & \{q_3\} \\
q_3 & \emptyset & \{q_4\} & \emptyset \\
q_4 & \{q_4\} & \{q_4\} & \emptyset \\
\end{array}
\]

4. q_1 is the start state, and
5. $F = \{q_4\}$.

\[
\begin{array}{c}
q_1 \\
\downarrow \varepsilon \\
q_2 \\
\downarrow 0 \\
q_3 \\
\downarrow 1 \\
q_4 \\
\end{array}
\]

\[
\begin{array}{c}
q_1 \\
\downarrow 1 \\
q_2 \\
\downarrow 0 \\
q_3 \\
\downarrow 1 \\
q_4 \\
\end{array}
\]

\[
\begin{array}{c}
q_1 \\
\downarrow \varepsilon \\
q_2 \\
\downarrow 0 \\
q_3 \\
\downarrow 1 \\
q_4 \\
\end{array}
\]

\[
\begin{array}{c}
q_1 \\
\downarrow 0 \\
q_2 \\
\downarrow 1 \\
q_3 \\
\downarrow 0 \\
q_4 \\
\end{array}
\]
Running Programs, NFAs (JFLAP demo): \texttt{010110}
A nondeterministic machine can be in multiple states at the same time!

This is an accepting computation because at least one path ends in an accept state.
NFAs vs DFAs

DFAs
- Can only be in **one** state
- Transition:
 - Must read 1 char
- Acceptance:
 - If final state is accept state

NFAs
- Can be in **multiple** states
- Transition
 - Can read no chars
 - i.e., empty transition
- Acceptance:
 - If **one of** final states is accept state
Running an NFA Program: Formal Model

Define the extended transition function: \(\hat{\delta} : Q \times \Sigma^* \rightarrow \mathcal{P}(Q) \)

- **Inputs:**
 - Some beginning state \(q \) (not necessarily the start state)
 - Input string \(w = w_1w_2 \cdots w_n \)
- **Output:**
 - Set of ending states

(Defined recursively)

- **Base case:** \(\hat{\delta}(q, \epsilon) = \{q\} \)
- **Recursive case:**
 - If: \(\hat{\delta}(q, w') = \{q_1, \ldots, q_k\} \)
 - where \(w' \in \Sigma^* = w_1 \cdots w_{n-1} \) and \(w_n \in \Sigma \)
 - Then: \(\hat{\delta}(q, w'w_n) = \bigcup_{i=1}^{k} \hat{\delta}(q_i, w_n) \)

No empty transitions
NFA Extended delta Example

\[\hat{\delta}(q, \varepsilon) = \{q\} \]

\[\hat{\delta}(q, w'w_n) = \bigcup_{i=1}^{k} \delta(q_i, w_n) \]

where \(w' \in \Sigma^* = w_1 \cdots w_{n-1} \)
and \(w_n \in \Sigma \)

\[\hat{\delta}(q, w') = \{q_1, \ldots, q_k\} \]

- \(\hat{\delta}(q_0, \varepsilon) = \)
- \(\hat{\delta}(q_0, 0) = \)
- \(\hat{\delta}(q_0, 00) = \)
- \(\hat{\delta}(q_0, 001) = \)
Adding Empty Transitions

• Define the set ε-REACHABLE(q)
 • ... to be all states reachable from q via one or more empty transitions

(Defined recursively)

• **Base case:** $q \in \varepsilon$-REACHABLE(q)

• **Inductive case:**

 \[
 \varepsilon$-REACHABLE$(q) = \{ r \mid p \in \varepsilon$-REACHABLE$(q)$ and $r \in \delta(p, \varepsilon) \}
 \]

A state is in the reachable set if ...

... there is an empty transition to it from another state in the reachable set
ε-REACHABLE Example

ε-REACHABLE(1) = \{1, 2, 3, 4, 6\}
Running an NFA Program: Formal Model

Define the extended transition function:

\[\hat{\delta} : Q \times \Sigma^* \rightarrow \mathcal{P}(Q) \]

- **Inputs:**
 - Some beginning state \(q \) (not necessarily the start state)
 - Input string \(w = w_1w_2 \cdots w_n \)
- **Output:**
 - Set of ending states

(Defined recursively)

- **Base case:** \(\hat{\delta}(q, \epsilon) = \varepsilon\text{-REACHABLE}(q) \)
- **Recursive case:**
 - If:
 \[\hat{\delta}(q, w') = \{q_1, \ldots, q_k\} \]
 where \(w' \in \Sigma^* = w_1 \cdots w_{n-1} \)
 and \(w_n \in \Sigma \)
 - Then:
 \[\hat{\delta}(q, w'w_n) = \varepsilon\text{-REACHABLE}\left(\bigcup_{i=1}^{k} \delta(q_i, w_n) \right) \]
An NFA’s Language

• For NFA \(N = (Q, \Sigma, \delta, q_0, F) \) \(N \) accepts \(w \) if \(\hat{\delta}(q_0, w) \cap F \neq \emptyset \)
 • i.e., if the final states have at least one accept state

• Language of \(N = L(M) = \{ w \mid \hat{\delta}(q_0, w) \cap F \neq \emptyset \} \)

• \(Q \): How does an NFA’s language relate to regular languages
 • Reminder: A language is regular if a DFA recognizes it
NFAs and Regular Languages

Theorem:
• A language A is regular if and only if some NFA N recognizes it.
How to Prove a Theorem: $X \iff Y$

- $X \iff Y = \text{“}X \text{ if and only if } Y\text{”} = X \iff Y = X \iff Y$
- **Proof at minimum** has 2 parts:
 1. \Rightarrow if X, then Y
 - i.e., assume X, then use it to prove Y
 - “forward” direction
 2. \Leftarrow if Y, then X
 - i.e., assume Y, then use it to prove X
 - “reverse” direction
NFAs and Regular Languages

Theorem:
• A language A is regular if and only if some NFA N recognizes it.

Must prove:
• \Rightarrow If A is regular, then some NFA N recognizes it
 • Easier
 • We know: if A is regular, then a DFA recognizes it.
 • Easy to convert DFA to an NFA! (see HW2)
• \Leftarrow If an NFA N recognizes A, then A is regular.
 • Harder
 • Idea: Convert NFA to DFA
How to convert NFA→DFA?

A finite automaton is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set called the states,
2. \(\Sigma\) is a finite set called the alphabet,
3. \(\delta: Q \times \Sigma \rightarrow Q\) is the transition function,
4. \(q_0 \in Q\) is the start state, and
5. \(F \subseteq Q\) is the set of accept states.

A nondeterministic finite automaton is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set of states,
2. \(\Sigma\) is a finite alphabet,
3. \(\delta: Q \times \Sigma_e \rightarrow \mathcal{P}(Q)\) is the transition function,
4. \(q_0 \in Q\) is the start state, and
5. \(F \subseteq Q\) is the set of accept states.

Proof idea:
Let each “state” of the DFA be a set of states in the NFA.
In a DFA, all these states at each step must be only one state.

So design a state in the DFA to be a set of NFA states!
Convert NFA→DFA, Formally

• Let NFA $N = (Q, \Sigma, \delta, q_0, F)$

• An equivalent DFA M has states $Q' = \mathcal{P}(Q)$ (power set of Q)
Example:

The NFA N_4

A DFA D that is equivalent to the NFA N_4
NFA→DFA

Have: \(N = (Q, \Sigma, \delta, q_0, F') \)

Want to: construct a DFA \(M = (Q', \Sigma, \delta', q_0', F') \)

1. \(Q' = \mathcal{P}(Q) \). A state for \(M \) is a set of states in \(N \)

2. For \(R \in Q' \) and \(a \in \Sigma \),
 \[
 \delta'(R, a) = \bigcup_{r \in R} \delta(r, a)
 \]
 \(R = \) a state in \(M = \) a set of states in \(N \)

3. \(q_0' = \{q_0\} \)

4. \(F' = \{R \in Q' \mid R \text{ contains an accept state of } N\} \)

To compute next state for \(R \), compute next states of each NFA state \(r \) in \(R \), then union results into one set.
NFA→DFA Proof of Correctness

• Let \(N = (Q_N, \Sigma, \delta_N, q_0, F_N) \)

• And let NFA→DFA(\(N\)) = \(D = (Q_D, \Sigma, \delta_D, \{q_0\}, F_D) \)

• Correctness criteria: \(L(N) = L(D) \)

• We will prove a stronger statement: \(\hat{\delta}_D(\{q_0\}, w) = \hat{\delta}_N(q_0, w) \)
 • That is, for all strings \(w \), the DFA and NFA end in the same set of states
NFA→DFA Proof of Correctness

• Let $N = (Q_N, \Sigma, \delta_N, q_0, F_N)$
• And let $\text{NFA→DFA}(N) = D = (Q_D, \Sigma, \delta_D, \{q_0\}, F_D)$

Theorem: \(\hat{\delta}_D(\{q_0\}, w) = \hat{\delta}_N(q_0, w) \)

Proof: (by induction on length of w)

• Base case $w = \epsilon$ \(\hat{\delta}_D(\{q_0\}, \epsilon) \) and \(\hat{\delta}_N(q_0, \epsilon) \) are \(\{q_0\} \)

• Inductive case $w = xa$
 • IH: \(\hat{\delta}_D(\{q_0\}, x) = \hat{\delta}_N(q_0, x) \), call this set of states R
 • NFA last step (from δ_N definition) \(\bigcup_{r \in R} \delta_N(r, a) \)
 • DFA last step (from NFA→DFA definition) \(\bigcup_{r \in R} \delta_N(r, a) \)

This produces a set bc of the definition of NFAs

Go back and review previous definitions to confirm

No empty transitions
NFA→DFA_ε

• Have: \(N = (Q, \Sigma, \delta, q_0, F) \)
• Want to: construct a DFA \(M = (Q', \Sigma, \delta', q_0', F') \)
1. \(Q' = \mathcal{P}(Q) \).
2. For \(R \in Q' \) and \(a \in \Sigma \),
 \[
 \delta'(R, a) = \bigcup_{r \in R} \varepsilon\text{-REACHABLE}(\delta(r, a))
 \]
3. \(q_0' = \{q_0\} \varepsilon\text{-REACHABLE}(\{q_0\}) \)
4. \(F' = \{ R \in Q' \mid R \text{ contains an accept state of } N \} \)
NFA→DFA$_\varepsilon$ Proof of Correctness

• Let $N = (Q_N, \Sigma, \delta_N, q_0, F_N)$
• And let NFA→DFA$_\varepsilon(N) = D = (Q_D, \Sigma, \delta_D, \{q_0\}, F_D)$

• **Correctness criteria:** $L(N) = L(D)$

• We will prove a stronger statement: $\hat{\delta}_D(\{q_0\}, w) = \hat{\delta}_N(q_0, w)$
 • That is, for all strings w, the DFA and NFA end in the same set of states

(Same as before)
NFA→DFA_{\varepsilon} Proof of Correctness

• Let $N = (Q_N, \Sigma, \delta_N, q_0, F_N)$
• And let $\text{NFA→DFA}(N) = D = (Q_D, \Sigma, \delta_D, \{q_0\}, F_D)$

Theorem: $\hat{\delta}_D(\{q_0\}, w) = \hat{\delta}_N(q_0, w)$

Proof: (by induction on length of w)

• **Base case** $w = \varepsilon$ $\hat{\delta}_D(\{q_0\}, \varepsilon)$ and $\hat{\delta}_N(q_0, \varepsilon)$ are $\{q_0\}$

• **Inductive case** $w = xa$
 • **IH:** $\hat{\delta}_D(\{q_0\}, x) = \hat{\delta}_N(q_0, x)$, call this set of states R
 • NFA last step (from δ_N definition) $\bigcup_{r \in R} \delta_N(r, a)$
 • DFA last step (from NFA→DFA definition) $\bigcup_{r \in R} \delta_N(r, a)$
Proving that NFAs Recognize Reg Langs

Theorem:

A language A is regular if and only if some NFA N recognizes it.

Proof:

\Rightarrow If A is regular, then some NFA N recognizes it

- We know: if A is regular, then a DFA recognizes it
- So convert DFA to an NFA

\Leftarrow If an NFA N recognizes A, then A is regular

- We know: if a DFA recognizes a language, then it is regular
- So convert NFA to DFA ...
- ... Using NFA→DFA algorithm we just defined! ■ (Q.E.D.)
Combining DFAs

Problem 1: What should be the transition labels?

\[M_3: \text{OR} \]

\[q_0 \]

\[\epsilon \]

\[M_1: \text{Check special chars} \]

\[\epsilon \]

\[M_2: \text{Check uppercase} \]

Problem 2: Once we enter one of the machines, can’t go back to the other one!

This is an NFA!

Can be in multiple states at once, but is still equivalent to a regular language!

This allows us to check multiple machines (i.e., multiple machines) at once!
Next Time: More “Combining” Operations

Construction of N to recognize $A_1 \circ A_2$
In-class Quiz 9/15

On gradescope